Limite, continuité, compacité et connexité par arcs

On se donne (E,l-Ig). (El-lg). (G I-1g) des K-espaces vecto-
riels normés, avec K =R ou C, dg. dr, dg les distances associées

& la norme pour chaque espace. E N . . -
P qaue ese Cas ol F est de dimension finie

Propriété 6 : Limite coordonnée & coordonnée

On fixe A et B des parties non vides de E et F respectivement.

Si F est de dimension finie n, % = (ey,...,en) UNE

n
n LIMITE bCise de F, fEFA, b: Z bkekeF.

k=1

On note fi. € KA tel que pour tout x € A,

n
n Limite en un point fx)= k;fk(’”ek'
Alors f(x) b si et seulement si pour fout

Soit fe FA, ae A, beF. x—a
ke[1,n], frx) — by.

Définition 1 : Limite en un point

On dit que f(x) — b lorsque pour tout £ > 0, il

existe n>0tel que Yxe 4, Fonction a valeurs dans un espace pro-
duit

Propriété 7

Si(F1,N1),..., (Fp, Np) sont des IK-espaces vectoriels
normeés, on munit Fy x --- x Fp, de la norme produit N.
Si fe(F x-xFEp)4, aeA Pourie[l,p], on pose

dp(x,a) = lx-alg <n=>dp(f(x),b) = || f(x)-b|p<e

Propriété 1 : Convergente = localement bornée

Si f gdmefb comme limite en a, alors f est bornée fie FiA tel que f:x— (fi(x),..., fp(x)).
au voisinage de a. Soit b= (by,...,bp) € Fy x -~ x Fy,
Alors f —b si et seulement si pour fout i € [1, p].
fi(x) pr b;.

Propriété 2 : Caractérisation séquentielle
fX) —— b si et seulement si pour fout suife n Opérations algébriques

(an) € AN telle que ayn — a, f(an) — b. o 3 ) .
La caractérisation séquentielle permet de prouver facile-

ment les propriétés sur les opérations algébriques sur les limites.

Propriété 3 : Unicité de la limite . L. .
Propriété 8 : Opérations sur les limites

Sifﬁbeffﬁb’, alorsb=1b'.

Soient f,g € FA, he KA felles que f(x) ——beF,

g(x) b'eF, h(x) ackK.
xX—a xX—a
() SireK, alors f+Ag — b+Ab.
Propriété 4 : Limite par majoration de la différence @iy h(x)-f(x) — a-b.
Sige RA felle que gx) 0 et si, au voisinage de (i) Sil a #0 lef h ne s‘annule pas sur A, alors
X—a
a, | fx)-b| < g(x) alors f(x) ——b. P el

Propriété 9 : Compositions de limites

Si feFA, telle que f(A)cB,geGB, acA, beB, ceG
f@| g —Iblp. tels que f(x) b gy) —-c alors go f(x) c.
y—)

Propriété 5 : Limites de normes

Si f(x) ;:—a—' b,

X—a Xx—a



y LyCEE LECONTE DE LISLE — LA REUNION

H Extension a I'infini

Définition 2 : Limite pour | x| — +oco

Si Anon bornée, fe FA, beF.
On dit que f(x) b lorsque

llxllg—+o0

Ve>0, AMeR, VxeA lxlg>2M=|fx)-b|p<e

Définition 3 : Limite vectorielle en +co

SiAcR, feFA, beF.
(i) Si A n"est pas majorée, on dit que f(x) P b
lorsque

Ve>0, IMeR, VxeA x>M=|fx)-b|p<e

b

(i) Si A n“est pas minorée, on dit que f(x)
lorsque f(-x) b c’est-a-dire

X——00

X—+00

Ve>0, AMeR, VxeA, x<M=|fx)-b|p<e

Définition 4 : Limite infinie en un vecteur

Soit feRA et ae A,
@) Ondit que f(x)

+oo lorsque
X—a e q

VMeR, In>0, VxeA, lx—al<n=fx)>M

(i) On dit que f(x)
c’est-a-dire

—oo lorsque —f(x
X—a e q f( ) X—a

—00

VMeR, 3n>0, VxeA, [x—al<n=fx)<M

m RELATIONS DE COMPARAISON

Définition 5 : Relations de comparaison

Soit f,g € FA ol Apartie de E, pe R4, ac A. Si A est
une partie non minorée ou non majorée de R, a peut
aussi éfre +oo.

m [ estdominée par ¢ au voisinage de a, et on note
f=0(g)ou f) = 0(pw) lorsqu’il existe un réel
M et un voisinage V de a tel que

VxeVnA, |[f0]p<M|ew).

Cela revient & dire que || f(x)|| z = O (e x)]).

Lorsque ¢ ne s’annule pas au voisinage de a (sauf
éventuellement en a), cela revient a dire que
(R

est bornée
lpx)|

1
x — —— f(x) OU encore x —
@(x)

au voisinage de a.
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m [ est négligeable devant ¢ au voisinage de a, et
on notfe f=o(p) ou f(x) = ofp() lorsque pour
tout € > 0, il existe un voisinage V de a fel que

VxeVnA, |[f0|g<elem).

Celarevient & dire que || f(0)|| g =o(|e@)]).

Lorsque ¢ ne s’annule pas au voisinage de a (sauf
éventuellement en a), cela revient a dire que
lreols

|(p(x)| x—a

m On dit que f est équivalente & g au voisinage
de a et on notfe f ~8 lorsque f(x) — g(x) est négli-

geable devant | f(x)|z ou devant ||gw)|| (cela
revient au méme) au voisinage de a :

f)-g@=o([|f@])f ouo(|lgt)|)p-

m CONTINUITE

n En un point, sur une partie

Soient f:AcE—FetaceA.

Définition 6 : Continuité

f est continue en a lorsque f admet une limite (fi-
nie) en a.

f est continue sur A si et seulement si f est conti-
nue en fout point de A.

Propriété 10

Si f est continue en a, la limite de f en a vaut f(a).

Propriété 11 : Caractérisations séquentielles
f est continue en a si et seulement si
V(an)n € AN telle que an — a, f(an) — f(a)
si et seulement si

V(an)n € AN telle que an — a, (f(an)) converge.

Propriété 12 : Opérations

m Si f est continue, x— | f(x)| I'est aussi.

m Joute combinaison linéaire, foute composée de
fonctions continues est continue.

mSif:A—F et h: A— K sonf continues, h- f I'est
. g 1 , .
aussi. Si h ne s’‘annule pas, ﬁ' f l'est aussi.
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E Continuité et topologie

Propriété 13 : Image réciproque d’un ouvert ou d’'un

fermé par une application continue

L'image réciproque d’un ouvert (respectivement
fermé) par une application continue est un ouvert

VERSION DU 9 FEVRIER 2026

Propriété 18 : Lispschziannité de la distance & une

partie

F R est I-lipschitzienne donc unifor-
x — dx,A)
mément continue sur E.
C’est en particulier le cas de x — d(x,a) oU a€ E
avec A={a}.

(respectivement un fermé) relafif de I'ensemble de
départ.

B Applications linéaires

Propriété 14 : Applications continues coincidant sur Propriété 19 : Continuité des applications linéaires

une partie dense

Soitue £ (E,F). Les cing propositions suivantes sont

Des applications continues coincidant sur des équivalentes :

parties denses sont égales. () u est continue sur E.
(i) u est continue en 0.
(i) W existe k€ R} tel que pour tout x € E,

Uniforme continuité

Définition 7 : Uniforme continuité

Soit f: Ac E— T. On dit que f est uniformément
continue sur AsivVe>0, 3n>0, Vx,y€A,

lu@)llr < klxlg.

(iv) u est lipschitzienne sur E.
(V) u est uniformément confinue sur E.

On note 4.(E,F) = £(E,F)n€(E,F) '’ensemble des
applications linéaires continues sur E.

lx=ylg<n=|f0-fW|r<e

Propriété 15 : Uniformément continue = continue

Une fonction uniformément continue sur A est
continue sur A.
Réciproque fausse.

@ Méthode 1 : Etudier la continuité d’une appli-
cation linéaire

m Pour montrer qu’une application linéaire est continue,
on cherche une constante k telle que pour fout xe E,
lux)llg < kllxlg... Sauf si on est en dimension finie au
départ : dans ce cas, c’est automatique.

m Pour montrer qu‘une application linéaire n’est pas
continue, on cherche & nier la caractérisation sé-
quentielle de la continuité en 0 en frouvant une suite
(xn)n € EN telle que x, — 0g (ie llxnllg — 0) et pourtant
u(xp) 7 0f (ie lu(xy)ll g 7 0F) , OU €encore, comme pour
nier une domination de normes, une suite telle que
(Ilu(xn)llp

llxll g

Propriété 16 : Opérations sur les applications unifor-

mément continues

Une combinaison linéaire, une composee de
fonctions uniformément continue I’est encore.

) n’est pas bornée.
n

n Fonctions lipschitziennes

n Applications multilinéaires

Définition 8 : Fonction lipschitzienne

f:AcE— F est dite k-lipschitzienne sur A (ou
keRY) si Propriété 20 : Continuité des applications multili-

néaires

Vx,x' €A

f - fD)|p<kl|x—x5.
| ”F ” ”E Si Ey,...,Ep, F sont des K-espaces vectoriels nor-

mes et f: Ey x...x Ep — F est multilineaire, alors les deux
propositions suivantes sont équivalentes :

Propriété 17 : Lipschitzienne = continue () f est continue pour la norme produit sur

Ey x...xEp

Toute fonction lipschitzienne sur A 'y est uniforme- ) )
(>iiy Il existe k € K fel que

ment continue.

La réciproque est fausse. V(x1,...,Xp) € Eyx...x Ep, || f(x,...,xp) || p < Kllx1ly --~||xp||’[J
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Corollaire 1 : Continuité d’un produit scalaire

Si (E,|) est un espace preéhilbertien réel, alors
(x,y) — (x]y) est continue.

m DIMENSION FINIE

n Coordonnées

Propriété 21 : Continuité coordonnée & coordonnée

On suppose F de dimension finie n> 1.
Soit A une partie non vide de E, f e FA ,

n
%B = (e1,...,en) UNe base de F. Onpose =) frex.
k=1
Alors f est continue sur A si et seulement si pour
tout k€ [1,n]. fi est continue sur A.

E Applications linéaires

Théoréeme 1: Continuité des applications linéaires

en dimension finie

Si E est de dimension finie, alors toute application
linéaire de E vers F est continue sur E.
Aufrement dit, £.(E,F) = £ (E,F).

Applications polynomiales

Définition 9 : Applications polynomiales

Soit f: E - K, ou E est de dimension finie,
B = (e1,...,ep) Une base de E. Pour x € E, on notfe
X1,...,Xp $€8 coordonnées dans 2.

f est dite monomiale s'il existe ki,...,k, € INP tels

que f:x»—»xflmx

f est dite polynomiale si elle est combinaison li-
néaire de fonctions monomiales.

kp

Propriété 22 : polynomiale en dimension finie =

continue

Toute fonction polynomiale sur E de dimension fi-
nie est continue.

n Applications multilinéaires

Propriété 23 : Continuité des applications bilinéaires

en dimension finie

Si (B, lllg). (Fllg) sont des K-espaces vectoriels
de dimension finie, (G, |I-llg) IK-espace vectoriel, alors
toute application bilinéaire de E x F dans G est conti-
nue.
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Propriété 24 : Généralisation

Plus généralement, foute application multilinéaire
définie sur un produit d’espaces de dimension finie
est confinue.

m NORMES D’OPERATEURS

n Cas des applications linéaires

Définition 10 : Norme subordonnée

On considere deux K-espaces vectoriels normés
(E, I-Ig) et (El-Ilp). Si ue Z(E,F), on pose

lu(o)l g , er\{OE}}z sup lu(x)ll g
lxl g

x#0p IxlE

el = llwllop = sup{

On vérifie qu’il suffit de prendre la borne supérieure au choix
soit sur la sphere unité, soit sur la boule unité fermée.

Propriété 25 : Définition équivalente
Siue #.(E,F),

lull = sup lu@lp= sup lu@lF
llxllg=1 x€S(0g,1)

= sup luX)lp= sup [u@)lF.
lxllp<1 x€B(0g,1)

Propriété 26 : C’est une norme

Il-1l est une norme sur £.(E, F) appelée norme su-
bordonnée & |-|g et ||-|lg. On parle aussi de norme
d’opérateur.

Propriété 27 : Norme subordonnée d’une composée

On considére trois IKK-espaces vectoriels normeés
(EN-1E). El-Ip) et (G l-lg). Si ue Lc(E,F) et ve Lc(F,G)
et |l-llg,r désigne la norme subordonnée sur £.(E, F)
par exemple, alors

lveullg,r < lVllEGlullg,F-

Corollaire 2 : Cas des endomorphismes

Ici, E=F. Si ue £:(E), on définit

()
llzell = sup E_ sup uX)llg= sup lux)lEg.
x20p IXIE  jxjg=1 llxll <1
Alors || - I est une norme sur £.(E) qui vérifie

llidgll =1 et
Vu,veZLe(E), llvoull <ull-livil.

On dit que || - | est une norme d’algébre unitaire.

LIMITE, CONTINUITE, COMPACITE ET CONNEXITE PAR ARCS - PAGE 4 SUR 7/


https://mpi.lecontedelisle.re

J. Larochette

Propriété 28 : Puissance et norme subordonnée

Pour fout ue %4.(E) et ke N,

H|”kH| < Mull®.

Méthode 2: Calcul d’'une norme subordon-
née
Pour calculer la norme subordonnée d’un opérateur
(ie d'une application linéaire), on écrit des majorations
VxeE, lu@lp<--=--<--=--<klxlg

en effectuant des majorations les plus fines possibles et en
distinguant clairement les majorations et les égalités, afin
de pouvoir traiter plus facilement les cas d’égalité.

Soit on frouve au moins un cas d’égalité, c’est-a-dire
un x € E tel que |ux)lg = kllxlg, alors k = [lull (et le sup est
en fait un max). On verra qu’en dimension finie, on peut
toujours en frouver.

S’iln’y a pas de cas d’égalité, on peut chercher une
suite (xp) e € (E\{OE})]N telle que JuGnlle _ k et alors

llxnllg
k = llull (car le sup est le seul majorant limite d’une suite

de I'ensemble).
On peut aussi, pour fout £ > 0, chercher x # 0 tel que
lu(xe)llp = (k=€) lxellg.

E Traduction matricielle

Propriété 29 : Norme subordonnée matricielle

Soif |- une norme quelconque sur 1 K).
On définit, pour A€ 4, (K),

IAX]
lAll= sup ——— = sup [|AX| = sup [AX]

x#0,, 1XI yxy=1 IXI<1

appelée norme subordonnée A |-|.
Il s’agit d’une norme d’algébre unifaire sur 4, (K),
donc vérifiant || I, =1 et

VA Be 4y(K), IABI<IAIIBI
ce quiimplique

VA€ MpK), VkeN, mAkm <nAnk.

m COMPACITE

n Suites extraites

Définition 11 : Suite extraite

Soit ue EN. On appelle suite extraite ou sous-suite
de u toute suite v e EN telle qu’il existe ¢ : IN — IN stric-
tement croissante felle que YnelN, vy, = uy(y).

¢ est appelée extractrice.

VERSION DU 9 FEVRIER 2026

Lemme 1

Si ¢ est une extractrice, alors

VnelN, ¢(n) >n.

Propriété 30 : Limite d’une suite extraite convergente

Si u— ¢, foute suite extraite de u converge vers ¢.

Définition 12 : Valeur d’adhérence

On appelle valeur d’adhérence de u € EN toute
limite (dans E) de suite extraite de u.

Propriété 31 : Cas des suites convergentes

Une suite convergente a une unique valeur
d’adhérence : sa limite. Réciproque fausse.

Corollaire 3 : Contraposée

Si une suite a plusieurs valeurs d’adhérence, elle
diverge.

Propriété 32 : Condition suffisante de convergence

Si (u2n) ef (uan+1) convergent vers une méme li-
mite, alors u converge vers cette limite.

E Parties compactes

Définition 13 : de Bolzano-WeierstraB

Une partie K de E est dite compacte (ou est un
compact) lorsque toute suite d’éléments de K a au
moins une valeur d’adhérence dans K, c’est-a-dire
qu’on peut en extraire une suite qui converge dans

‘ .N

Propriété 33 : compact = fermé et borné

Toute partie compacte est fermée et bornée.

Propriété 34 : Partie fermée d’'un compact

Soit K une partie compacte de E et A une partie
de K. Si A est fermée, alors A est compacte.

Propriété 35 : Produit de compacts

Si p € N*, ((EnlI),....(Ep,l-1p)) sont des K-
espaces vectoriels normés et pour i € [1,p], K; com-
pact de E;, alors K = Ky x --- x K est un compact de
E = E) x...x E, muni de la norme produit.
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Corollaire 6 : Traduction en terme de valeur d’adhé-

. . rence
Fonctions continues sur des compacts
Dans un espace vectoriel normé de dimension fi-

nie, toute suite bornée admet au moins une valeur
d’adhérence.

Propriété 36 : Image continue d’'un compact

Si f: K — F avec K partie compacte de E et f
continue, alors f(K) est compacte.

Corollaire 7 : Théoreme de Bolzano-Weierstraf

De foute suife bornée d’un espace vectoriel
Corollaire 4 :théoréeme des bornes atteintes normé de dimension finie, on peut extraire une suite
Toute fonction contfinue sur un compact de E, & convergente.

valeur réelles, est bornée et atteint ses bornes.

Corollaire 8 : important!

Théoreme 2 : de Heine Un sous-espace de dimension finie d’un espace

Toute application continue sur un compact y est vectoriel normé est ferme.
uniformément continue.

H Suites convergente dans un compact

n Cas de la dimension finie
Propriété 37 : CNS de convergence dans un com-

n K pact

On a déja vu que les segments de R étaient des compacts Solf K un cqmpacf. e sun“e cligliemei c;le .
de R, convergente si et seulement si elle a une unique va-

Le théoreme de Bolzano WeierstraB permet de démontrer le leur d’adhérence.

résultat suivant, généralisé un peu plus loin.

Corollaire 9: CNS de convergence des suites bor-
nées en dimension finie

Théoréme 3 : de Bolzano-WeierstraB

De foutes suite bornée d’éléments du corps K =R,

ou €, on peut extraire une suite convergente. En dimension finie, toute suite bornée converge

si et seulement si elle a une unique valeur d’adhé-

rence.
Corollaire 5: Compacts de R ou C
Les compacts du corps K = R ou C sont exacte- m .
ment les parties fermées et bornées de K. CONNEXITE PAR ARCS

H n Une relation d’équivalence
Equivalence des normes
Définition 14 : chemin continu

Théoréme 4: EquiVGlence des normes en dimension Soit A une pqrﬂe d’un espace vectoriel normé

finie (E, ). Si (a,b) € A%, on appelle chemin continu joi-
gnant a & b dans A foute application ¢ : [0,1] — E
vérifiant les trois propriétés suivantes :

Dans un espace vectoriel de dimension finie,
toutes les normes sont équivalentes.
m ¢ est continue

m Vrie[0,1], ¢p()eA
Compacts en dimension finie B p0)=aetpl)=b

Théoréme 5 : Compacts en dimension finie

Les compacts d’un espace vectoriel normé de di- Propriété 38 : Relation d’équivalence

mension finie sont exactement ses parties fermées et

p La relation % sur A% «sont joints par un chemin
bornées.

continu » est une relation d’équivalence.
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E Connexité par arcs

Définition 15 : Composantes connexes par arcs

Soit A une partie de E. On appelle composantes
connexes par arcs de A les classes d'équivalence
pour la relation 2 définie précédemment.

Propriété 39 : Partition des composantes connexes

Les composantes connexes par arcs de A parti-
tionnent A.

Définition 16 : partie connexe par arcs

On dit que A est connexe par arcs lorsqu’ily a une
unigque composante connexe par arcs : A elle-méme.

Propriété 40 : convexe — connexe par arc

Toute partie convexe de E est connexe par arcs.

Définition 17 : Partie étoilée

A est dite étoilée sil existe un point a € A tel que
pour tout point b de A, le segment [a, b] est inclus dans

‘ ?:.

Propriété 41 : étoilée — connexe par arc

Toute partie éfoilée de E est connexe par arcs.

Cas des parties de R

Propriété 42 : Connexes par arcs de R

Les parties connexes par arcs de R sont les infer-
valles.

n Image continue d’'une partie connexe
par arcs

Propriété 43 : Image continue d’'une partie connexe

par arcs

Si E,F sont des espaces vectoriels normés, A une
partie connexe par arcs de E, f: A— F une applica-
tion continue, alors f(A) est connexe par arcs.

VERSION DU 9 FEVRIER 2026

Corollaire 10 : Cas d’une fonction réelle, TVI

Si f est une application continue, définie sur une
partie A connexe par arcs, et & valeurs réelles, alors
f(A) est un infervalle.

Aufrement dit, f vérifie la propriété des valeurs in-
termédiaires : s’il existe ae A tel que f(a)=a et be A
tel que f(b) = B. alors, pour fout y € [a, B, il existe ce A
tel que f(c) =vy.

@ Méthode 3 : Montrer qu’une partie est ou non
connexe par arcs

Le plus difficile est de déterminer dans dans quel cas
on se trouve.

m Pour montrer que A est connexe par arcs, on peut
* Utiliser la définition en construisant un chemin
continu dans A reliant deux points de A.
* Montrer que A est convexe ou étoilé par rapport
& un de ses points.
* Montrer que A est l'image contfinue d'un
connexe par arcs.

m Pour montrer que A n’est pas connexe par arcs, on
peut
* Trouver un couple de points qui ne sont pas re-
liables par un chemin continu dans A.
* Trouver une fonction continue f felle que f(A)
ne soit pas connexe par arcs. Si f est A valeurs
réelles, il suffit que f(A) ne soit pas un intervalle.

m ToPoLOGIE MATRICIELLE (HP)

Rien n’est explicitement au programme dans les exercices sui-
vants, mais ils sont fous trés classiques.

On est en dimension finie, toutes les normes sont équivalentes,
la convergence se fait coefficient & coefficient. On peut explici-
ter les normes usuelles

= ¥ al,

1<i,j<n

IAlz= | X

1<ij<n

ai,j(z (: Vir(a-AT) siK =R, tr[A-ZT] si K:C),

[l Alloo gnlléjvé ;
qui ne sont pas les plus pratiques car ce ne sont pas des normes
d’algebres vérifiant N(AB) < N(A)N(B).

On leur préfere pour des applications pratiques (voir séries
matricielles) des normes subordonnées sans nécessairement
avoir a les expliciter.

Voir TD pour des exercices sur ces normes subordonnées.

tll'yj).

A refenir (et & savoir redémontrer au besoin) :

® |le déterminant, la comatrice, I'application polyndme ca-
ractéristique sont continues (aftention : faux pour le poly-
néme minimal) ;

B YL, (K) est un ouvert dense dans ., (IK), connexe par arc
siK=C maispassi K=R;

m I'ensemble des matrices diagonalisables est dense dans
I’ensemble des matrices carrées dans C, dans I'ensemble
des matrices frigonalisables dans R ;

B 0O (n) est compact et non connexe par arc;

m Des matrices réelles semblables dans .4, (C) le sont dans
M (R).
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