21

Limite, continuité, compacité et connexité par arcs

Onsedonne (E,IIlg). (FI-Ir). (G, lI-llg) des IK-espaces vectoriels normés, avec K =R
ou C, dg. dr. dg les distances associées & la norme pour chaque espace.

On fixe A et B des parties non vides de E et F respectivement. Si f admet b comme limite en a, alors f est bornée au voisinage de a.
n LIMITE

n Limite en un point f&) —b si et seulement si pour tout suite (a,) € AN telle que a, — a,
flay) — b.

Propriété 1: Convergente = localement bornée

Propriété 2 : Caractérisation séquentielle

Soit fe FA, ac A, beF.

Définition 1 : Limite en un point

On dit que f(x) — blorsque pour tout e > 0, il existe n > 0 tel que Vx € A,

Sifmbeffﬁb’, alorsb=1'.

Propriété 3 : Unicité de la limite

Remarque
R1 - Définitions équivalentes :

Ve>0, 3n>0, Yxe A xeBglan = f(x)eBgbe) Propriété 4 : Limite par majoration de la différence
vV vois. de b, 3W vois. de a, f(ANW)cV Si g e R4 telle que g(x) —0 et si, au voisinage de a, | f(x)-b|| < g(x)
VvV vois. de b, 3W’ vois. de adans A, f(W)cV alors f(x) — b.
I£G) = b]| —0r
h b
fla+h) —

R2 - Cefte définition dépend des normes. Mais en changeant une norme en
une norme équivalente on ne change pas la définition.

Propriété 5 : Limites de normes

Si f) ——b, | f@)| z —IbllE.
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E Cas ou F est de dimension finie

Propriété 6 : Limite coordonnée a coordonnée

Si F est de dimension finie n, B = (ey,...,e,) Une base de F, f € FA4,

n
b= Z brer€F.
k=1

n
On note fi, e KA tel que pour tout xe A, f(x) =) fr(x)ex.
k=1

Alors f(x) — b si ef seulement si pour tout k e ﬁl, n], fi(x) — by.

Fonction & valeurs dans un espace produit

Propriété 7
Si (F1,N1),...,(Fp,Np) sont des KK-espaces vectoriels normés, on munit
Fy x---x F, de la norme produit N.

Si fe(FLx--xFp)4 aeA Pouricec[l,p], on pose f; € F! tel que
fix—=(fix),..., fp(x).

SOifb:(bl,...,bp)EFlx-'-pr.

Alors f — b si et seulement si pour tout i € [1, p]. fi(x) — b

ﬂ Opérations algébriques

La caractérisation séquentielle permet de prouver facilement les propriétés sur les
opérations algébriques sur les limites.

HTTPS://MPI.LECONTEDELISLE.RE I I

Propriété 8 : Opérations sur les limites

Soient f,g € FA, h € KA felles que f(x) —— beF gx) — b € F,
h(x) —a e K.

() SireXK, alors f+/1gE» b+Ab'.
(i h(x)- f(x) — a-b.

. , 1 1
(i Sia #0 et h ne s‘annule pas sur A, alors — — —

h(x) x—a a

Propriété 9 : Compositions de limites

Si fe F4, telle que f(A)c B, g€ GB, ae A, be B, ceG tels que f(x) —b,
g e c alors go f(x) —c

Exemple
B 4+y8
E1—- f:(x,y)— ———= en (0,0).
VRIEA) e 0,0
e
E2 - f:(x,y)*—'lx—_y| en (0,0)

H Extension & l’infini

Définition 2 : Limite pour | x| — +co

Si Anonbornée, fe F4, beF.
On dit que f(x) T p— b lorsque
X|[[g—+00
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Définition 3 : Limite vectorielle en +oo

* f(x) —00 8Si —f(—x) 400, , i
SiAcR, feFA beF. x——00 X—+00

b lorsque VYMeR, AM'€R, VxeA, x<M = f(x) <M.

@) Si An’est pas majorée, on dit que f(x)

X—+00

R4 — On définit de méme f(x) ———— +
Xl p—+o0
R5 — La caractérisation séquentielle de la limite est encore valable pour I'infini,

b avec une démonstration similaire.

(i) Si An‘est pas minorée, on dit que f(x)
c’est-0-dire

b lorsque f(-x)

X——00 X—+00

R6 — On peut unifier toutes ces définitions en infroduisant une notion de voisi-
nage de l'infini dans R : un voisinage de +oo est une partie V telle qu’il
existe M e R tel que 1M, +oolc V, un voisinage de —oo est une partie V telle
gu’il existe M e R tel que | —oco, M[c V.

o .. Alors toutes les définitions de f(x)

Définition 4 : Limite infinie en un vecteur ra

Soit feRA et ae 4. vV V voisinage de b, 3W voisinage de a, f(AnW)cV

¢ s'écrivent

@) On dit que f(x) — .t lorsque

m RELATIONS DE COMPARAISON

Définition 5 : Relations de comparaison

(i) On dit que f(x) — lorsque —f(x) — c’est-a-dire

Soit f,g € FA oU A partie de E, ¢ € R4, ae A. Si A est une partie non
Remarque minorée ou non majorée de R, a peut aussi étre +co.
R3 — Reste les définitions vues en premiére année de f(x) —— oo lorsque L. .
E<F=R: H=EEED m [ est dominée par ¢ aAu voisinage de a, et on note f = O(¢) ou
= Pour A non majorée f® = 0(pw) lorsqu’il existe un réel M et un voisinage V de a tel
* f(x) +00 que
X—+00
VMeR, AM eR, VxeA, x>M = f(x)> M.
* f(x) o T Ssi —f(x) o oo ie
Celarevient a dire que || f(x0)| =0 (|eW)|).
VMeR, AM eR, VxeA, x>M = f(x) <M. , - ,
Lorsque ¢ ne s’annule pas au voisinage de a (sauf éventuellement
Pour A non minorée . o 1 (x)
" , , en a), cela revient & dire que x— —— f(x) ouU encore x — M est
* f(x) +00 SSi f(—x) +oo0, ie @(x) lp(x)]
X——00 X—+00 P I
bornée au voisinage de a.
VMeR, AIM eR, VxeA, x<M = f(x)> M.
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= [ est négligeable devant ¢ au voisinage de a, et on note f =0 (¢) ou

fx) xfuo(q)(x)) lorsque pour fout ¢ >0, il existe un voisinage V de a tel
que

Cela revient a dire que || f(0) |z =o(|ex)]).

Lorsque ¢ ne s’annule pas au voisinage de a (sauf éventuellement
|f @
|(p(x)| x—a

en a), cela revient & dire que

= On dit que f est équivalente & g au voisinage de a et on note f ~g

lorsque f(x) - g(x) est négligeable devant || f(x)| ou devant || gx)|
(cela revient au méme) au voisinage de a :

m CONTINUITE

Il En un point, sur une partie
Soient f:AcE—FetacA.

Définition 6 : Continuité

f est continue en a lorsque f admet une limite (finie) en a.
f est continue sur A si et seulement si f est contfinue en tout point de A.

Propriété 10

Si f est continue en a, la limite de f en a vaut f(a).

[ElzenE]
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Propriété 11 : Caractérisations séquentielles

f est continue en a si et seulement si
Y(an), € AN telle que a, — a, f(a,) — f(a)
si et seulement si

Y(an), € AN telle que a, — a, (f(ay,)) converge.

Propriété 12 : Opérations

n Si f est continue, x— || f(x)| I’est aussi.

= Joufe combinaison linéaire, toute composée de fonctions confinues
est continue.

m Sif:A—Feth: A— K sont continues, h- f I’'est aussi. Si h ne s’annule
1 )
pas, 5 f I'est aussi.

Remarque
R7 — €(A,F) est un K-espace vectoriel, €(4,K) est une K-algebre.

Exemple

Xy . .
E3— f:(x,))— ——— Si(xy)#(0,0),0sinon.
X2+ y

E4— f:(x,))— si (x,y) #(0,0) , 0 sinon.

x| + 2

E Continuité et topologie

Propriété 13 : Image réciproque d’un ouvert ou d’un fermé par une appli-

cation continue

L'image réciprogue d’un ouvert (respectivement fermé) par une ap-
plication continue est un ouvert (respectivement un fermée) relatif de I’'en-
semble de départ.
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Remarque Propriété 15 : Uniformément continue = continue

R8 — Rappel: F~1(B) = (f1m®)°. ) ) j ) .
ppsl: f7(8) = (17 (®)) Une fonction uniformément continue sur A est continue sur A.

Réciproque fausse.
Exemple

E5— A={(x,y) eR? x*><y<x}estunfermé de R?.

Propriété 16 : Opérations sur les applications uniformément continues

Remarque Une combinaison linéaire, une composée de fonctions uniformément
R9— Si f: A— R est continue, ac R, {xe€ A, f(x)>a} et {xe A, f(x)<a} sont des continue I’'est encore.

ouverts de A, {xe A, f(x) > a}, (xe€ A, f(x) < a} et {xe A, f(x)=a} sont des

fermés de A. Remarque

R10— Ce n’est plus vrai pour lesimages directes. Exemples : sin(]0,4x[) ef Arctan(RR). R12— A Faux pour un produit ou un quotient

Propriété 14 : Applications continues coincidant sur une partie dense Exemple

E6— x— |x| est uniformément continue sur R mais pas x — x2.

Des applications continues coincidant sur des parties denses sont
égales.

Exercice 1: CCINP 35
ﬂ Fonctions lipschitziennes

Définition 8 : Fonction lipschitzienne

3 . . Iy
. Uniforme continuite f:AcE— F est dite k-lipschitzienne sur A (oU k€ RY) si

Définition 7 : Uniforme continuité

Soit f: Ac E—T. On dit que f est uniformément continue sur A si

Propriété 17 : Lipschitzienne = continue

R Toute fonction lipschitzienne sur A y est uniformément confinue.
emarque La réciproque est fausse.
R11— A ne pas confondre avec f continue sur A :

VaeA, Ve>0, dn>0, VxeA,
Exemple
lx—alg<n=|f@)-fl@|p<e. E7— xe x|
Cela impose que si x et y sont suffisamment proches, mais n‘importe ou
dans I, alors f(x) et f(y) sont proches également.
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Propriété 18 : Lispschziannité de la distance & une partie Remarque

R14 — Ce qui importe vraiment en pratique, c’est (i) < (iii).

E — R . )
est I-lipschitzienne donc uniforméement continue sur

x — d(x, A

g ooy
C’est en particulier le cas de x— d(x,a) ol a€ E avec A= {aj}.

Onnote %.(E,F) = £(E,F)n€(E, F) I'ensemble des applications linéaires
continues sur E.

Exemple
E8 — On retrouve que les boules ouverte /fermée le sont, et que les sphéres sont
fermées. Remarque

R15 - Z.(E,F) est un sous-espace vectoriel de Z(E, F).

H . . . s _x Exemple
Applications linéaires )
E9 - w:fE(%([a,b],C),Noo)wf f®»dte (G, est continue.

Remarque Elle est aussi continue si on munit €([a, b],C) de la norme N; de la conver-
R13 — Pour une application linéaire, on peut toujours déplacer un probléme en gence en moyenne.
un point donné en un probléme en 0g, et la confinuité revient & une lip- E10— fe(€(0,1],0),N)) — f(0) € (C, |-) est non continue

schitziannité, et donc une uniformité continue.

N

Méthode 1 : Etudier la continuité d’une application linéaire

] . o . o m Pour montrer qu’une application linéaire est continue, on cherche une
Soit ue £(E, F). Les cing propositions suivantes sont équivalentes : constante k telle que pour tout x € E, lu()ll < kllxllg... Sauf si on est en

dimension finie au départ : dans ce cas, ¢c’est automatique.

m Pour montrer gu’une application linéaire n’est pas contfinue, on cherche

a nier la caractérisation séquentielle de la continuité en 0 en frouvant une

(iif) suite (xx), € EN telle que x,, — 05 (ie x,llg — 0) et pourtant u(xy,) 4 0p (ie

lu(xp)llp 7~ 0p) , OU encore, comme pour nier une domination de normes,

lu(xp)llp
llxll g

Propriété 19 : Continuité des applications linéaires

() u est confinue sur E.
(i u est continue en 0.

une suite telle que ( ) n’est pas bornée.
n

Exercice 2: CCINP 1
(iv) u est lipschitzienne sur E.

(v) u est uniformément confinue sur E.
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Remarque

R16 — La confinuité dépend des normes au départ et aI’arrivée, mais ne change m D
IMENSION FINIE

pas en prenant des normes équivalentes.
R17 — La domination de norme est équivalente & la continuité de I'endomor-

phisme idg pour ces normes. n Coordonnées

Propriété 21 : Continuité coordonnée a coordonnée

On suppose F de dimension finie n> 1.
Soit A une partie non vide de E, f € FA , B = (ey,...,e,;) Une base de F.
n

Exercice 3 : CCINP 36, 54 Onpose f= Y frer.
k=1

Alors f est continue sur A si et seulement si pour fout k € [1,n], fi est
confinue sur A.

H Applications multilinéaires E Applications linéaires

Propriété 20 : Continuité des applications multilinéaires Théoréme 1 : Continuité des applications linéaires en dimension finie

Si E,...,Ep, F sont des K-espaces vectoriels normeés et f: Ey x...x E, — F Si E est de dimension finie, alors foute application linéaire de E vers F
est multilinéaire, alors les deux propositions suivantes sont équivalentes : est continue sur E.

(0 f est continue pour la norme produit sur Ey x ... x Ep AUIEIMENT Gy 208, ) = L2 )

(i Remarque

R18 — Une domination de norme étant une continuité d’application linéaire (idg).
on a réciproguement que la continuité de tout endomorphisme sur E im-
plique I'équivalence de toute norme de E.

Exercice 4: Montrer que si Pe 9%, (K), Ae 4,(K) — PAP~! est continue.

Corollaire 1 : Continuité d’un produit scalaire
Exercice 5 : Montrer que I'ensemble des matrices de trace nulle est un fermé de

My (K).

Exercice 6 : Montrer que 'ensemble des matrices symétriques est un fermé de
M (K).
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Applications polynomiales ﬂ Applications multilinéaires
Définition 9 : Applications polynomiales Propriété 23 : Continuité des applications bilinéaires en dimension finie
Soit f: E— I, ou E est de dimension finie, 8 = (ey,...,ep) Une base de E. Si (B lg). (Ellg) sont des K-espaces vectoriels de dimension finie,
Pour x € E, on note xy,...,x, ses coordonnées dans 2. (G, |I-lg) K-espace vectoriel, alors toute application bilinéaire de E x F dans
f est dite monomiale s’il existe ki, ..., k, e IN” tels que G est continue.

f .efT dite polynomiale si elle est combinaison linéaire de fonctions mo- Propriété 24 : Généralisation
nomiales.

Plus généralement, foute application multilinéaire définie sur un produit
d’espaces de dimension finie est continue.

Remarque

R19 — En changeant de base, les anciennes coordonnées sont transformées en Exemple
combinaisons linéaires de nouvelles coordonnées. Ainsi, le caractere poly- E11 - Si % base de E de dimension finie, detg est une forme n-linéaire de E donc
nomial d’une fonction ne dépend pas de la base. est confinue.

Propriété 22 : polynomiale en dimension finie = continue

Toute fonction polynomiale sur E de dimension finie est confinue. m NO RMES D ,OPE RATEURS

Exercice 7 : Montrer que det est continue sur ., (KK). n Cas des applications linéaires

Définition 10 : Norme subordonnée

On considere deux K-espaces vectoriels normés (E, |-Ig) et (Fl-Ig). Si

Exercice 8 : M — Com(M) est continue sur .« (K).
om(M) a2 ue %.(E,F), on pose

Exercice 9 : %<, (K) est ouvert.
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Remarque
R20 — |[|ul| est le plus petit k tel que pour tout xe E,

lullp < klxlg.

On vérifie gu’il suffit de prendre la borne supérieure au choix soit sur la sphére unité,

soit sur la boule unité fermée.

Propriété 25 : Définition équivalente

Siue %.(E,F),

llull = sup llu(x)llp= sup lu(x)lg
lxllg=1 x€S(0g,1)

= sup lux)llp= sup [u@)lF.
lxlp<1 x€B(0g,1)

Propriété 26 : C’est une norme

Il- Il est une norme sur £.(E,F) appelée norme subordonnée a || et
I-l7. On parle aussi de norme d’opérateur.

Propriété 27 : Norme subordonnée d’'une composée

On considére ftrois K-espaces vectoriels normés (E,|-lg). (Fl-lp) et
(G, I'llg)- Si ue £.(E,F) et ve £:.(FG) et ll-llgr désigne la norme subordon-
née sur 4.(E,F) par exemple, alors

Corollaire 2 : Cas des endomorphismes

Ici, E=F. Si ue %.(E), on définit

lze ()|l
I||u|||=sup—E: sup u(X)g= sup uX)g.

xzop Nxle  jxip=1 Ixlp<1

VERSION DU @ FEVRIER 2026

Alors ||- || est une norme sur £.(E) qui vérifie ||idg || =1 et
Vu,ve L (E), llvoull <lull-lvl.

On dit que || - | est une norme d’algébre unitaire.

Propriété 28 : Puissance et norme subordonnée

Pour touf ue £.(E) ef ke N,

] < wean*

',
™

Méthode 2 : Calcul d’'une norme subordonnée
Pour calculer la norme subordonnée d’un opérateur (ie d'une application
linéaire), on écrit des majorations

VxeE, luWlp<--=-<--=---<klxlg

en effectuant des majorations les plus fines possibles et en distinguant clairement
les majorations et les égalités, afin de pouvoir fraiter plus facilement les cas d'éga-
lité.

Soit on frouve au moins un cas d’'égalité, c’est-a-dire un x € E tel que
lu(x)llgp = kllixlg, alors k = flull (et le sup est en fait un max). On verra qu’en di-
mension finie, on peut toujours en trouver.

S’iln"y a pas de cas d'égalité, on peut chercher une suite (x;) ;e € (E\ oh N
telle lu(xp)ll p

que ———

) lxnllg
suite de I'ensemble).

On peut aussi, pour tout € >0, chercher x # 0 tel que llu(x) g > (k—é¢) llxel g.

— k et alors k= ||ull (car le sup est le seul majorant limite d'une

Exercice 10: CCINP 38

LIMITE, CONTINUITE, COMPACITE ET CONNEXITE PAR ARCS - PAGE 9 SUR 16



y LYCEE LECONTE DE LISLE — LA REUNION

E Traduction matricielle

Propriété 29 : Norme subordonnée matricielle

Soit |-l une norme quelconque sur ) (K).
On définit, pour A€ 4, (IK),

[IAX]|
lAll = sup ——— = sup [|AX]| = sup [|AX]
x#0,, I1XI - yxy=1 IXI<1

appelée norme subordonnée & ||-|.
Il s’agit d’une norme d’algébre unifaire sur #,(K), donc vérifiant
.l =1 et

Y A, Be y(K), IABII<NAINNBI
ce qui implique

¥ Aedy(K), VEeN, [|aF| <nant.

m COMPACITE

Il Suites extraites

Définition 11 : Suite extraite

Soit u e EN, On appelle suite extraite ou sous-suite de u toute suite v e EN
telle qu’il existe ¢ : IN — IN strictement croissante felle que Vne N, vy, = up).
@ est appelée extractrice.

Si ¢ est une extractrice, alors

VnelN, ¢(n) > n.

[ElzenE]
HTTPS://MPI.LECONTEDELISLE.RE b hé‘-_i
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Propriété 30 : Limite d’'une suite extraite convergente

Si u— ¢, foute suite extraite de u converge vers ¢.

Définition 12 : Valeur d’adhérence

On appelle valeur d’adhérence de u € EN toute limite (dans E) de suite
extraite de u.

Propriété 31 : Cas des suites convergentes

Une suite convergente a une unique valeur d’adhérence : sa limite.
Réciproque fausse.

Corollaire 3 : Contraposée

Si une suite a plusieurs valeurs d’adhérence, elle diverge.

Propriété 32 : Condition suffisante de convergence

Si (up,) et (upn+1) Convergent vers une méme limite, alors u converge
vers cette limite.

Exercice 11
Soit uc EN, ¢ € E.
1. Montrer qu’il y a équivalence entre
(i) ¢ est valeur d’adhérence de u.
(i) Pourtout £ >0, {n€ N, u, € B(¢,¢)} est infini.
(iii) Pour tout ¢ >0, pour tout pe IN, {n > p,u, € B(¢,¢)} n’est pas vide.

2. Application classique : en déduire que I'ensemble des valeurs d’adhé-
rence de u est fermé.
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E Parties compactes

n Définition

Définition 13 : de Bolzano-WeierstraB
Une partie K de E est dite compacte (ou est un compact) lorsque

Remarque
R21 — @ est compacte.
R22 — Par théoréme de Bolzano-WeierstraB, fout segment de R est compact.

u Un compact est fermé borné

Propriété 33 : compact = fermé et borné

Toute partie compacte est

Remarque

R23 — La réciproque est fausse en général, mais on va voir qu’elle est vraie en
dimension finie.

R24 — Tout compact de R est inclus dans un segment.

VERSION DU @ FEVRIER 2026

Exemple : Contre-exemple de partie fermée bornée non compacte
E12 - Dans K[X] munide lanorme [Pl = sup | p| (Qvec des notations évidentes),
kelN

Montrer que S(0,1) est une partie fermée bornée non compacte en utilisant
(X™),,eny- (Voir aussi CCINP 13)

Exercice 12: CCINP 13

Partie fermée d’'un compact

Propriété 34 : Partie fermée d’un compact

Soit K une partie compacte de E et A une partie de K.

Remarque

R25 — La réciproque est vraie! Ainsi les parties de K fermées sont exactement les
partfies de K compactes.

R26 — Parle-t-on de fermé de E ou de fermés relatifs de K ? En fait, c’est la méme
chose car le compact K est fermé. Il n"y a donc pas d’ambiguité.

R27 — En dimension finie, ce ne sera pas fres intéressant car on va montrer que
les compacts en général sont exactement les fermés bornés.

n Produit de compacts

Propriété 35 : Produit de compacts

SipeIN*, ((Er, 1), ..., (Ep, I-1,)) sont des K-espaces vectoriels normés et
pour i€ [1,p], K; compact de E;, alors K = K; x --- x K, est un compact de
E = E; x...x E, muni de la norme produit.

Remarque

R28 — La démonstration est intéressante, mais dans la pratique, en cas d’extrac-
tions multiples, il est 1€gitime de se poser la question : peut-on faire appo-
raitre un produit de compact?
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Fonctions continues sur des compacts

Propriété 36 : Image continue d’'un compact

Si f: K — F avec K partie compacte de E et f continue, alors

Remarque

R29 — L'image continue d’un compact est compacte, et donc en particulier fer-
mée et bornée.

R30 — A ne pas confondre avec la propriété qui dit que I'image réciproque d’une
partie relativement ouverte ou fermée de F |'est encore dans E.

Corollaire 4 : théoréme des bornes atteintes

Remarque
R31— Tréééeés utile! Et avec un petit golt de déjd-vu...

R32 - Ce théoréme permet de montrer qu’en dimension finie, la norme subor-
données de u (resp. A) est nécessairement atteinte sur S(0,1).

Théoreme 2 : de Heine
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ﬂ Cas de la dimension finie

B «

On a déja vu gque les segments de R étaient des compacts de R.
Le théoréme de Bolzano WeierstraB permet de démontrer le résultat suivant, gé-

néralisé un peu plus loin.

Théoreme 3 : de Bolzano-Weierstral

De foutes suite bornée d’élements du corps K = R ou C, on peut extraire
une suite convergente.

Corollaire 5: Compacts de R ou C

Les compacts du corps K = R ou C sont exactement les parties fermées
et bornées de K.

Remarque

R33 — Les segments de R sont alors exactement les intervalles compacts de R.
Mais il existe bien d’autre compacts qui ne sont pas des intervalles.
Par exemple, un ensemble fini est toujours compact (pourquoi? — et c’est
valable dans n‘importe quel espace vectoriel normé).
Cependant, tout compact de R étant fermé et borné, il est inclus dans
[infK,supK] = [minK,maxK] (le caractére fermé assurant le fait que les
bornes soient atteintes).
Ainsi, les propriétés vraies « sur tout segment de R » sont aussi les propriétés
vraies « sur fout compact de R. »

H Equivalence des normes

Théoréme 4: Equivalence des normes en dimension finie

Dans un espace vectoriel de dimension finie, foutes les normes sont
équivalentes.

LIMITE, CONTINUITE, COMPACITE ET CONNEXITE PAR ARCS - PAGE 12 SUR 16


https://mpi.lecontedelisle.re

J. Larochette VERSION DU @ FEVRIER 2026

Lemme 2 Exercice 14 :Treéééeés classique : 0(n) = {M € .4, (R), MTM = I,,} est compact.

Les compacts de K" muni de |-||l sont exactement les parties fermées
et bornées de (K", |lllso)-

Remarque

Remarque R35— Siue %:(E,F), on avuque la norme subordonnée s’écrivait :

R34 — On généralise & tout espace vectoriel normé de dimension finie ci-aprés.

llull = sup lu()llF.
x€S(0g,1)

Si E est de dimension finie, comme la sphére S(0g, 1) est fermée et bornée,
elle est compacte. Ef comme x — |lu(x) || est continue sur E, elle est bornée
et atteint ses bornes sur S(0g, 1). Autrement dit, en dimension finie, la norme

Compacts en dimension finie

Théoreme 5 : Compacts en dimension finie subordonnée de u s’ écrit foujours ||u(xg)ll pour un certain xg € S(0g, 1).
5 . a , , i R36 — Le théoréme de Riesz (HP) dit qu’un espace vectoriel normé est de dimen-
Les compacts d’un espace vectoriel normé de dimension finie sont SR ( ) N P X
: < b sion finie si et seulement si sa boule unité fermée est compacte.
exactement ses parties fermées et bornéees.

Corollaire 6 : Traduction en terme de valeur d’adhérence

, P , . . . p Exercice 15 : Mines : Montrer que la boule unité fermée de ¥°°([0,1]) muni de la
Dans un espace vectoriel normeé de dimension finie, foute suite bornéee ;
; ) § norme Ny, n’est pas compacte.
admet au moins une valeur d’adhérence.

Corollaire 7 : Théoréme de Bolzano-WeierstraB

De toute suite bornée d’un espace vectoriel normé de dimension finie, E Suites convergente dans un ComeCt
on peut extraire une suite convergente.

Propriété 37 : CNS de convergence dans un compact

Corollaire 8 : important!

Un sous-espace de dimension finie d’un espace vectoriel normé est
fermé.

Exercice 13: classique : Tout sous-espace strict d’'un espace vectoriel normé est
d’intérieur vide.

Corollaire 9 : CNS de convergence des suites bornées en dimension finie

En dimension finie, foute suite bornée converge si et seulement si elle
a une unique valeur d’adhérence.
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m CONNEXITE PAR ARCS
Il Une relation d’équivalence

Définition 14 : chemin continu

Soit A une partie d’un espace vectoriel normé (E, |-1). Si (a, b) € A%, on Ap-
pelle chemin continu joignant a & b dans A tfoute application ¢ : [0,1] — E
vérifiant les frois propriétés suivantes :

Propriété 38 : Relation d’équivalence

La relation & sur A? « sont joints par un chemin continu » est une relation
d’équivalence.

E Connexité par arcs

Définition 15 : Composantes connexes par arcs

Soit A une partie de E. On appelle composantes connexes par arcs de
A

Remarque

R37 — La composante connexe par arc de a€ A estl’ensemble des b e A pouvant
étre joints & a par un chemin confinu.
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Propriété 39 : Partition des composantes connexes

Les composantes connexes par arcs de A partitionnent A,

Exemple
E13— A={(x,y)€ R?,xy # 0} possede quatre composantes connexes par arcs.

Définition 16 : partie connexe par arcs

On dit que A est connexe par arcs lorsqu’

Remarque

R38 — A est connexe par arcs si tout couple de points est joignable par un chemin
continu dans A.

Exercice 16 : Montrer que S(0g,1) est connexe par arcs.

Propriété 40 : convexe — connexe par arc

Toute partie convexe de E est connexe par arcs.

Exercice 17 : Montrer qu’une boule est connexe par arcs.

Définition 17 : Partie étoilée

A est dite étoilée s'il existe un point a e A tel que
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Remarque Corollaire 10 : Cas d’une fonction réelle, TVI

R39 — Une partie convexe est étoilée par rapport & chacun de ses points. ] o ] o )
Si f est une application confinue, définie sur une partie A connexe par
arcs, et & valeurs réelles, alors f(A) est

Propriété 41 : étoilée — connexe par arc
o Aufrement dit, f vérifie la proprieté des valeurs infermediaires :
Toute partie étoilée de E est connexe par arcs.

Cas des parties de R

Propriété 42 : Connexes par arcs de R
Les parties connexes par arcs de R sont

Remarque

R42 — Si, pour résoudre une question, on a envie d’appliquer le théoréme des va-
leurs intermédiaires, mais si on a une application (continue) qui n’est pas

Remarque définie sur un intervalle de R, on peut penser & se demander si I'applica-
R40 — Les connexes par arcs de R sont les convexes. C’est faux en général, par fion ne serait pas, par hasard, définie sur une partie connexe par arcs d'un
exemple dans R2, espace vectoriel normé...

ﬂ Image continue d’une partie connexe par arcs

Propriété 43 : Image continue d’une partie connexe par arcs Méthode 3 : Montrer qu’une partie est ou non connexe par arcs
Le plus difficile est de déterminer dans dans quel cas on se trouve.

Si E,F sont des espaces vectoriels normés, A une partie connexe par

arcs de E, f: A— F une application continue, alors m Pour monirer que A est connexe par arcs, on peut

* Utiliser la définition en construisant un chemin continu dans A reliant
deux points de A.

* Montrer que A est convexe ou étoilé par rapport & un de ses points.

* Montrer que A est I'immage contfinue d’un connexe par arcs.

R41 — Pour_les ouvgr’rs et lesfermés, c esjrl image réciproque par une application = Pour montrer que 4 n’est pas connexe par arcs, on peut
continue qui est ouverte ou fermée.

Pour les compacts ou les connexes par arcs, c’est I'image directe par une
application continue qui est compacte ou connexe par arcs.

Remarque

* Trouver un couple de points qui ne sont pas reliables par un chemin
continu dans A.

* Trouver une fonction continue f telle que f(A) ne soit pas connexe par
arcs. Si f est a valeurs réelles, il suffit que f(A) ne soit pas un intervalle.
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m ToPoOLOGIE MATRICIELLE (HP)

Rien n’est explicitement au programme dans les exercices suivants, mais ils sont
fous fres classiques.

On est en dimension finie, toutes les normes sont équivalentes, la convergence se
fait coefficient & coefficient. On peut expliciter les normes usuelles

IAl =) |aij|
1<i,j<n
2 —
lala=| Y )ai‘j’ (:\/tr(A-AT)Si]K:IR, tr(A-AT)sich),
1<i,j<n

lAlloo = max ‘“i,j"
<Ljsn
qui ne sont pas les plus pratiques car ce ne sont pas des normes d’algebres vérifiant
N(AB) < N(A)N(B).
On leur préfére pour des applications pratiques (voir séries matricielles) des normes
subordonnées sans nécessairement avoir a les expliciter.
Voir TD pour des exercices sur ces normes subordonnées.

Exercice 18 : Montrer de deux maniéres différentes que ¥.#,(KK) est dense dans
A, (K). En déduire que si A, B € 4, (K), Y oB = XBA-

Exercice 19 : Démontrer que ¥, (KK) est un ouvert de .4, (K).

Exercice 20 : Montrer que I'ensemble des matrices triangulaires supérieures, tri-
angulaires inférieures, symétriques, antisymétriques, de trace nulle
(respectivement) de .#, (KK) sont fermés.

Exercice 21:Démontrer que I'ensemble ¢ (n) = {M e .4, (R), MMT = I,} des ma-
trices orthogonales est compact.

Exercice 22 : Montrer que 'ensemble des matrices diagonalisables de ./, (C) est
dense. En déduire le théoréme de Cayley-Hamilton.
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Exercice 23 :L'ensemble des matrices diagonalisables de ./, (RR) est-il dense ?

On pourra considérer I’application qui & une matrice 2 x 2 associe le discrimi-
nant de son polynéme caractéristique.

Exercice 24 : Montrer que I'ensemble des matrices de rang p € [1,n-1] n’est ni
ouvert ni fermé. Etudier les cas p=0 et p=n.

Exercice 25 : Montrer que I'application qui & M € 4.#,,(KK) associe son inverse est
continue.

Exercice 26 : Soit n > 2. Montrer que I'application qui & M e .4, (IK) associe son
polynéme minimal et 'application rang ne sont pas continue. Cas
n=17?

Exercice 27 : Donner le ccefficient de degré 1 de y 4 en fonction de la trace et
de la comatrice de A.

On suggére de commencer par supposer A inversible et d’exprimer y4 en
fonction de y 4-1.

Exercice 28: Etudier la connexité par arcs de 4., (R), < ,(C), et 0(n).

Exercice 29 : Monirer que I'ensemble des matrices diagonalisables de ./, (K)
est connexe par arcs.
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