Suites de fonctions 1,

Solution de 2 : Applications

- 1. Vu en cours: les fonctions polynomiales.
- 2. Ce sont les fonctions continues. Il suffit de choisir P_n tel que $||f P_n||_{\infty, [-n,n]} \le \frac{1}{2n}$.
- 3. Appliquer le théorème de Weierstraß à $g: x \mapsto f(\sqrt{x})$.
- 4. La CNS est f(0) = 0.

Si f(0) = 0 et f est dérivable en 0, appliquer la question précédente à $h: x \mapsto \frac{f(x)}{x}$ prolongée en 0.

Sinon, approcher uniformément f par P et appliqué le raisonnement précédent à Q = P - P(0).

Solution de 3 : Preuve du théorème de la double limite

Si $a \in I$, on est ramené au théorème de continuité.

Sinon, l'idée est de prolonger par continuité les f_n en a en posant $f_n(a) = b_n$ pour voir appliquer le théorème précédent. Pour cela, on va commencer par montrer que (b_n) converge. On commence par montrer qu'elle est bornée pour appliquer le théorème de Bolzano-Weierstraß.

Soit V un voisinage de a sur lequel $(f_n)_n$ converge uniformément.

Si $n \in \mathbb{N}$ et $x \in I \cap V$, $|b_n| \le |b_n - f_n(x)| + |f_n(x) - f(x)| + |f(x)|$.

On a un rang N à partir duquel $|f_n(x) - f(x)| \le 1$.

On suppose dorénavant que $n \ge N$.

On a aussi un voisinage W_n de a sur lequel $|b_n - f_n(x)| \le 1$.

En prenant $x_n \in I \cap V \cap W_n$, on tire $|b_n| \leq 2 + |f(x_n)|$.

Mais comme les f_n convergent en a, elle sont bornées au voisinage de a donc par convergence uniforme, f est aussi bornée (disons, par M) au voisinage de a.

On obtient donc, pour $n \ge N$, $|b_n| \le 2 + M$ et donc (b_n) est bornée.

Par théorème de Bolezano-Weierstraß, on en extrait une suite convergente : $b_{\varphi(n)} \to b$.

On montre alors que $b_n \to b$.

Or pour $n \in \mathbb{N}$ et $x \in I$,

$$|b_n - b| \le |b_n - f_n(x)| + |f_n(x) - f(x)| + |f(x) - f_{\varphi(n)}(x)| + |f_{\varphi(n)}(x) - b_{\varphi(n)}| + |b_{\varphi(n)} - b|.$$

Soit $\varepsilon > 0$.

On a un voisinage V' de a sur lequel, à partir d'un rang N, $\left|f_n(x)-f(x)\right| \leqslant \frac{\varepsilon}{5}$. Comme $\varphi(n) \geqslant n$, on a alors aussi $|f_{\varphi(n)}(x) - f(x)| \leq \frac{\varepsilon}{5}$.

Puis des voisinages W_n' et W_n'' de a sur lesquel $\left|b_n-f_n(x)\right|\leqslant \frac{\varepsilon}{5}$ et $\left|b_{\varphi(n)}-f_{\varphi(n)}(x)\right|\leqslant \frac{\varepsilon}{5}$ respectivement.

Puis un rang N' à partir duquel $\left|b_{\varphi(n)}-b\right|\leqslant \frac{\varepsilon}{5}$. Finalement, en prenant $n\geqslant \max(N,N')$ et $x\in I\cap V'\cap W_n'\cap W_n''$, alors tire $|b_n-b|\leqslant \varepsilon$.

Ainsi, $b_n \rightarrow b$.

On prolonge les f_n par continuité en a en posant $f_n(a) = b_n$, et on pose f(a) = b. Les f_n ainsi prolongées sont continues en a et convergent uniformément vers f (pas de problème en a car $b_n \to b$), qui est aussi continue a, donc $f(x) \xrightarrow[r \to a]{} b$.

Solution de 4 : X-ENS

- 1. Découper [a,b] en une subdivision régulière de pas inférieur à $\frac{\varepsilon}{3k}$ puis, pour $x \in [a,b]$, utiliser x' dans la subdivision proche de x et découper $|f_n(x) f(x)| \le |f_n(x) f_n(x')| + |f_n(x') f(x')| + |f(x') f(x)|$
- 2. Pour $x, y \in [\alpha, \beta] \subset]a, b[$ avec x < y, utiliser l'inégalité des trois pentes pour les cordes entre a et α , x et y, b et β pour obtenir la lipschitzianité de f_n sur $[\alpha, \beta]$ et se ramener à la question précédente.

2. Séries de fonctions

Solution de 5:

- 1. Utiliser le théorème des accroissements finis ou une écriture sous forme intégrale. CN sur tout segment.
- 2. Justifier qu'une limite finie ou non existe et la minorer par une somme partielle (comme pour ζ en 1...)

Ou utiliser une écriture de f_n sous forme intégrale.

Solution de 6 : Mines-Ponts

1. Pour $|x| \ge 1$, la série est grossièrement divergente.

Pour |x| < 1,

$$\frac{x^n}{1+x^n} \sim x^n$$

et la série est absolument convergente.

La fonction S est définie sur]-1,1[.

Posons $u_n: x \mapsto \frac{x^n}{1+x^n}$. Appliquons le théorème de continuité des séries de fonctions.

- **H1** La série $\sum u_n$ converge simplement.
- **H2** Les fonctions u_n sont continues.
- **H3** Pour tout $a \in [0,1[$, $||u_n||_{\infty,[-a,a]} \le a^n$, ce qui assure la convergence normale de $\sum u_n$ sur tout segment de]-1,1[.

Par théorème, la fonction S est continue.

2. On a déjà $S(x) \underset{x\to 0}{\sim} S(0) = \frac{1}{2}$.

Pour $x \in [0,1[$, une solution plutôt efficace est d'utiliser une comparaison série-intégrale pour arriver à $S(x) \sim -\frac{\ln 2}{\ln x} \sim \frac{\ln 2}{x-1}$.

On peut aussi y arriver un peu plus douloureusement avec la méthode suivante, intéressante.

$$S(x) = \frac{1}{2} + \sum_{n=1}^{+\infty} \left(\sum_{p=0}^{+\infty} (-1)^p x^{n(p+1)} \right).$$

Puisque $\sum_{p\geqslant 0} \left|(-1)^p x^{n(p+1)}\right|$ converge et $\sum_{n\geqslant 1} \sum_{p=0}^{+\infty} \left|(-1)^p x^{n(p+1)}\right|$ aussi, on peut permuter les deux sommes en vertu du théorème de Fubini et affirmer

$$S(x) = \frac{1}{2} + \sum_{p=0}^{+\infty} (-1)^p \frac{x^{p+1}}{1 - x^{p+1}}.$$

On a alors

$$(1-x)S(x) = \frac{1-x}{2} + \sum_{p=0}^{+\infty} (-1)^p u_p(x)$$

avec

$$u_p(x) = x^{p+1} \frac{1-x}{1-x^{p+1}}$$

pour $x \in [0, 1[$.

La fonction u_p est continue sur [0,1[et se prolonge par continuité en 1 en posant $u_p(1)=\frac{1}{p+1}$.

Le critère spécial des séries alternées s'applique à la série $\sum (-1)^p u_p(x)$ et donc

$$\left| \sum_{k=p+1}^{\infty} (-1)^k u_k(x) \right| \le u_{p+1}(x)$$

Une étude de variation permet d'affirmer $u_{p+1}(x) \le \frac{1}{p+2}$.

Ainsi, la série $\sum u_n$ converge uniformément sur [0,1] et donc sa somme est continue en 1. Cela permet d'affirmer

$$(1-x)S(x) \xrightarrow[x \to 1^{-}]{} \sum_{p=0}^{+\infty} \frac{(-1)^p}{p+1} = \ln(2)$$

et, finalement,

$$S(x) \underset{x \to 1^{-}}{\sim} \frac{\ln(2)}{1 - x}.$$

Solution de 7: X-ENS

FGN 52.4

On pose $v_n(x) = \sin(\sin(\cdots(\sin x)\cdots)) \in [-1,1]$ pour $n \ge 1$.

Comme $\sin x$ est du signe de x sur [-1,1], $v_n(x)$ est du signe de $v_1(x)$: la série est alternée.

De l'inégalité classique $|\sin x| \le |x|$, on tire la décroissance de $(|u_n(x)|)_n$, qui est minorée par 0 elle converge donc vers ℓ tel que $|\sin \ell| = |\ell|$.

Par étude de $\sin-id$ et $\sin+id$, on tire $\ell=0$: le TSSA s'applique et donne la convergence simple. Pour l'absence de convergence normale, on remarque que $\|u_n\|_{\infty} = v_{n-1}(1) := a_n$. On cherche

un équivalent de a_n . Pour cela, comme $a_n \to 0$ et $a_{n+1} = \sin a_n = a_n - \frac{a_n^3}{6} + o(a_n^3)$, on remarque que pour $\alpha \in \mathbb{R}$,

$$a_{n+1}^{\alpha} - a_n^{\alpha} = a_n^{\alpha} \left(\left(1 - \frac{a_n^2}{6} + o(a_n^2) \right)^{\alpha} - 1 \right) = a_n^{\alpha} \left(1 - \frac{\alpha a_n^2}{6} + o(a_n^2) - 1 \right) \sim -\frac{\alpha}{6} a_n^{\alpha+2}$$

Pour avoir un équivalent constant, on choisit $\alpha = -2$ et comme $\sum \frac{1}{3}$ diverge, par sommation dans le cas de divergence,

$$a_n^{-2} - a_n^{-2} = \sum_{k=2}^{n-2} (a_{k+1}^{-2} - a_k^{-2}) \sim \frac{n-3}{3} \sim \frac{n}{3}$$

Et comme $a_n \to 0$, on tire $a_n^{-2} \sim \frac{n}{3}$ puis $a_n \sim \sqrt{\frac{3}{n}}$ ce qui permet bien de conclure l'absence de convergence normale.

Pour la convergence uniforme, par le TSSA, $\forall x \in \mathbb{R}$, $|R_n(x)| \leq |u_{n+1}(x)| \leq a_{n+1} \to 0$ permet de conclure.

Solution de 8 : X-ENS

FGN 5 2.35

- 1. Théorème de la double limite appliqué à $g_k: x \mapsto \frac{x(x-1)\cdots(x-k+1)z^k}{k!x^k}\mathbb{1}_{[k,+\infty[}(x): \text{convergence simple vers exp.}$
- 2. Récurrence sur k.
- 3. Séparer dans $|f_n(z) \exp z|$ les termes d'indices $\leq n$ et > n et utiliser la question précédente.