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Limite, continuité, compacité et connexité par arcs

On se donne (E ,‖·‖E ), (F,‖·‖F ), (G ,‖·‖G ) des K-espaces vecto-
riels normés, avecK=R ouC, dE , dF , dG les distances associées
à la norme pour chaque espace.

On fixe A et B des parties non vides de E et F respectivement.

I LIMITE

1 Limite en un point
Soit f ∈ F A , a ∈ A, b ∈ F .

Définition 1 : Limite en un point

On dit que f (x) −−−−→
x→a

b lorsque pour tout ε > 0, il
existe η> 0 tel que ∀x ∈ A,

dE (x, a) = ‖x −a‖E ⩽ η=⇒ dF ( f (x),b) = ∥∥ f (x)−b
∥∥

F ⩽ ε

Propriété 1 : Convergente ⇒ localement bornée

Si f admet b comme limite en a, alors f est bornée
au voisinage de a.

Propriété 2 : Caractérisation séquentielle

f (x) −−−−→
x→a

b si et seulement si pour tout suite
(an ) ∈ AN telle que an → a, f (an ) → b.

Propriété 3 : Unicité de la limite

Si f −−−−→
x→a

b et f −−−−→
x→a

b′, alors b = b′.

Propriété 4 : Limite par majoration de la différence

Si g ∈RA telle que g (x) −−−−→
x→a

0 et si, au voisinage de
a,

∥∥ f (x)−b
∥∥⩽ g (x) alors f (x) −−−−→

x→a
b.

Propriété 5 : Limites de normes

Si f (x) −−−−→
x→a

b,
∥∥ f (x)

∥∥
F −−−−→

x→a
‖b‖F .

2 Cas où F est de dimension finie

Propriété 6 : Limite coordonnée à coordonnée

Si F est de dimension finie n, B = (e1, . . . ,en ) une
base de F , f ∈ F A , b =

n∑
k=1

bk ek ∈ F .

On note fk ∈ KA tel que pour tout x ∈ A,
f (x) =

n∑
k=1

fk (x)ek .

Alors f (x) −−−−→
x→a

b si et seulement si pour tout
k ∈ J1,nK, fk (x) −−−−→

x→a
bk .

3 Fonction à valeurs dans un espace pro-
duit

Propriété 7

Si (F1, N1), . . . , (Fp , Np ) sont desK-espaces vectoriels
normés, on munit F1 ×·· ·×Fp de la norme produit N .

Si f ∈ (F1 × ·· · ×Fp )A , a ∈ A. Pour i ∈ J1, pK, on pose
fi ∈ F A

i tel que f : x 7→ ( f1(x), . . . , fp (x)).
Soit b = (b1, . . . ,bp ) ∈ F1 ×·· ·×Fp .
Alors f −−−−→

x→a
b si et seulement si pour tout i ∈ J1, pK,

fi (x) −−−−→
x→a

bi .

4 Opérations algébriques
La caractérisation séquentielle permet de prouver facile-

ment les propriétés sur les opérations algébriques sur les limites.

Propriété 8 : Opérations sur les limites

Soient f , g ∈ F A , h ∈ KA telles que f (x) −−−−→
x→a

b ∈ F ,
g (x) −−−−→

x→a
b′ ∈ F , h(x) −−−−→

x→a
α ∈K.

(i) Si λ ∈K, alors f +λg −−−−→
x→a

b +λb′.

(ii) h(x) · f (x) −−−−→
x→a

α ·b.

(iii) Si α 6= 0 et h ne s’annule pas sur A, alors
1

h(x)
−−−−→
x→a

1

α
.

Propriété 9 : Compositions de limites

Si f ∈ F A , telle que f (A) ⊂ B , g ∈GB , a ∈ A, b ∈ B , c ∈G
tels que f (x) −−−−→

x→a
b, g (y) −−−−→

y→b
c alors g ◦ f (x) −−−−→

x→a
c.
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5 Extension à l’infini

Définition 2 : Limite pour ‖x‖→+∞

Si A non bornée, f ∈ F A , b ∈ F .
On dit que f (x) −−−−−−−−→‖x‖E→+∞

b lorsque

∀ε> 0, ∃M ∈R, ∀x ∈ A, ‖x‖E ⩾ M =⇒ ∥∥ f (x)−b
∥∥

F ⩽ ε

Définition 3 : Limite vectorielle en +∞
Si A ⊂R, f ∈ F A , b ∈ F .

(i) Si A n’est pas majorée, on dit que f (x) −−−−−→
x→+∞ b

lorsque

∀ε> 0, ∃M ∈R, ∀x ∈ A, x ⩾ M =⇒ ∥∥ f (x)−b
∥∥

F ⩽ ε

(ii) Si A n’est pas minorée, on dit que f (x) −−−−−→
x→−∞ b

lorsque f (−x) −−−−−→
x→+∞ b c’est-à-dire

∀ε> 0, ∃M ∈R, ∀x ∈ A, x ⩽ M =⇒ ∥∥ f (x)−b
∥∥

F ⩽ ε

Définition 4 : Limite infinie en un vecteur

Soit f ∈RA et a ∈ A.
(i) On dit que f (x) −−−−→

x→a
+∞ lorsque

∀M ∈R, ∃η> 0, ∀x ∈ A, ‖x −a‖⩽ η=⇒ f (x)⩾ M

(ii) On dit que f (x) −−−−→
x→a

−∞ lorsque − f (x) −−−−→
x→a

−∞
c’est-à-dire

∀M ∈R, ∃η> 0, ∀x ∈ A, ‖x −a‖⩽ η=⇒ f (x)⩽ M

II RELATIONS DE COMPARAISON

Définition 5 : Relations de comparaison

Soit f , g ∈ F A où A partie de E , φ ∈RA , a ∈ A. Si A est
une partie non minorée ou non majorée deR, a peut
aussi être ±∞.

■ f est dominée par φ au voisinage de a, et on note
f =

a
O

(
φ

)
ou f (x) =

x→a
O

(
φ(x)

)
lorsqu’il existe un réel

M et un voisinage V de a tel que

∀x ∈V ∩ A,
∥∥ f (x)

∥∥
F ⩽ M

∣∣φ(x)
∣∣ .

Cela revient à dire que
∥∥ f (x)

∥∥
F =O

(∣∣φ(x)
∣∣).

Lorsque φ ne s’annule pas au voisinagede a (sauf
éventuellement en a), cela revient à dire que

x 7→ 1

φ(x)
f (x) ou encore x 7→

∥∥ f (x)
∥∥

F∣∣φ(x)
∣∣ est bornée

au voisinage de a.

■ f est négligeable devant φ au voisinage de a, et
on note f =

a
o

(
φ

)
ou f (x) =

x→a
o

(
φ(x)

)
lorsque pour

tout ε> 0, il existe un voisinage V de a tel que

∀x ∈V ∩ A,
∥∥ f (x)

∥∥
F ⩽ ε

∣∣φ(x)
∣∣ .

Cela revient à dire que
∥∥ f (x)

∥∥
F = o

(∣∣φ(x)
∣∣).

Lorsque φ ne s’annule pas au voisinagede a (sauf
éventuellement en a), cela revient à dire que∥∥ f (x)

∥∥
F∣∣φ(x)
∣∣ −−−−→

x→a
0.

■ On dit que f est équivalente à g au voisinage
de a et on note f ∼

a
g lorsque f (x)− g (x) est négli-

geable devant
∥∥ f (x)

∥∥
F ou devant

∥∥g (x)
∥∥

F (cela
revient au même) au voisinage de a :

f (x)− g (x) = o
(∥∥ f (x)

∥∥)
F ou o

(∥∥g (x)
∥∥)

F .

III CONTINUITÉ

1 En un point, sur une partie
Soient f : A ⊂ E → F et a ∈ A.

Définition 6 : Continuité
f est continue en a lorsque f admet une limite (fi-

nie) en a.
f est continue sur A si et seulement si f est conti-

nue en tout point de A.

Propriété 10

Si f est continue en a, la limite de f en a vaut f (a).

Propriété 11 : Caractérisations séquentielles

f est continue en a si et seulement si

∀(an )n ∈ AN telle que an → a, f (an ) → f (a)

si et seulement si

∀(an )n ∈ AN telle que an → a, ( f (an )) converge.

Propriété 12 : Opérations

■ Si f est continue, x 7→ ∥∥ f (x)
∥∥ l’est aussi.

■ Toute combinaison linéaire, toute composée de
fonctions continues est continue.

■ Si f : A → F et h : A → K sont continues, h · f l’est
aussi. Si h ne s’annule pas, 1

h
· f l’est aussi.
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2 Continuité et topologie

Propriété 13 : Image réciproque d’un ouvert ou d’un
fermé par une application continue

L’image réciproque d’un ouvert (respectivement
fermé) par une application continue est un ouvert
(respectivement un fermé) relatif de l’ensemble de
départ.

Propriété 14 : Applications continues coïncidant sur
une partie dense

Des applications continues coïncidant sur des
parties denses sont égales.

3 Uniforme continuité

Définition 7 : Uniforme continuité
Soit f : A ⊂ E → F. On dit que f est uniformément

continue sur A si ∀ε> 0, ∃η> 0, ∀x, y ∈ A,∥∥x − y
∥∥

E ⩽ η=⇒ ∥∥ f (x)− f (y)
∥∥

F ⩽ ε.

Propriété 15 : Uniformément continue ⇒ continue

Une fonction uniformément continue sur A est
continue sur A.

Réciproque fausse.

Propriété 16 : Opérations sur les applications unifor-
mément continues

Une combinaison linéaire, une composée de
fonctions uniformément continue l’est encore.

4 Fonctions lipschitziennes

Définition 8 : Fonction lipschitzienne

f : A ⊂ E → F est dite k-lipschitzienne sur A (où
k ∈R∗+) si

∀x, x′ ∈ A,
∥∥ f (x)− f (x′)

∥∥
F ⩽ k

∥∥x −x′∥∥
E .

Propriété 17 : Lipschitzienne ⇒ continue

Toute fonction lipschitzienne sur A y est uniformé-
ment continue.

La réciproque est fausse.

Propriété 18 : Lispschziannité de la distance à une
partie

E −→ R

x 7−→ d(x, A)
est 1-lipschitzienne donc unifor-

mément continue sur E .
C’est en particulier le cas de x 7→ d(x, a) où a ∈ E

avec A = {a}.

5 Applications linéaires

Propriété 19 : Continuité des applications linéaires

Soit u ∈L (E ,F ). Les cinqpropositions suivantes sont
équivalentes :
(i) u est continue sur E .
(ii) u est continue en 0E .
(iii) Il existe k ∈R∗+ tel que pour tout x ∈ E ,

‖u(x)‖F ⩽ k ‖x‖E .

(iv) u est lipschitzienne sur E .
(v) u est uniformément continue sur E .

Notation 1
On note Lc (E ,F ) =L (E ,F )∩C (E ,F ) l’ensemble des

applications linéaires continues sur E .

Méthode 1 : Étudier la continuité d’une appli-
cation linéaire

■ Pourmontrer qu’une application linéaire est continue,
on cherche une constante k telle que pour tout x ∈ E ,
‖u(x)‖F ⩽ k ‖x‖E ... Sauf si on est en dimension finie au
départ : dans ce cas, c’est automatique.

■ Pour montrer qu’une application linéaire n’est pas
continue, on cherche à nier la caractérisation sé-
quentielle de la continuité en 0 en trouvant une suite
(xn )n ∈ EN telle que xn → 0E (ie ‖xn‖E → 0) et pourtant
u(xn ) 6→ 0F (ie ‖u(xn )‖F 6→ 0F ) , ou encore, comme pour
nier une domination de normes, une suite telle que( ‖u(xn )‖F

‖x‖E

)
n
n’est pas bornée.

6 Applications multilinéaires

Propriété 20 : Continuité des applications multili-
néaires

Si E1, . . . ,Ep ,F sont des K-espaces vectoriels nor-
més et f : E1×. . .×Ep → F estmultilinéaire, alors les deux
propositions suivantes sont équivalentes :
(i) f est continue pour la norme produit sur

E1 × . . .×Ep

(ii) Il existe k ∈K tel que

∀(x1, . . . , xp ) ∈ E1×. . .×Ep ,
∥∥ f (x, . . . , xp )

∥∥
F ⩽ k ‖x1‖1 · · ·

∥∥xp
∥∥

p
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Corollaire 1 : Continuité d’un produit scalaire

Si (E , |) est un espace préhilbertien réel, alors
(x, y) 7→ (x|y) est continue.

IV DIMENSION FINIE

1 Coordonnées

Propriété 21 : Continuité coordonnée à coordonnée

On suppose F de dimension finie n > 1.
Soit A une partie non vide de E , f ∈ F A ,

B = (e1, . . . ,en ) une base de F . On pose f =
n∑

k=1
fk ek .

Alors f est continue sur A si et seulement si pour
tout k ∈ J1,nK, fk est continue sur A.

2 Applications linéaires

Théorème 1 : Continuité des applications linéaires
en dimension finie

Si E est de dimension finie, alors toute application
linéaire de E vers F est continue sur E .

Autrement dit, Lc (E ,F ) =L (E ,F ).

3 Applications polynomiales

Définition 9 : Applications polynomiales

Soit f : E → K, où E est de dimension finie,
B = (e1, . . . ,ep ) une base de E . Pour x ∈ E , on note
x1, . . . , xp ses coordonnées dans B.

f est dite monomiale s’il existe k1, . . . ,kp ∈ Np tels
que f : x 7→ xk1

1 · · ·x
kp
p .

f est dite polynomiale si elle est combinaison li-
néaire de fonctions monomiales.

Propriété 22 : polynomiale en dimension finie ⇒
continue

Toute fonction polynomiale sur E de dimension fi-
nie est continue.

4 Applications multilinéaires

Propriété 23 : Continuité des applications bilinéaires
en dimension finie

Si (E ,‖‖E ), (F,‖‖F ) sont des K-espaces vectoriels
de dimension finie, (G ,‖·‖G ) K-espace vectoriel, alors
toute application bilinéaire de E ×F dans G est conti-
nue.

Propriété 24 : Généralisation

Plus généralement, toute applicationmultilinéaire
définie sur un produit d’espaces de dimension finie
est continue.

V NORMES D’OPÉRATEURS

1 Cas des applications linéaires

Définition 10 : Norme subordonnée
On considère deux K-espaces vectoriels normés

(E ,‖·‖E ) et (F,‖·‖F ). Si u ∈Lc (E ,F ), on pose

�u�= ‖u‖op = sup

{‖u(x)‖F

‖x‖E
; x ∈ E \ {0E }

}
= sup

x 6=0E

‖u(x)‖F

‖x‖E
.

On vérifie qu’il suffit de prendre la borne supérieure au choix
soit sur la sphère unité, soit sur la boule unité fermée.

Propriété 25 : Définition équivalente

Si u ∈Lc (E ,F ),

�u�= sup
‖x‖E=1

‖u(x)‖F = sup
x∈S(0E ,1)

‖u(x)‖F

= sup
‖x‖E⩽1

‖u(x)‖F = sup
x∈B(0E ,1)

‖u(x)‖F .

Propriété 26 : C’est une norme

�·� est une norme sur Lc (E ,F ) appelée norme su-
bordonnée à ‖·‖E et ‖·‖F . On parle aussi de norme
d’opérateur.

Propriété 27 : Norme subordonnée d’une composée

On considère trois K-espaces vectoriels normés
(E ,‖·‖E ), (F,‖·‖F ) et

(
G ,‖·‖G

)
. Si u ∈Lc (E ,F ) et v ∈Lc (F,G)

et � ·�E ,F désigne la norme subordonnée sur Lc (E ,F )
par exemple, alors

�v ◦u�E ,F ⩽ �v�F,G�u�E ,F .

Corollaire 2 : Cas des endomorphismes

Ici, E = F . Si u ∈Lc (E), on définit

�u�= sup
x 6=0E

‖u(x)‖E

‖x‖E
= sup

‖x‖E=1
‖u(x)‖E = sup

‖x‖E⩽1
‖u(x)‖E .

Alors � · � est une norme sur Lc (E) qui vérifie
� idE �= 1 et

∀u, v ∈Lc (E), �v ◦u�⩽ �u� ·�v�.

On dit que �·� est une norme d’algèbre unitaire.
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Propriété 28 : Puissance et norme subordonnée

Pour tout u ∈Lc (E) et k ∈N,���uk
���⩽ �u�k .

Méthode 2 : Calcul d’une norme subordon-
née

Pour calculer la norme subordonnée d’un opérateur
(ie d’une application linéaire), on écrit des majorations

∀x ∈ E , ‖u(x)‖F ⩽ · · · = · · ·⩽ · · · = · · ·⩽ k ‖x‖E

en effectuant des majorations les plus fines possibles et en
distinguant clairement les majorations et les égalités, afin
de pouvoir traiter plus facilement les cas d’égalité.

Soit on trouve au moins un cas d’égalité, c’est-à-dire
un x ∈ E tel que ‖u(x)‖F = k ‖x‖E , alors k = �u� (et le sup est
en fait un max). On verra qu’en dimension finie, on peut
toujours en trouver.

S’il n’y a pas de cas d’égalité, on peut chercher une
suite (xn )n∈N ∈ (

E \ {0E }
)N telle que ‖u(xn )‖F

‖xn‖E
→ k et alors

k = �u� (car le sup est le seul majorant limite d’une suite
de l’ensemble).

On peut aussi, pour tout ε> 0, chercher xε 6= 0E tel que
‖u(xε)‖F ⩾ (k −ε)‖xε‖E .

2 Traduction matricielle

Propriété 29 : Norme subordonnée matricielle

Soit ‖·‖ une norme quelconque sur Mn,1(K).
On définit, pour A ∈Mn (K),

�A�= sup
X 6=0n,1

‖AX ‖
‖X ‖ = sup

‖X ‖=1
‖AX ‖ = sup

‖X ‖⩽1
‖AX ‖

appelée norme subordonnée à ‖·‖.
Il s’agit d’une norme d’algèbre unitaire sur Mn (K),

donc vérifiant �In�= 1 et

∀ A,B ∈Mn (K), �AB�⩽ �A��B�

ce qui implique

∀ A ∈Mn (K), ∀k ∈N,
���Ak

���⩽ �A�k .

VI COMPACITÉ

1 Suites extraites

Définition 11 : Suite extraite

Soit u ∈ EN. On appelle suite extraite ou sous-suite
de u toute suite v ∈ EN telle qu’il existe φ : N→N stric-
tement croissante telle que ∀n ∈N, vn = uφ(n).

φ est appelée extractrice.

Lemme 1

Si φ est une extractrice, alors

∀n ∈N, φ(n)⩾ n.

Propriété 30 : Limite d’une suite extraite convergente

Si u −→ ℓ, toute suite extraite de u converge vers ℓ.

Définition 12 : Valeur d’adhérence

On appelle valeur d’adhérence de u ∈ EN toute
limite (dans E) de suite extraite de u.

Propriété 31 : Cas des suites convergentes

Une suite convergente a une unique valeur
d’adhérence : sa limite. Réciproque fausse.

Corollaire 3 : Contraposée

Si une suite a plusieurs valeurs d’adhérence, elle
diverge.

Propriété 32 : Condition suffisante de convergence

Si (u2n ) et (u2n+1) convergent vers une même li-
mite, alors u converge vers cette limite.

2 Parties compactes

Définition 13 : de Bolzano-Weierstraß
Une partie K de E est dite compacte (ou est un

compact) lorsque toute suite d’éléments de K a au
moins une valeur d’adhérence dans K , c’est-à-dire
qu’on peut en extraire une suite qui converge dans
K .

Propriété 33 : compact ⇒ fermé et borné

Toute partie compacte est fermée et bornée.

Propriété 34 : Partie fermée d’un compact

Soit K une partie compacte de E et A une partie
de K . Si A est fermée, alors A est compacte.

Propriété 35 : Produit de compacts

Si p ∈ N∗,
(
(E1,‖·‖1) , . . . ,

(
Ep ,‖·‖p

))
sont des K-

espaces vectoriels normés et pour i ∈ J1, pK, Ki com-
pact de Ei , alors K = K1 ×·· ·×Kp est un compact de
E = E1 × . . .×Ep muni de la norme produit.
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3 Fonctions continues sur des compacts

Propriété 36 : Image continue d’un compact

Si f : K → F avec K partie compacte de E et f
continue, alors f (K ) est compacte.

Corollaire 4 : théorème des bornes atteintes

Toute fonction continue sur un compact de E , à
valeur réelles, est bornée et atteint ses bornes.

Théorème 2 : de Heine

Toute application continue sur un compact y est
uniformément continue.

4 Cas de la dimension finie

a
K

On a déjà vu que les segments de R étaient des compacts
de R.

Le théorème de Bolzano Weierstraß permet de démontrer le
résultat suivant, généralisé un peu plus loin.

Théorème 3 : de Bolzano-Weierstraß

De toutes suite bornée d’éléments du corpsK=R

ou C, on peut extraire une suite convergente.

Corollaire 5 : Compacts de R ou C

Les compacts du corps K =R ou C sont exacte-
ment les parties fermées et bornées de K.

b Équivalence des normes

Théorème 4 : Équivalence des normes en dimension
finie

Dans un espace vectoriel de dimension finie,
toutes les normes sont équivalentes.

c Compacts en dimension finie

Théorème 5 : Compacts en dimension finie

Les compacts d’un espace vectoriel normé de di-
mension finie sont exactement ses parties fermées et
bornées.

Corollaire 6 : Traduction en terme de valeur d’adhé-
rence

Dans un espace vectoriel normé de dimension fi-
nie, toute suite bornée admet au moins une valeur
d’adhérence.

Corollaire 7 : Théorème de Bolzano-Weierstraß

De toute suite bornée d’un espace vectoriel
normé de dimension finie, on peut extraire une suite
convergente.

Corollaire 8 : important !

Un sous-espace de dimension finie d’un espace
vectoriel normé est fermé.

5 Suites convergente dans un compact

Propriété 37 : CNS de convergence dans un com-
pact

Soit K un compact. Une suite d’éléments de K est
convergente si et seulement si elle a une unique va-
leur d’adhérence.

Corollaire 9 : CNS de convergence des suites bor-
nées en dimension finie

En dimension finie, toute suite bornée converge
si et seulement si elle a une unique valeur d’adhé-
rence.

VII CONNEXITÉ PAR ARCS

1 Une relation d’équivalence

Définition 14 : chemin continu
Soit A une partie d’un espace vectoriel normé

(E ,‖·‖). Si (a,b) ∈ A2, on appelle chemin continu joi-
gnant a à b dans A toute application ϕ : [0,1] 7→ E
vérifiant les trois propriétés suivantes :

■ ϕ est continue
■ ∀ t ∈ [0,1], ϕ(t ) ∈ A

■ ϕ(0) = a et ϕ(1) = b

Propriété 38 : Relation d’équivalence

La relation R sur A2 « sont joints par un chemin
continu » est une relation d’équivalence.
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2 Connexité par arcs

Définition 15 : Composantes connexes par arcs

Soit A une partie de E . On appelle composantes
connexes par arcs de A les classes d’équivalence
pour la relation R définie précédemment.

Propriété 39 : Partition des composantes connexes

Les composantes connexes par arcs de A parti-
tionnent A.

Définition 16 : partie connexe par arcs

On dit que A est connexe par arcs lorsqu’il y a une
unique composante connexe par arcs : A elle-même.

Propriété 40 : convexe =⇒ connexe par arc

Toute partie convexe de E est connexe par arcs.

Définition 17 : Partie étoilée
A est dite étoilée s’il existe un point a ∈ A tel que

pour tout point b de A, le segment [a,b] est inclus dans
A.

Propriété 41 : étoilée =⇒ connexe par arc

Toute partie étoilée de E est connexe par arcs.

3 Cas des parties de R

Propriété 42 : Connexes par arcs de R

Les parties connexes par arcs de R sont les inter-
valles.

4 Image continue d’une partie connexe
par arcs

Propriété 43 : Image continue d’une partie connexe
par arcs

Si E ,F sont des espaces vectoriels normés, A une
partie connexe par arcs de E , f : A → F une applica-
tion continue, alors f (A) est connexe par arcs.

Corollaire 10 : Cas d’une fonction réelle, TVI

Si f est une application continue, définie sur une
partie A connexe par arcs, et à valeurs réelles, alors
f (A) est un intervalle.

Autrement dit, f vérifie la propriété des valeurs in-
termédiaires : s’il existe a ∈ A tel que f (a) = α et b ∈ A
tel que f (b) = β, alors, pour tout γ ∈ [α,β], il existe c ∈ A
tel que f (c) = γ.

Méthode 3 : Montrer qu’une partie est ou non
connexe par arcs

Le plus difficile est de déterminer dans dans quel cas
on se trouve.

■ Pour montrer que A est connexe par arcs, on peut
⋆ Utiliser la définition en construisant un chemin

continu dans A reliant deux points de A.
⋆ Montrer que A est convexe ou étoilé par rapport

à un de ses points.
⋆ Montrer que A est l’image continue d’un

connexe par arcs.
■ Pour montrer que A n’est pas connexe par arcs, on

peut
⋆ Trouver un couple de points qui ne sont pas re-

liables par un chemin continu dans A.
⋆ Trouver une fonction continue f telle que f (A)

ne soit pas connexe par arcs. Si f est à valeurs
réelles, il suffit que f (A) ne soit pas un intervalle.

VIII TOPOLOGIE MATRICIELLE (HP)
Rien n’est explicitement au programmedans les exercices sui-

vants, mais ils sont tous très classiques.
On est en dimension finie, toutes les normes sont équivalentes,

la convergence se fait cœfficient à cœfficient. On peut explici-
ter les normes usuelles
‖A‖1 = ∑

1⩽i , j⩽n

∣∣∣ai , j

∣∣∣ ,

‖A‖2 =
√√√√ ∑

1⩽i , j⩽n

∣∣∣ai , j

∣∣∣2
(
=

√
tr(A · A⊺) si K=R,

√
tr

(
A · A

⊺)
si K =C

)
,

‖A‖∞ = max
1⩽i , j⩽n

∣∣∣ai , j

∣∣∣ .

qui ne sont pas les plus pratiques car ce ne sont pas des normes
d’algèbres vérifiant N (AB)⩽ N (A)N (B).

On leur préfère pour des applications pratiques (voir séries
matricielles) des normes subordonnées sans nécessairement
avoir à les expliciter.

Voir TD pour des exercices sur ces normes subordonnées.

À retenir (et à savoir redémontrer au besoin) :
■ le déterminant, la comatrice, l’application polynôme ca-

ractéristique sont continues (attention : faux pour le poly-
nôme minimal) ;

■ GLn (K) est un ouvert dense dans Mn (K), connexe par arc
si K=C mais pas si K=R ;

■ l’ensemble des matrices diagonalisables est dense dans
l’ensemble des matrices carrées dans C, dans l’ensemble
des matrices trigonalisables dans R ;

■ O (n) est compact et non connexe par arc ;
■ Des matrices réelles semblables dans Mn (C) le sont dans

Mn (R).
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