STRUCTURES ALGÉBRIQUES

- Il faut connaître la définition d'un groupe, d'un anneau, d'un corps, mais on ne s'en sert directement aue rarement.
- La plupart du temps, pour montrer qu'on a un groupe, on montre plutôt que c'est un sousgroupe d'un groupe connu, en reconnaissant une partie d'un groupe connu et
 - en utilisant la caractérisation d'un sous-groupe, c'est ce qui sert le plus dans la pratique,
 - \star en faisant apparaître l'ensemble comme image directe ou réciproque d'un sous-groupe par un morphisme de groupe,
 - * en voyant l'ensemble comme image d'un groupe par une bijection vérifiant la propriété des morphismes de groupes.
- Attention à l'erreur très classique consistant à appliquer la formule du binôme dans un anneau sans vérifier que les deux éléments commutent.
- $\,\blacksquare\,$ Attention aussi à bien penser à vérifier, pour un sous-anneau la présence de 1_A et pour un morphisme d'anneaux l'image de 1_A .

1. Vrai ou faux

- 1. (IN,+) est un groupe abélien.
- 2. (\mathbb{R}, \times) est un groupe abélien.
- 3. Si H sous-groupe de G, alors l'élément neutre de G est aussi celui de H.
- 4. La réunion d'une famille de sous-groupes de G est un sous-groupe de G.
- 5. Si (G, \star) groupe, $a, b, c \in G$, $a \star b = a \star c \iff b = c$.
- 6. Si $(A,+,\times)$ est un anneau, (A,+) et (A,\times) sont des groupes.
- 7. Si $(\mathbb{K},+,\times)$ est un corps, $(\mathbb{K},+)$ et (\mathbb{K},\times) sont des groupes.
- 8. $\{\pm 1\}$ est un sous groupe de (\mathbb{R}^*, \times) .
- 9. 1 est le seul élément inversible de $(\mathbb{Z}, +, \times)$.
- 10. Tout anneau intègre est un corps.
- 11. \mathbb{Z}^2 est intègre.
- 12. Dans un anneau, si a différent de zéro, alors a est un diviseur de zéro.
- 13. Dans un anneau, $a^2 b^2 = (a b) \times (a + b)$.
- 14. Dans un anneau, $a^2 = b^2 \iff a = \pm b$.
- 15. ${\mathbb R}$ est une sous-algèbre de la ${\mathbb C}$ -algèbre ${\mathbb C}.$

2. Exercices traités en cours

Soient E et F deux ensembles et $f \in F^E = \mathcal{F}(E, F)$. Montrer que

- 1. f est injective si et seulement s'il existe $g \in E^F$ telle que $g \circ f = \mathrm{id}_E$.
- 2. f est surjective si et seulement s'il existe $h \in E^F$ telle que $f \circ h = \mathrm{id}_F$.
- Soit (G,\star) un groupe, H,K sont des sous groupes de (G,\star) . Montrer que

 $H \cup K$ sous-groupe de $G \Longleftrightarrow H \subset K$ ou $K \subset H$.

- 3 1. Montrer que $f: \begin{vmatrix} \mathbb{R} & \longrightarrow & \mathbb{C}^* \\ x & \longmapsto & \mathrm{e}^{\mathrm{i}x} \end{vmatrix}$ est un morphisme de groupes. Déterminer son image et son noyau.
 - 2. Montrer que $f: \begin{vmatrix} \mathbb{R}^* & \longrightarrow & \mathbb{R}^* \\ x & \longmapsto & \frac{x}{|x|} \end{vmatrix}$ est un morphisme de groupes. Déterminer son image et son noyau.
 - 3. Même question pour $g: \begin{vmatrix} \mathbb{C}^* & \longrightarrow & \mathbb{C}^* \\ z & \longmapsto & \frac{z}{|z|} \end{vmatrix}$.
- Montrer que si $f:(A,+,\times)\to (A',\oplus,\otimes)$ est un morphisme d'anneaux :
 - lacksquare L'image réciproque d'un sous-anneau de A' est un sous-anneau de A.
 - \blacksquare L'image directe d'un sous-anneau de A est un sous-anneau de A'.
 - L'image réciproque d'un idéal de A' par f est un idéal de A.
 - L'image directe d'un idéal de A par f est un idéal de f(A).

3. Structure de groupe

- Soit E un ensemble muni d'une loi interne * associative. Montrer que l'ensemble des éléments réguliers à gauche (c'est-à-dire $x \in E$ tels que $\forall a, b \in E, x*a = x*b \Rightarrow a = b$) (respectivement réguliers à droite) est stable pour *.
- Soit G =]-1,1[et pour $(x,y) \in G^2$, $x \star y = \frac{x+y}{1+xy}$.

Montrer que (G, \star) est un groupe. Est-il commutatif?

- 7 Soit *G* un groupe tel que pour tout $x \in G$, $x^2 = e$.
 - 1. Montrer que G est abélien.
 - 2. Soient H un sous-groupe strict de G, $a \in G \setminus H$. Montrer que $H \cup aH$ est un sous-groupe de G.
 - 3. Si G est fini, en créant par récurrence un suite de sous-groupe de G de cardinal une puissance de 2, montrer que le cardinal de G est une puissance de 2.

8 Transport de structure

Soient G un ensemble muni d'une loi de composition interne \star , (H, \times) un groupe et f une application surjective de H vers G telle que

$$\forall x, y \in H, f(x \times y) = f(x) \star f(y).$$

Montrer que (G,\star) est un groupe, et que si f est bijective, (G,\star) isomorphe à (H,\times) . *Applications* :

- Montrer que (\mathbb{R},\star) est un groupe isomorphe à $(\mathbb{R},+)$, avec $a\star b=\sqrt[2025]{a^{2025}+b^{2025}}$
- Montrer que (]-1,1[,△) est un groupe isomorphe à (ℝ,+) avec $a \triangle b = \frac{a+b}{1+ab}$ (Utiliser th).

9 Centre d'un groupe

Soit G un groupe. On appelle centre de G, noté Z(G), l'ensemble des éléments de G qui commutent avec tous les autres. Montrer qu'il s'agit d'un sous-groupe commutatif de G.

Soit (G, \star) un groupe commutatif de neutre e. On pose $T(G) = \{x \in G \mid \exists n \in \mathbb{N}^*, \ x^n = e\}$. Montrer que T(G) est un sous-groupe de (G, \star) .

11 Théorème de Lagrange

Soit (G,*) un groupe d'ordre (c'est-à-dire de cardinal) fini, H un sous-groupe de G.

- 1. Montrer que la relation définie par $x \mathcal{R} y \iff x^{-1} * y \in H$ est une relation d'équivalence sur G.
- 2. Vérifier que les classes d'équivalence ont toutes le même cardinal
- 3. Démontrer le théorème de Lagrange : |H| divise |G|.
- Pour tout $x \in \mathbb{R}$, on pose $M(x) = \begin{pmatrix} 1 & 0 & x \\ -x & 1 & -\frac{x^2}{2} \\ 0 & 0 & 1 \end{pmatrix}$

Soit $G = \{M(x), x \in \mathbb{R}\}$. Montrer que (G, \times) est un groupe. Est-il abélien?

- Soit G un ensemble et \star une loi de composition interne associative sur G telle qu'il existe $e \in G$ tel que
 - $\forall x \in G, x \star e = x$
 - $\forall x \in G, \exists x' \in G, x \star x' = e$

Montrer que (G, \star) est un groupe.

Soit (G, \times) un groupe, $a \in G$ et H un sous-groupe de (G, \times) . On note $aHa^{-1} = \{aha^{-1}, h \in H\}$. Montrer que aHa^{-1} est un sous-groupe de (G, \times) .

15 Automorphismes intérieurs

Soit (G,*) un groupe. Pour tout $a \in G$, on note $\varphi_a : \begin{vmatrix} G & \longrightarrow & G \\ x & \longmapsto & a*x*a^{-1} \end{vmatrix}$

- 1. Soit $a \in G$. Montrer que φ_a est un automorphisme du groupe (G,*).
- 2. On note $Int(G) = \{\varphi_a, a \in G\}$. Montrer que $(Int(G), \circ)$ est un groupe.

16 Sous-groupes distingués

Soit (G, \times) un groupe. On dit qu'un sous-groupe H de (G, \times) est distingué si

$$\forall (a,h) \in G \times H, \ a \times h \times a^{-1} \in H.$$

- 1. Soit f un morphisme du groupe (G, \times) vers un groupe (G', *). Montrer que $\operatorname{Ker} f$ est un sous-groupe distingué de (G, \times) .
- 2. Soit H un sous-groupe distingué de (G, \times) et K un sous-groupe de (G, \times) . On note $HK = \{x \times y, x \in H, y \in K\}$. Montrer que HK est un sous-groupe de (G, \times) .

4. Anneaux et idéaux, corps

Idéal annulateur Soit A un anneau commutatif et M une partie de A. On appelle annulateur de M l'ensemble des éléments $a \in A$ tels que $am = 0_A$ pour tout $m \in M$. Montrer qu'il s'agit d'un idéal de A.

18 Idéaux premiers Soit *A* un anneau commutatif et *I* un idéal de *A*. On dit que l'idéal *I* est premier si pour tout $a, b \in A$, $ab \in I \implies a \in I$ ou $b \in I$.

- 1. Quels sont les idéaux premiers de \mathbb{Z} ?
- 2. Montrer que si f est un morphisme d'anneaux de A dans A', l'image réciproque d'un idéal premier de A' est un idéal premier de A.
- 3. Montrer que si I est premier et J, K des idéaux quelconques alors $J \cap K = I \Longrightarrow J = I$ ou K = I.
- 4. Montrer que si tous les idéaux de *A* sont premiers, alors *A* est un corps. Quels sont les idéaux dans ce cas?

19 Idéaux d'un corps Quels sont les idéaux d'un corps?

Montrer que si un anneau commutatif ne possède que $\{0_A\}$ et A comme idéaux, c'est un corps.

20 Idéaux de $\mathcal{M}_n(\mathbb{K})$ Pour $1 \le i, j \le n$, on note $E_{i,j}$ la matrice élémentaire ayant

tous ses coefficients nuls, sauf le coefficient de la i^e ligne et de la j^e colonne qui vaut 1.

- 1. Rappeler la formule donnant $E_{i,j} \times E_{k,\ell}$.
- 2. Soit $M \in \mathcal{M}_n(\mathbb{K})$. Que valent $E_{i,i}M$ et $ME_{k,\ell}$?
- 3. On appelle idéal de $\mathcal{M}_n(\mathbb{K})$ tout sous-groupe I de $(\mathcal{M}_n(\mathbb{K}),+)$ tel que pour tout $A \in I$ et $M \in \mathcal{M}_n(\mathbb{K})$, $AM \in I$ et $MA \in I$.

Démontrer que les seuls idéaux de $\mathcal{M}_n(\mathbb{K})$ sont $\{0\}$ et $\mathcal{M}_n(\mathbb{K})$.

21 Nilpotents d'un anneau

On dit qu'un élément a d'un anneau A est *nilpotent* lorsqu'il existe $n \in \mathbb{N}$ tel que $a^n = 0_A$. Le plus petit $n \in \mathbb{N}$ vérifiant cette propriété est alors appelé **indice de nilpotence** de a.

- 1. Quels sont les éléments nilpotents d'un anneau intègre?
- 2. Montrer que si $a, b \in A$ nilpotents qui commutent, a + b et ab le sont. Que peut-on dire de leurs indices de nilpotence?
- 3. Montrer que si A est commutatif, l'ensemble des éléments nilpotents est un idéal de A.
- 4. Montrer que si ab est nilpotent, ba l'est aussi. Comparer leurs indices de nilpotence.
- 5. Soit a nilpotent. Montrer que $1_A a$ est inversible dans A et préciser son inverse.
- 6. Démontrer que l'ensemble des éléments nilpotentes d'un anneau commutatif, appelé nilradical de l'anneau est un idéal de A.
- 22 Montrer que tout anneau fini intègre est un corps.

On pourra vérifier qu'une translation $x \mapsto ax$ est bijective.

- 23 Montrer que Q ne possède qu'un sous-corps.
- Déterminer les endomorphismes de l'anneau $\mathbb Z$, puis de l'anneau $\mathbb Q$ et enfin de l'anneau $\mathbb R$.

Indication : pour le passage de $\mathbb Q$ à $\mathbb R$, on pourra vérifier que l'image d'un nombre positif l'est encore et en déduire qu'un endomorphisme est croissant puis utiliser la densité de $\mathbb Q$ dans $\mathbb R$

- Déterminer les endomorphismes de l'anneau $\mathbb C$ laissant $\mathbb R$ globalement invariant.
- Soit A un anneau.
 - 1. Justifier que les endomorphismes du groupe (A,+) forment un anneau pour les lois + et \circ , noté $\operatorname{Endo}(A)$.

2. Pour $a \in A$, on note f_a : $\begin{vmatrix} A & \longrightarrow & A \\ x & \longmapsto & ax \end{vmatrix}$. Montrer que l'application ϕ : $\begin{vmatrix} A & \longrightarrow & \operatorname{Endo}(A) \\ a & \longmapsto & \phi(a) = f(A) \end{vmatrix}$ est bien définie et est un morphisme d'anneau.

27 Entiers de Gauß

On définit l'ensemble des entiers de Gauss comme étant l'ensemble des nombres complexes à coordonnées entières $\mathbb{Z}[\mathbf{i}] = \mathbb{Z} + \mathbf{i} \mathbb{Z} = \big\{ a + \mathbf{i} b \mid a,b \in \mathbb{Z} \big\}.$

- 1. Montrer qu'il s'agit d'un anneau intègre.
- 2. On définit, pour $z \in \mathbb{C}$, $N(z) = |z|^2$. Déterminer le groupe des inversibles de $\mathbb{Z}[i]$ en utilisant N.
- 3. Un élément a de $\mathbb{Z}[i]$ est dit irréductible dans $\mathbb{Z}[i]$ lorsque

 $(\exists u, v \in \mathbb{Z}[i], a = uv) \Rightarrow u \text{ est inversible ou } v \text{ est inversible.}$

Montrer que 2 n'est pas irréductible dans Z[i].

- 4. Soit $\varphi: \mathbb{Z}[i] \to \mathbb{Z}[i]$ un endomorphisme d'anneaux.
 - (a) Calculer les deux valeurs possibles pour $\varphi(i)$.
 - (b) Quels sont les endomorphismes d'anneaux de $\mathbb{Z}[i]$?
- 5. Division euclidienne ★
 - (a) Soit $z \in \mathbb{C}$. Démontrer qu'il existe $\omega \in \mathbb{Z}[i]$ tel que $|z \omega| < 1$. Indication : s'appuyer sur un dessin.
 - (b) Soient $u, v \in \mathbb{Z}[i]$ avec $v \neq 0$. Démontrer qu'il existe $q, r \in \mathbb{Z}[i]$ avec u = qv + r et |r| < |v|. A-t-on unicité?
 - (c) Démontrer que $\mathbb{Z}[i]$ est principal.

On définit l'ensemble des rationnels de Gauss comme étant l'ensemble des nombres complexes à coordonnées rationnelles $\mathbb{Q}[\mathbf{i}] = \mathbb{Q} + \mathbf{i} \mathbb{Q} = \{a + \mathbf{i}b \mid a, b \in \mathbb{Q}\}.$

- 6. Montrer qu'il s'agit d'un corps.
- 7. Quels sont les endomorphismes de corps de $\mathbb{Q}[i]$?

28 Anneau de Boole

On considère $(A,+,\times)$ un anneau de Boole c'est-à-dire un anneau non nul tel que tout élément est idempotent pour la 2^e loi ce qui signifie $\forall x \in A, x^2 = x$.

- 1. Montrer que $\forall (x,y) \in A^2$, $xy + yx = 0_A$ et en déduire que $\forall x \in A$, $x + x = 0_A$. En déduire que l'anneau A est commutatif.
- 2. Montrer que la relation binaire définie sur A par $x \leqslant y \Longleftrightarrow yx = x$ est une relation d'ordre.
- 3. Montrer que $\forall (x,y) \in A^2$, $xy(x+y) = 0_A$. En déduire qu'un anneau de Boole intègre ne peut avoir que deux éléments.

29

Soit E un ensemble. On note $\mathcal{P}(E)$ l'ensemble des parties de E.

Soit A et B deux parties de E. On appelle différence symétrique de A et B l'ensemble

$$A\Delta B = (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B).$$

- 1. Montrer que Δ est une loi associative à l'aide d'une table de vérité dont les entêtes sont $x \in A$, $x \in B$, $x \in C$, $x \in A\Delta B$, $x \in (A\Delta B)\Delta C$, $x \in B\Delta C$ et $x \in A\Delta (B\Delta C)$
- 2. Montrer que $(\mathcal{P}(E), \Delta)$ est un groupe abélien.
- 3. Montrer que \cap est distributive sur Δ
- 4. Montrer que $(\mathcal{P}(E), \Delta, \cap)$ est un anneau commutatif.
- 5. Montrer que $(\mathcal{P}(E), \Delta, \cap)$ est un anneau de Boole (voir exercice précédent).
- 6. Soit $E' \subset E$. Démontrer que $I = \mathcal{P}(E')$ est un idéal de $\mathcal{P}(E)$.
- 7. Réciproquement, soit I un idéal de $\mathcal{P}(E)$, montrer que

$$\forall \, X \in I, \ \, \forall \, \, Y \subset X, \ \, Y \in I$$

et

$$\forall X \in I, \forall Y \subset I, X \cup Y \in I$$

- 8. En déduire qu'il existe $E' \subset E$ tel que $I = \mathcal{P}(E')$.
- 9. Si E est infini, démontrer que l'ensemble des parties finies de E forme un idéal de $\mathscr{P}(E)$ qui n'est pas de la forme $\mathscr{P}(E)$.
- Radical d'un idéal Soit A un anneau commutatif. Si I est un idéal de A, on appelle radical de I l'ensemble

$$\sqrt{I} = \{x \in A, \exists n \ge 1, x^n \in I\}.$$

- 1. Montrer que \sqrt{I} est un idéal de A.
- 2. Soient I, I deux idéaux de A et $p \ge 1$. Montrer que

$$\sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J} ;$$

$$\sqrt{\sqrt{I}} = \sqrt{I} ;$$

$$\sqrt{IP} = \sqrt{I}$$

- 3. Si $A = \mathbb{Z}$ et $I = k\mathbb{Z}$ avec $k \ge 1$, déterminer le radical de I.
- Soient $\alpha \in \mathbb{Q}^+_*$ tel que $\sqrt{\alpha} \notin \mathbb{Q}$ et $\mathbb{Q}(\sqrt{\alpha}) = \mathbb{Q} + \sqrt{\alpha} \mathbb{Q} = \{r + r'\sqrt{\alpha} ; r, r' \in \mathbb{Q}\}.$
 - 1. Montrer que $(\mathbb{Q}(\sqrt{\alpha}), +, \times)$ est un corps.
 - 2. Montrer que les anneaux $\mathbb{Q}(\sqrt{a})$ et \mathbb{Q}^2 ne sont pas isomorphes \mathbb{T} .
 - 3. Montrer que les corps $\mathbb{Q}(\sqrt{2})$ et $\mathbb{Q}(\sqrt{3})$ ne sont pas isomorphes 2 .

1.

Si c'était le cas, calculer $f(\tau)$ pour $\tau \in \mathbb{Q}$ puis $f(\sqrt{a})...$

2.

(e) Si c'était le cas, considérer le carré de l'image de $\sqrt{2}$, puis l'image elle-même... On pourra utiliser que $\sqrt{2}$, $\sqrt{3}$, $\sqrt{6} \in \mathbb{R} \setminus \mathbb{Q}$.

5. Arithmétique entière

- le fait que $a \wedge b = (a bq) \wedge b$ pour tout $q \in \mathbb{Z}$ permet parfois des simplifications intéressantes.
- Lorsque l'on manipule des équations avec pgcd et/ou ppcm, il est souvent intéressant de se ramener à des nombres premiers entre eux en posant x = dx' et y = dy' où $d = x \land y$.
- Pour savoir si des nombres sont premiers entre eux, on peut penser au théorème de Bézout ou revenir à la définition (les diviseurs communs sont triviaux). Penser aussi aux nombres premiers :pas de diviseur premier en commun.
- Pour des problèmes de divisibilité, penser à travailler avec des congruences.
- Tous les nombres premiers sont impairs... sauf 2, le seul pair. Penser à ce cas particulier. Et 1 n'est pas premier.
- En algèbre modulaire, on ne manipule jamais de grande valeur : penser à réduire systématiquement pour se ramener dans [0, n-1] (voire $\left[\frac{-n}{2}, \frac{n}{2}\right]$...)

32 CCINP 86 - Petit théorème de Fermat

À savoir faire absolument Résoudre, dans \mathbb{Z} , 3x + 11y = 2 puis 14x + 35y = 5 et 14x + 35y = 7.

34

- 1. Pour quelles valeurs de n a-t-on $(n^3 + n) \wedge (2n + 1) = 1$?
- 2. Pour quelles valeurs de $n \in \mathbb{Z}$ a-t-on $(n+2)|(2n^2+9n+13)$?
- 3. Montrer que pour tout $n \in \mathbb{Z}$, $(21n+4) \land (14n+3) = 1$.

Nombres de Mersenne³- Très classique - Oral Centrale

Montrer que si $a \in \mathbb{N}$, $n \in \mathbb{N} \setminus \{0,1\}$ tel que $a^n - 1$ est premier, alors a = 2 et n est premier.

36 Nombres de Fermat 5- Très classique - Oral Mines

- 1. Soient $a, n \in \mathbb{N}^*$, $a \ge 2$. Montrer que si $a^n + 1$ est premier, a est pair et n est une puissance de 2. On appelle nombres de Fermat les nombres $F_n = 2^{2^n} + 1$. Ils sont premiers pour n de 2 à 4, mais ne le sont pas pour n de 5 à 32 (contrairement à ce que conjectura Fermat).
- 2. Démonstration de 1734 d'Euler du fait que F_5 n'est pas premier.
 - (a) Comparer $5^4 + 2^4$ et $1 + 5 \times 2^7$ (sans calculatrice!).

^{3.} Un tel nombre est alors appelé nombre de Mersenne (mathématicien français 1588-1648). La réciproque est fausse ($2^{11}-1=23\times89$). Les plus grands nombres premiers connus actuellement sont des nombres de Mersenne : $2^{136\ 279\ 841}-1$ a été découvert le 21 octobre 2024 (41 024 320 chiffres en base décimale).

^{5.} Ils interviennent dans la constructibilité à la règle et au compas des polygones réguliers.

- (b) En déduire que $5^4 \times 2^{28} \equiv 1$ [641]
- (c) Conclure que 641 divise F_5 .
- 3. Montrer que pour tout $n \in \mathbb{N}$, $F_{n+1} = (F_n 1)^2 + 1$ et en déduire que F_n et F_{n+1} sont premiers entre eux.
- 4. Pour $n \in \mathbb{N}$, établir que $F_{n+1} = \prod_{k=0}^{n} F_k + 2$. En déduire que les F_n sont premiers entre eux deux à deux. Retrouver le fait que le nombre de nombres premiers est infini.
- En s'inspirant de la démonstration sur l'infinité des nombres premiers, montrer qu'il existe une infinité de nombres premiers de la forme 4k-1⁷.
- Justifier l'existence de 1000 entiers consécutifs sans nombre premier.
- Formule de Legendre Très classique Oraux divers Combien y a-t-il de zéros à la fin de 100!? De 1000!? De 2025!?

Montrer que $v_p(n!) = \sum_{k=1}^{+\infty} \left\lfloor \frac{n}{p^k} \right\rfloor$ pour p premier et $n \in \mathbb{N}^*$.

- On note p_n le n^e nombre premier et $\pi(x)$ le nombre de nombres premiers $\leq x$.
 - 1. Montrer que pour tout $n \ge 1$, $p_{n+1} \le p_1 \cdots p_n + 1$.
 - 2. Montrer que pour tout $n \ge 1$, $2n-1 \le p_n \le 2^{2^{n-1}}$.
 - 3. Justifier 8 que $\forall x > 0$, $\ln(\ln x) < \pi(x) < x$.
- En utilisant l'algorithme d'Euclide, montrer que pour tout $n, m \in \mathbb{N}$,

$$(2^n-1) \wedge (2^m-1) = 2^{n \wedge m}-1.$$

- **42** Oral Centrale Déterminer le chiffre des unité de 1587⁴¹³.
- Soit $n = 4444^{4444}$. Calculer la somme des chiffres de la somme des chiffres de la somme des chiffres de n.
- Oral Mines Soit $p \ge 5$ un nombre premier. Montrer que 24 divise $p^2 1$.

45

Montrer que pour tout $n \in \mathbb{N}$

1.
$$6 \mid 5n^3 + n$$

3.
$$5 \mid 2^{2n+1} + 3^{2n+1}$$

5.
$$9 \mid 4^n - 1 - 3n$$

2.
$$7 \mid 3^{2n+1} + 2^{n+2}$$

4.
$$11 \mid 3^{8n}5^4 + 5^{6n}7^3$$

6.
$$15^2 \mid 16^n - 1 - 15n$$
.

46 Cryptographie à clé publique RSA ⁹

La cryptographie à clé publique est une méthode pour crypter un message à destination d'une personne (Alice), par une méthode que tout le monde connaît, mais de façon à ce que seul le destinataire puisse décoder le message. Les messages considérés ici seront des nombres (par exemple fabriqués en remplaçant chacune des lettres du message à envoyer par son code ASCII, après découpage en morceaux pour obtenir des nombres pas trop grands).

La destinataire Alice choisit deux « grands » nombres premiers p et q, et calcule le produit N=pq. Elle rend N public et surtout garde pour elle les valeurs de p et q. Elle choisit ensuite un entier e premier avec (p-1)(q-1) et le donne à tout le monde : (N,e) sera la clé publique. Elle choisit en général e ayant peu de termes dans sa décomposition en binaire, pour que le cryptage ne demande pas trop longtemps.

Comme Alice est la seule à connaître p et q, elle est également la seule à pouvoir calculer (p-1)(q-1), et donc à déterminer un entier de Bézout d tel que de d e \equiv 1 [(p-1)(q-1)] d sera la clé de décodage, que l'on conserve bien sûr très secrète.

Le principe de la méthode est alors le suivant. Bob, qui veut envoyer un message M à Alice calcule $M' \equiv M^e$ [N] et envoie M' à Alice. Celle-ci calcule ensuite $M'' \equiv M'^d$ [N]. Montrer que M et M'' sont égaux modulo N, et donc que Alice peut décoder le message de Bob pourvu que M soit inférieur à N.

Triplets pythagoriciens On résout dans \mathbb{Z}^3 l'équation $x^2 + y^2 = z^2$.

- 1. Montrer que l'on peut se ramener au cas où $x \wedge y \wedge z = 1$. Montrer qu'alors x, y, z sont deux à deux premiers entre eux.
- 2. On suppose que c'est le cas. Montrer que deux des trois nombres x, y, z sont impairs et que le est pair puis montrer que z est impair.

On suppose dorénavant que x, z sont impairs et y pair.

On pose
$$y = 2y'$$
, $X = \frac{z+x}{2}$ et $Z = \frac{z-x}{2}$.

- 3. Montrer que $X \wedge Z = 1$ et que X et Z sont des carrés parfaits.
- En déduire que l'ensemble des triplets pythagoriciens est l'ensemble des triplets de la forme

$$(d(u^2-v^2), 2duv, d(u^2+v^2))$$

où $d \in \mathbb{N}$, $(u, v) \in \mathbb{Z}^2$, à une permutation près des deux premières composantes.

^{7.} Le théorème de Dirichlet (difficile) affirme qu'il existe une infinité de nombres premiers congrus à a modulo b si a et b sont premiers entre eux.

^{8.} Le (difficile) théorème de Hadamard et De la Vallée-Poussin dit « Théorème des Nombres Premiers » affirme que $\pi(x) \sim \frac{x}{\ln x}$, ou, de manière équivalente, $p_n \sim n \ln n$.

^{9.} Rivest, Shamir et Adleman, 1979

6. Compléments sur les groupes

48

- 1. Vérifier que $\frac{1}{3}\mathbb{Z}+\frac{2}{5}\mathbb{Z}$ est un sous-groupe monogène de $(\mathbb{Q},+)$.
- 2. Déterminer le sous-groupe de (\mathbb{C}^*,\times) engendré par l'ensemble \mathscr{P} des nombres premiers.
- Montrer que l'ensemble des éléments d'ordre finis d'un groupe abélien en est un sous-groupe.
- Soit G un groupe et $x \in G$ d'ordre n. Quel est l'ordre de x^2 ?
- Soit G un groupe non réduit à un élément. On suppose que G n'admet que deux sous-groupes : $\{e\}$ et G lui-même. On souhaite démontrer que G est fini et que son cardinal est un nombre premier.
 - 1. Soit $g \in G$ tel que $g \neq e$. Démontrer que g engendre G.
 - 2. Démontrer que g est d'ordre fini.
 - 3. Démontrer que g est d'ordre premier.
 - 4. Conclure.
- Soit G un groupe admettant un nombre fini de sous-groupes.
 - 1. Démontrer que tout élément de G est d'ordre fini.
 - 2. En déduire que G est fini.
- Soit (G,\cdot) un groupe de cardinal 2n.
 - 1. Justifier que l'on définit une relation d'équivalence ${\mathscr R}$ sur G en posant

$$x \mathcal{R} y \iff x = y \quad \text{ou} \quad x = y - 1.$$

2. En déduire l'existence dans G d'un élément d'ordre 2.

On souhaite montrer que tout sous-groupe d'un groupe cyclique est lui-même cyclique.

Soit (G,\cdot) un groupe cyclique de générateur a et H un sous-groupe de (G,\cdot) .

- 1. Justifier l'existence d'un plus petit entier naturel non nul n tel que $a^n \in H$.
- 2. Établir que H est alors le sous-groupe engendré par a^n .
- Soit (G,\cdot) un groupe cyclique à $n \ge 2$ éléments engendré par a.

Pour $r \in \mathbb{N}^*$, on introduit l'application $f: G \to G$ définie par $f(x) = x^r$ pour tout $x \in G$. Enfin, on pose $d = n \wedge r$.

- 1. Vérifier que f est un morphisme du groupe (G,\cdot) vers lui-même.
- 2. Déterminer le noyau de f.
- 3. Montrer que l'image de f est le sous-groupe de (G,\cdot) engendré par a^d .
- 4. Pour $y \in G$, combien l'équation $x^r = y$ possède-t-elle de solutions?