
21
Limite, continuité, compacité et connexité par arcs

On sedonne (E ,‖·‖E ), (F,‖·‖F ), (G ,‖·‖G )desK-espaces vectoriels normés, avecK=R

ou C, dE , dF , dG les distances associées à la norme pour chaque espace.
On fixe A et B des parties non vides de E et F respectivement.

I LIMITE

1 Limite en un point
Soit f ∈ F A , a ∈ A, b ∈ F .

Définition 1 : Limite en un point
Ondit que f (x) −−−→

x→a
b lorsque pour tout ε> 0, il existe η> 0 tel que ∀x ∈ A,

Remarque
R 1 – Définitions équivalentes :

∀ε> 0, ∃η> 0, ∀x ∈ A, x ∈ BE (a,η) =⇒ f (x) ∈ BF (b,ε)

∀V vois. de b, ∃W vois. de a, f (A∩W ) ⊂V

∀V vois. de b, ∃W ′ vois. de a dans A, f (W ′) ⊂V∥∥ f (x)−b
∥∥−−−−→

x→a
0R

f (a +h) −−−−−→
h→0E

b

R 2 – Cette définition dépend des normes. Mais en changeant une norme en
une norme équivalente on ne change pas la définition.

Propriété 1 : Convergente ⇒ localement bornée

Si f admet b comme limite en a, alors f est bornée au voisinage de a.

Propriété 2 : Caractérisation séquentielle

f (x) −−−→
x→a

b si et seulement si pour tout suite (an) ∈ AN telle que an → a,
f (an) → b.

Propriété 3 : Unicité de la limite

Si f −−−→
x→a

b et f −−−→
x→a

b′, alors b = b′.

Propriété 4 : Limite par majoration de la différence

Si g ∈ RA telle que g (x) −−−→
x→a

0 et si, au voisinage de a,
∥∥ f (x)−b

∥∥ ⩽ g (x)

alors f (x) −−−→
x→a

b.

Propriété 5 : Limites de normes

Si f (x) −−−→
x→a

b,
∥∥ f (x)

∥∥
F −−−→

x→a
‖b‖F .
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2 Cas où F est de dimension finie

Propriété 6 : Limite coordonnée à coordonnée

Si F est de dimension finie n, B = (e1, . . . ,en) une base de F , f ∈ F A,
b =

n∑
k=1

bk ek ∈ F .

On note fk ∈KA tel que pour tout x ∈ A, f (x) =
n∑

k=1
fk (x)ek .

Alors f (x) −−−→
x→a

b si et seulement si pour tout k ∈ J1,nK, fk (x) −−−→
x→a

bk .

3 Fonction à valeurs dans un espace produit

Propriété 7

Si (F1, N1), . . . , (Fp , Np ) sont des K-espaces vectoriels normés, on munit
F1 ×·· ·×Fp de la norme produit N .

Si f ∈ (F1 × ·· · × Fp )A, a ∈ A. Pour i ∈ J1, pK, on pose fi ∈ F A
i tel que

f : x 7→ ( f1(x), . . . , fp (x)).
Soit b = (b1, . . . ,bp ) ∈ F1 ×·· ·×Fp .
Alors f −−−→

x→a
b si et seulement si pour tout i ∈ J1, pK, fi (x) −−−→

x→a
bi .

4 Opérations algébriques
La caractérisation séquentielle permet de prouver facilement les propriétés sur les

opérations algébriques sur les limites.

Propriété 8 : Opérations sur les limites

Soient f , g ∈ F A, h ∈ KA telles que f (x) −−−→
x→a

b ∈ F , g (x) −−−→
x→a

b′ ∈ F ,
h(x) −−−→

x→a
α ∈K.

(i) Si λ ∈K, alors f +λg −−−→
x→a

b +λb′.

(ii) h(x) · f (x) −−−→
x→a

α ·b.

(iii) Si α 6= 0 et h ne s’annule pas sur A, alors 1

h(x)
−−−→
x→a

1

α
.

Propriété 9 : Compositions de limites

Si f ∈ F A, telle que f (A) ⊂ B , g ∈GB , a ∈ A, b ∈ B , c ∈G tels que f (x) −−−→
x→a

b,
g (y) −−−→

y→b
c alors g ◦ f (x) −−−→

x→a
c.

Exemple

E 1 – f : (x, y) 7→ x3 + y3

x2 + y2
en (0,0).

E 2 – f : (x, y) 7→ x2∣∣x − y
∣∣ en (0,0).

5 Extension à l’infini

Définition 2 : Limite pour ‖x‖→+∞
Si A non bornée, f ∈ F A, b ∈ F .
On dit que f (x) −−−−−−−→

‖x‖E→+∞
b lorsque
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Définition 3 : Limite vectorielle en +∞
Si A ⊂R, f ∈ F A, b ∈ F .
(i) Si A n’est pas majorée, on dit que f (x) −−−−−→

x→+∞ b lorsque

(ii) Si A n’est pas minorée, on dit que f (x) −−−−−→
x→−∞ b lorsque f (−x) −−−−−→

x→+∞ b

c’est-à-dire

Définition 4 : Limite infinie en un vecteur
Soit f ∈RA et a ∈ A.
(i) On dit que f (x) −−−→

x→a
+∞ lorsque

(ii) On dit que f (x) −−−→
x→a

−∞ lorsque − f (x) −−−→
x→a

−∞ c’est-à-dire

Remarque
R 3 – Reste les définitions vues en première année de f (x) −−−−−→

x→±∞ ±∞ lorsque
E = F =R :

■ Pour A non majorée
⋆ f (x) −−−−−→

x→+∞ +∞

∀M ∈R, ∃M ′ ∈R, ∀x ∈ A, x ⩾ M ′ =⇒ f (x)⩾ M .

⋆ f (x) −−−−−→
x→+∞ −∞ ssi − f (x) −−−−−→

x→+∞ +∞, ie

∀M ∈R, ∃M ′ ∈R, ∀x ∈ A, x ⩾ M ′ =⇒ f (x)⩽ M .

■ Pour A non minorée
⋆ f (x) −−−−−→

x→−∞ +∞ ssi f (−x) −−−−−→
x→+∞ +∞, ie

∀M ∈R, ∃M ′ ∈R, ∀x ∈ A, x ⩽ M ′ =⇒ f (x)⩾ M .

⋆ f (x) −−−−−→
x→−∞ −∞ ssi − f (−x) −−−−−→

x→+∞ +∞, , ie

∀M ∈R, ∃M ′ ∈R, ∀x ∈ A, x ⩽ M ′ =⇒ f (x)⩽ M .

R 4 – On définit de même f (x) −−−−−−−−→‖x‖E→+∞
±∞.

R 5 – La caractérisation séquentielle de la limite est encore valable pour l’infini,
avec une démonstration similaire.

R 6 – On peut unifier toutes ces définitions en introduisant une notion de voisi-
nage de l’infini dans R : un voisinage de +∞ est une partie V telle qu’il
existe M ∈R tel que ]M ,+∞[⊂ V , un voisinage de −∞ est une partie V telle
qu’il existe M ∈R tel que ]−∞, M [⊂V .
Alors toutes les définitions de f (x) −−−−→

x→a
ℓ s’écrivent

∀V voisinage de b, ∃W voisinage de a, f (A∩W ) ⊂V

II RELATIONS DE COMPARAISON
Définition 5 : Relations de comparaison

Soit f , g ∈ F A où A partie de E , φ ∈ RA, a ∈ A. Si A est une partie non
minorée ou non majorée de R, a peut aussi être ±∞.

■ f est dominée par φ au voisinage de a, et on note f =
a
O

(
φ

)
ou

f (x) =
x→a

O
(
φ(x)

)
lorsqu’il existe un réel M et un voisinage V de a tel

que

Cela revient à dire que
∥∥ f (x)

∥∥
F =O

(∣∣φ(x)
∣∣).

Lorsque φ ne s’annule pas au voisinage de a (sauf éventuellement

en a), cela revient à dire que x 7→ 1

φ(x)
f (x) ou encore x 7→

∥∥ f (x)
∥∥

F∣∣φ(x)
∣∣ est

bornée au voisinage de a.
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■ f est négligeable devant φ au voisinage de a, et on note f =
a

o
(
φ

)
ou

f (x) =
x→a

o
(
φ(x)

)
lorsque pour tout ε> 0, il existe un voisinage V de a tel

que

Cela revient à dire que
∥∥ f (x)

∥∥
F = o

(∣∣φ(x)
∣∣).

Lorsque φ ne s’annule pas au voisinage de a (sauf éventuellement

en a), cela revient à dire que
∥∥ f (x)

∥∥
F∣∣φ(x)
∣∣ −−−→

x→a
0.

■ On dit que f est équivalente à g au voisinage de a et on note f ∼
a

g

lorsque f (x)− g (x) est négligeable devant
∥∥ f (x)

∥∥
F ou devant

∥∥g (x)
∥∥

F
(cela revient au même) au voisinage de a :

III CONTINUITÉ

1 En un point, sur une partie
Soient f : A ⊂ E → F et a ∈ A.

Définition 6 : Continuité
f est continue en a lorsque f admet une limite (finie) en a.
f est continue sur A si et seulement si f est continue en tout point de A.

Propriété 10

Si f est continue en a, la limite de f en a vaut f (a).

Propriété 11 : Caractérisations séquentielles

f est continue en a si et seulement si

∀(an)n ∈ AN telle que an → a, f (an) → f (a)

si et seulement si

∀(an)n ∈ AN telle que an → a, ( f (an)) converge.

Propriété 12 : Opérations

■ Si f est continue, x 7→ ∥∥ f (x)
∥∥ l’est aussi.

■ Toute combinaison linéaire, toute composée de fonctions continues
est continue.

■ Si f : A → F et h : A →K sont continues, h · f l’est aussi. Si h ne s’annule
pas, 1

h
· f l’est aussi.

Remarque
R 7 – C (A,F ) est un K-espace vectoriel, C (A,K) est une K-algèbre.

Exemple

E 3 – f : (x, y) 7→ x y

x2 + y2
si (x, y) 6= (0,0) , 0 sinon.

E 4 – f : (x, y) 7→ y2

|x|+ y2
si (x, y) 6= (0,0) , 0 sinon.

2 Continuité et topologie

Propriété 13 : Image réciproque d’un ouvert ou d’un fermé par une appli-
cation continue

L’image réciproque d’un ouvert (respectivement fermé) par une ap-
plication continue est un ouvert (respectivement un fermé) relatif de l’en-
semble de départ.
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Remarque
R 8 – Rappel : f −1 (

Bc )= (
f −1(B)

)c .

Exemple
E 5 – A = {

(x, y) ∈R2, x2 ⩽ y ⩽ x
}
est un fermé de R2.

Remarque
R 9 – Si f : A →R est continue, a ∈R, {x ∈ A, f (x) > a} et {x ∈ A, f (x) < a} sont des

ouverts de A, {x ∈ A, f (x) ⩾ a}, {x ∈ A, f (x) ⩽ a} et {x ∈ A, f (x) = a} sont des
fermés de A.

R 10 – Ce n’est plus vrai pour les images directes. Exemples : sin(]0,4π[) et Arctan(R).

Propriété 14 : Applications continues coïncidant sur une partie dense

Des applications continues coïncidant sur des parties denses sont
égales.

Exercice 1 : CCINP 35

3 Uniforme continuité

Définition 7 : Uniforme continuité
Soit f : A ⊂ E →F. On dit que f est uniformément continue sur A si

Remarque
R 11 – À ne pas confondre avec f continue sur A :

∀a ∈ A, ∀ε> 0, ∃η> 0, ∀x ∈ A,

‖x −a‖E ⩽ η=⇒ ∥∥ f (x)− f (a)
∥∥

F ⩽ ε.

Cela impose que si x et y sont suffisamment proches, mais n’importe où
dans I , alors f (x) et f (y) sont proches également.

Propriété 15 : Uniformément continue ⇒ continue

Une fonction uniformément continue sur A est continue sur A.
Réciproque fausse.

Propriété 16 : Opérations sur les applications uniformément continues

Une combinaison linéaire, une composée de fonctions uniformément
continue l’est encore.

Remarque

R 12 – " Faux pour un produit ou un quotient.

Exemple
E 6 – x 7→ |x| est uniformément continue sur R mais pas x 7→ x2.

4 Fonctions lipschitziennes

Définition 8 : Fonction lipschitzienne

f : A ⊂ E → F est dite k-lipschitzienne sur A (où k ∈R∗+) si

Propriété 17 : Lipschitzienne ⇒ continue

Toute fonction lipschitzienne sur A y est uniformément continue.
La réciproque est fausse.

Exemple
E 7 – x 7→ ‖x‖
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Propriété 18 : Lispschziannité de la distance à une partie

E −→ R

x 7−→ d(x, A)
est 1-lipschitzienne donc uniformément continue sur

E .
C’est en particulier le cas de x 7→ d(x, a) où a ∈ E avec A = {a}.

Exemple
E 8 – On retrouve que les boules ouverte/fermée le sont, et que les sphères sont

fermées.

5 Applications linéaires
Remarque
R 13 – Pour une application linéaire, on peut toujours déplacer un problème en

un point donné en un problème en 0E , et la continuité revient à une lip-
schitziannité, et donc une uniformité continue.

Propriété 19 : Continuité des applications linéaires

Soit u ∈L (E ,F ). Les cinq propositions suivantes sont équivalentes :
(i) u est continue sur E .
(ii) u est continue en 0E .
(iii)

(iv) u est lipschitzienne sur E .
(v) u est uniformément continue sur E .

Remarque
R 14 – Ce qui importe vraiment en pratique, c’est (i ) ⇐⇒ (i i i ).

Notation 1
On note Lc (E ,F ) =L (E ,F )∩C (E ,F ) l’ensemble des applications linéaires

continues sur E .

Remarque
R 15 – Lc (E ,F ) est un sous-espace vectoriel de L (E ,F ).

Exemple

E 9 – φ : f ∈ (C ([a,b],C), N∞) 7→
∫b

a
f (t )dt ∈ (C, |·|) est continue.

Elle est aussi continue si on munit C ([a,b],C) de la norme N1 de la conver-
gence en moyenne.

E 10 – f ∈ (C ([0,1],C), N1) 7→ f (0) ∈ (C, |·|) est non continue .

Méthode 1 : Étudier la continuité d’une application linéaire
■ Pour montrer qu’une application linéaire est continue, on cherche une
constante k telle que pour tout x ∈ E , ‖u(x)‖F ⩽ k ‖x‖E ... Sauf si on est en
dimension finie au départ : dans ce cas, c’est automatique.

■ Pour montrer qu’une application linéaire n’est pas continue, on cherche
à nier la caractérisation séquentielle de la continuité en 0 en trouvant une
suite (xn )n ∈ EN telle que xn → 0E (ie ‖xn‖E → 0) et pourtant u(xn ) 6→ 0F (ie
‖u(xn )‖F 6→ 0F ) , ou encore, comme pour nier une domination de normes,
une suite telle que

(‖u(xn )‖F

‖x‖E

)
n
n’est pas bornée.

Exercice 2 : CCINP 1
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Remarque
R 16 – La continuité dépend des normes au départ et à l’arrivée, mais ne change

pas en prenant des normes équivalentes.
R 17 – La domination de norme est équivalente à la continuité de l’endomor-

phisme idE pour ces normes.

Exercice 3 : CCINP 36, 54

6 Applications multilinéaires

Propriété 20 : Continuité des applications multilinéaires

Si E1, . . . ,Ep ,F sont des K-espaces vectoriels normés et f : E1 × . . .×Ep → F
est multilinéaire, alors les deux propositions suivantes sont équivalentes :

(i) f est continue pour la norme produit sur E1 × . . .×Ep

(ii)

Corollaire 1 : Continuité d’un produit scalaire

IV DIMENSION FINIE
1 Coordonnées

Propriété 21 : Continuité coordonnée à coordonnée

On suppose F de dimension finie n > 1.
Soit A une partie non vide de E , f ∈ F A , B = (e1, . . . ,en) une base de F .

On pose f =
n∑

k=1
fk ek .

Alors f est continue sur A si et seulement si pour tout k ∈ J1,nK, fk est
continue sur A.

2 Applications linéaires

Théorème 1 : Continuité des applications linéaires en dimension finie

Si E est de dimension finie, alors toute application linéaire de E vers F
est continue sur E .

Autrement dit, Lc (E ,F ) =L (E ,F ).

Remarque
R 18 – Une domination de norme étant une continuité d’application linéaire (idE ),

on a réciproquement que la continuité de tout endomorphisme sur E im-
plique l’équivalence de toute norme de E .

Exercice 4 : Montrer que si P ∈GL n (K), A ∈Mn (K) 7→ PAP−1 est continue.

Exercice 5 : Montrer que l’ensemble des matrices de trace nulle est un fermé de
Mn (K).

Exercice 6 : Montrer que l’ensemble des matrices symétriques est un fermé de
Mn (K).
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3 Applications polynomiales

Définition 9 : Applications polynomiales

Soit f : E →K, où E est de dimension finie, B = (e1, . . . ,ep ) une base de E .
Pour x ∈ E , on note x1, . . . , xp ses coordonnées dans B.

f est ditemonomiale s’il existe k1, . . . ,kp ∈Np tels que

f est dite polynomiale si elle est combinaison linéaire de fonctions mo-
nomiales.

Remarque
R 19 – En changeant de base, les anciennes coordonnées sont transformées en

combinaisons linéaires de nouvelles coordonnées. Ainsi, le caractère poly-
nomial d’une fonction ne dépend pas de la base.

Propriété 22 : polynomiale en dimension finie ⇒ continue

Toute fonction polynomiale sur E de dimension finie est continue.

Exercice 7 : Montrer que det est continue sur Mn (K).

Exercice 8 : M 7→ Com(M) est continue sur Mn (K).

Exercice 9 : GL n (K) est ouvert.

4 Applications multilinéaires

Propriété 23 : Continuité des applications bilinéaires en dimension finie

Si (E ,‖‖E ), (F,‖‖F ) sont des K-espaces vectoriels de dimension finie,
(G ,‖·‖G ) K-espace vectoriel, alors toute application bilinéaire de E×F dans
G est continue.

Propriété 24 : Généralisation

Plus généralement, toute applicationmultilinéaire définie sur un produit
d’espaces de dimension finie est continue.

Exemple
E 11 – Si B base de E de dimension finie, detB est une forme n-linéaire de E donc

est continue.

V NORMES D’OPÉRATEURS
1 Cas des applications linéaires

Définition 10 : Norme subordonnée
On considère deux K-espaces vectoriels normés (E ,‖·‖E ) et (F,‖·‖F ). Si

u ∈Lc (E ,F ), on pose
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Remarque
R 20 – �u� est le plus petit k tel que pour tout x ∈ E ,

‖u(x)‖F ⩽ k ‖x‖E .

On vérifie qu’il suffit de prendre la borne supérieure au choix soit sur la sphère unité,
soit sur la boule unité fermée.

Propriété 25 : Définition équivalente

Si u ∈Lc (E ,F ),

�u�= sup
‖x‖E=1

‖u(x)‖F = sup
x∈S(0E ,1)

‖u(x)‖F

= sup
‖x‖E⩽1

‖u(x)‖F = sup
x∈B(0E ,1)

‖u(x)‖F .

Propriété 26 : C’est une norme

� ·� est une norme sur Lc (E ,F ) appelée norme subordonnée à ‖·‖E et
‖·‖F . On parle aussi de norme d’opérateur.

Propriété 27 : Norme subordonnée d’une composée

On considère trois K-espaces vectoriels normés (E ,‖·‖E ), (F,‖·‖F ) et
(G ,‖·‖G ). Si u ∈ Lc (E ,F ) et v ∈ Lc (F,G) et � ·�E ,F désigne la norme subordon-
née sur Lc (E ,F ) par exemple, alors

Corollaire 2 : Cas des endomorphismes

Ici, E = F . Si u ∈Lc (E), on définit

�u�= sup
x 6=0E

‖u(x)‖E

‖x‖E
= sup

‖x‖E=1
‖u(x)‖E = sup

‖x‖E⩽1
‖u(x)‖E .

Alors � ·� est une norme sur Lc (E) qui vérifie � idE �= 1 et

∀u, v ∈Lc (E), �v ◦u�⩽ �u� ·�v�.

On dit que � ·� est une norme d’algèbre unitaire.

Propriété 28 : Puissance et norme subordonnée

Pour tout u ∈Lc (E) et k ∈N, ���uk
���⩽ �u�k .

Méthode 2 : Calcul d’une norme subordonnée
Pour calculer la norme subordonnée d’un opérateur (ie d’une application

linéaire), on écrit des majorations

∀x ∈ E , ‖u(x)‖F ⩽ · · · = · · ·⩽ · · · = · · ·⩽ k ‖x‖E

en effectuant des majorations les plus fines possibles et en distinguant clairement
lesmajorations et les égalités, afin depouvoir traiter plus facilement les cas d’éga-
lité.

Soit on trouve au moins un cas d’égalité, c’est-à-dire un x ∈ E tel que
‖u(x)‖F = k ‖x‖E , alors k = �u� (et le sup est en fait un max). On verra qu’en di-
mension finie, on peut toujours en trouver.

S’il n’y a pas de cas d’égalité, on peut chercher une suite (xn )n∈N ∈ (E \ {0E })N

telle que ‖u(xn )‖F

‖xn‖E
→ k et alors k =�u� (car le sup est le seul majorant limite d’une

suite de l’ensemble).
On peut aussi, pour tout ε> 0, chercher xε 6= 0E tel que ‖u(xε)‖F ⩾ (k −ε)‖xε‖E .

Exercice 10 : CCINP 38
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2 Traduction matricielle

Propriété 29 : Norme subordonnée matricielle

Soit ‖·‖ une norme quelconque sur Mn,1(K).
On définit, pour A ∈Mn(K),

�A�= sup
X 6=0n,1

‖AX ‖
‖X ‖ = sup

‖X ‖=1
‖AX ‖ = sup

‖X ‖⩽1
‖AX ‖

appelée norme subordonnée à ‖·‖.
Il s’agit d’une norme d’algèbre unitaire sur Mn(K), donc vérifiant

�In�= 1 et

∀ A,B ∈Mn(K), �AB�⩽ �A��B�

ce qui implique

∀ A ∈Mn(K), ∀k ∈N,
���Ak

���⩽ �A�k .

VI COMPACITÉ
1 Suites extraites

Définition 11 : Suite extraite
Soit u ∈ EN. On appelle suite extraite ou sous-suitede u toute suite v ∈ EN

telle qu’il existe φ :N→N strictement croissante telle que ∀n ∈N, vn = uφ(n).
φ est appelée extractrice.

Lemme 1
Si φ est une extractrice, alors

∀n ∈N, φ(n)⩾ n.

Propriété 30 : Limite d’une suite extraite convergente

Si u −→ ℓ, toute suite extraite de u converge vers ℓ.

Définition 12 : Valeur d’adhérence
On appelle valeur d’adhérence de u ∈ EN toute limite (dans E) de suite

extraite de u.

Propriété 31 : Cas des suites convergentes

Une suite convergente a une unique valeur d’adhérence : sa limite.
Réciproque fausse.

Corollaire 3 : Contraposée

Si une suite a plusieurs valeurs d’adhérence, elle diverge.

Propriété 32 : Condition suffisante de convergence

Si (u2n) et (u2n+1) convergent vers une même limite, alors u converge
vers cette limite.

Exercice 11
Soit u ∈ EN, ℓ ∈ E .
1. Montrer qu’il y a équivalence entre

(i) ℓ est valeur d’adhérence de u.
(ii) Pour tout ε> 0, {n ∈N,un ∈ B(ℓ,ε)} est infini.
(iii) Pour tout ε> 0, pour tout p ∈N,

{
n ⩾ p,un ∈ B(ℓ,ε)

}
n’est pas vide.

2. Application classique : en déduire que l’ensemble des valeurs d’adhé-
rence de u est fermé.
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2 Parties compactes

a Définition

Définition 13 : de Bolzano-Weierstraß
Une partie K de E est dite compacte (ou est un compact) lorsque

Remarque
R 21 – ∅ est compacte.
R 22 – Par théorème de Bolzano-Weierstraß, tout segment de R est compact.

b Un compact est fermé borné

Propriété 33 : compact ⇒ fermé et borné

Toute partie compacte est

Remarque
R 23 – La réciproque est fausse en général, mais on va voir qu’elle est vraie en

dimension finie.
R 24 – Tout compact de R est inclus dans un segment.

Exemple : Contre-exemple de partie fermée bornée non compacte
E 12 – DansK[X ]muni de la norme ‖P‖∞ = sup

k∈N
∣∣pk

∣∣ (avec des notations évidentes),
Montrer que S(0,1) est une partie fermée bornée non compacte en utilisant(
X n)

n∈N. (Voir aussi CCINP 13)

Exercice 12 : CCINP 13

c Partie fermée d’un compact

Propriété 34 : Partie fermée d’un compact

Soit K une partie compacte de E et A une partie de K .

Remarque
R 25 – La réciproque est vraie ! Ainsi les parties de K fermées sont exactement les

parties de K compactes.
R 26 – Parle-t-on de fermé de E ou de fermés relatifs de K ? En fait, c’est la même

chose car le compact K est fermé. Il n’y a donc pas d’ambiguïté.
R 27 – En dimension finie, ce ne sera pas très intéressant car on va montrer que

les compacts en général sont exactement les fermés bornés.

d Produit de compacts

Propriété 35 : Produit de compacts

Si p ∈N∗,
(
(E1,‖·‖1) , . . . ,

(
Ep ,‖·‖p

))
sont desK-espaces vectoriels normés et

pour i ∈ J1, pK, Ki compact de Ei , alors K = K1 ×·· ·×Kp est un compact de
E = E1 × . . .×Ep muni de la norme produit.

Remarque
R 28 – La démonstration est intéressante, mais dans la pratique, en cas d’extrac-

tions multiples, il est légitime de se poser la question : peut-on faire appa-
raître un produit de compact?
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3 Fonctions continues sur des compacts

Propriété 36 : Image continue d’un compact

Si f : K → F avec K partie compacte de E et f continue, alors

Remarque
R 29 – L’image continue d’un compact est compacte, et donc en particulier fer-

mée et bornée.
R 30 – À ne pas confondre avec la propriété qui dit que l’image réciproqued’une

partie relativement ouverte ou fermée de F l’est encore dans E .

Corollaire 4 : théorème des bornes atteintes

Remarque
R 31 – Trèèèès utile ! Et avec un petit goût de déjà-vu...
R 32 – Ce théorème permet de montrer qu’en dimension finie, la norme subor-

données de u (resp. A) est nécessairement atteinte sur S(0,1).

Théorème 2 : de Heine

4 Cas de la dimension finie

a
K

On a déjà vu que les segments de R étaient des compacts de R.
Le théorème de Bolzano Weierstraß permet de démontrer le résultat suivant, gé-

néralisé un peu plus loin.

Théorème 3 : de Bolzano-Weierstraß
De toutes suite bornéed’éléments du corpsK=RouC, on peut extraire

une suite convergente.

Corollaire 5 : Compacts de R ou C

Les compacts du corpsK=R ouC sont exactement les parties fermées
et bornées de K.

Remarque
R 33 – Les segments de R sont alors exactement les intervalles compacts de R.

Mais il existe bien d’autre compacts qui ne sont pas des intervalles.
Par exemple, un ensemble fini est toujours compact (pourquoi? – et c’est
valable dans n’importe quel espace vectoriel normé).
Cependant, tout compact de R étant fermé et borné, il est inclus dans
[infK , supK ] = [minK ,maxK ] (le caractère fermé assurant le fait que les
bornes soient atteintes).
Ainsi, les propriétés vraies « sur tout segment de R » sont aussi les propriétés
vraies « sur tout compact de R. »

b Équivalence des normes

Théorème 4 : Équivalence des normes en dimension finie

Dans un espace vectoriel de dimension finie, toutes les normes sont
équivalentes.
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Lemme 2
Les compacts deKn muni de ‖·‖∞ sont exactement les parties fermées

et bornées de (Kn ,‖‖∞).

Remarque
R 34 – On généralise à tout espace vectoriel normé de dimension finie ci-après.

c Compacts en dimension finie

Théorème 5 : Compacts en dimension finie

Les compacts d’un espace vectoriel normé de dimension finie sont
exactement ses parties fermées et bornées.

Corollaire 6 : Traduction en terme de valeur d’adhérence
Dans un espace vectoriel normé de dimension finie, toute suite bornée

admet au moins une valeur d’adhérence.

Corollaire 7 : Théorème de Bolzano-Weierstraß
De toute suite bornée d’un espace vectoriel normé de dimension finie,

on peut extraire une suite convergente.

Corollaire 8 : important !

Un sous-espace de dimension finie d’un espace vectoriel normé est
fermé.

Exercice 13 : classique : Tout sous-espace strict d’un espace vectoriel normé est
d’intérieur vide.

Exercice 14 : Trèèèèès classique : O (n) = {
M ∈Mn (R), M⊺M = In

}
est compact.

Remarque
R 35 – Si u ∈Lc (E ,F ), on a vu que la norme subordonnée s’écrivait :

�u�= sup
x∈S(0E ,1)

‖u(x)‖F .

Si E est de dimension finie, comme la sphère S(0E ,1) est fermée et bornée,
elle est compacte. Et comme x 7→ ‖u(x)‖F est continue sur E , elle est bornée
et atteint ses bornes sur S(0E ,1). Autrement dit, en dimension finie, la norme
subordonnée de u s’écrit toujours ‖u(x0)‖F pour un certain x0 ∈ S(0E ,1).

R 36 – Le théorème de Riesz (HP) dit qu’un espace vectoriel normé est de dimen-
sion finie si et seulement si sa boule unité fermée est compacte.

Exercice 15 : Mines : Montrer que la boule unité fermée de C ∞([0,1]) muni de la
norme N∞ n’est pas compacte.

5 Suites convergente dans un compact

Propriété 37 : CNS de convergence dans un compact

Corollaire 9 : CNS de convergence des suites bornées en dimension finie

En dimension finie, toute suite bornée converge si et seulement si elle
a une unique valeur d’adhérence.
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VII CONNEXITÉ PAR ARCS
1 Une relation d’équivalence

Définition 14 : chemin continu
Soit A une partie d’un espace vectoriel normé (E ,‖·‖). Si (a,b) ∈ A2, on ap-

pelle chemin continu joignant a à b dans A toute application ϕ : [0,1] 7→ E
vérifiant les trois propriétés suivantes :

■

■

■

Propriété 38 : Relation d’équivalence

La relation R sur A2 « sont joints par un chemin continu » est une relation
d’équivalence.

2 Connexité par arcs

Définition 15 : Composantes connexes par arcs

Soit A une partie de E . On appelle composantes connexes par arcs de
A

Remarque
R 37 – La composante connexe par arc de a ∈ A est l’ensemble des b ∈ A pouvant

être joints à a par un chemin continu.

Propriété 39 : Partition des composantes connexes

Les composantes connexes par arcs de A partitionnent A.

Exemple
E 13 – A = {

(x, y) ∈R2, x y 6= 0
}
possède quatre composantes connexes par arcs.

Définition 16 : partie connexe par arcs

On dit que A est connexe par arcs lorsqu’

Remarque
R 38 – A est connexe par arcs si tout couple de points est joignable par un chemin

continu dans A.

Exercice 16 : Montrer que S(0E ,1) est connexe par arcs.

Propriété 40 : convexe =⇒ connexe par arc

Toute partie convexe de E est connexe par arcs.

Exercice 17 : Montrer qu’une boule est connexe par arcs.

Définition 17 : Partie étoilée
A est dite étoilée s’il existe un point a ∈ A tel que
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Remarque
R 39 – Une partie convexe est étoilée par rapport à chacun de ses points.

Propriété 41 : étoilée =⇒ connexe par arc

Toute partie étoilée de E est connexe par arcs.

3 Cas des parties de R

Propriété 42 : Connexes par arcs de R

Les parties connexes par arcs de R sont

Remarque
R 40 – Les connexes par arcs de R sont les convexes. C’est faux en général, par

exemple dans R2.

4 Image continue d’une partie connexe par arcs

Propriété 43 : Image continue d’une partie connexe par arcs

Si E ,F sont des espaces vectoriels normés, A une partie connexe par
arcs de E , f : A → F une application continue, alors

Remarque
R 41 – Pour les ouverts et les fermés, c’est l’image réciproque par une application

continue qui est ouverte ou fermée.
Pour les compacts ou les connexes par arcs, c’est l’image directe par une
application continue qui est compacte ou connexe par arcs.

Corollaire 10 : Cas d’une fonction réelle, TVI

Si f est une application continue, définie sur une partie A connexe par
arcs, et à valeurs réelles, alors f (A) est

Autrement dit, f vérifie la propriété des valeurs intermédiaires :

Remarque
R 42 – Si, pour résoudre une question, on a envie d’appliquer le théorème des va-

leurs intermédiaires, mais si on a une application (continue) qui n’est pas
définie sur un intervalle de R, on peut penser à se demander si l’applica-
tion ne serait pas, par hasard, définie sur une partie connexe par arcs d’un
espace vectoriel normé...

Méthode 3 : Montrer qu’une partie est ou non connexe par arcs
Le plus difficile est de déterminer dans dans quel cas on se trouve.
■ Pour montrer que A est connexe par arcs, on peut

⋆ Utiliser la définition en construisant un chemin continu dans A reliant
deux points de A.

⋆ Montrer que A est convexe ou étoilé par rapport à un de ses points.
⋆ Montrer que A est l’image continue d’un connexe par arcs.

■ Pour montrer que A n’est pas connexe par arcs, on peut
⋆ Trouver un couple de points qui ne sont pas reliables par un chemin

continu dans A.
⋆ Trouver une fonction continue f telle que f (A) ne soit pas connexe par

arcs. Si f est à valeurs réelles, il suffit que f (A) ne soit pas un intervalle.
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VIII TOPOLOGIE MATRICIELLE (HP)
Rien n’est explicitement au programme dans les exercices suivants, mais ils sont

tous très classiques.
On est en dimension finie, toutes les normes sont équivalentes, la convergence se

fait cœfficient à cœfficient. On peut expliciter les normes usuelles

‖A‖1 = ∑
1⩽i , j⩽n

∣∣∣ai , j

∣∣∣ ,

‖A‖2 =
√√√√ ∑

1⩽i , j⩽n

∣∣∣ai , j

∣∣∣2
(
=

√
tr(A · A⊺) si K=R,

√
tr

(
A · A

⊺)
si K =C

)
,

‖A‖∞ = max
1⩽i , j⩽n

∣∣∣ai , j

∣∣∣ .

qui ne sont pas les plus pratiques car ce ne sont pas des normes d’algèbres vérifiant
N (AB)⩽ N (A)N (B).

On leur préfère pour des applications pratiques (voir sériesmatricielles) des normes
subordonnées sans nécessairement avoir à les expliciter.

Voir TD pour des exercices sur ces normes subordonnées.

Exercice 18 : Montrer de deux manières différentes que GL n (K) est dense dans
Mn (K). En déduire que si A,B ∈Mn (K), χAB =χB A .

Exercice 19 : Démontrer que GL n (K) est un ouvert de Mn (K).

Exercice 20 : Montrer que l’ensemble des matrices triangulaires supérieures, tri-
angulaires inférieures, symétriques, antisymétriques, de trace nulle
(respectivement) de Mn (K) sont fermés.

Exercice 21 : Démontrer que l’ensemble O (n) = {
M ∈Mn (R), M M⊺ = In

}
des ma-

trices orthogonales est compact.

Exercice 22 : Montrer que l’ensemble desmatrices diagonalisables deMn (C)est
dense. En déduire le théorème de Cayley-Hamilton.

Exercice 23 : L’ensemble des matrices diagonalisables de Mn (R) est-il dense?
On pourra considérer l’application qui à une matrice 2×2 associe le discrimi-

nant de son polynôme caractéristique.

Exercice 24 : Montrer que l’ensemble des matrices de rang p ∈ J1,n −1K n’est ni
ouvert ni fermé. Étudier les cas p = 0 et p = n.

Exercice 25 : Montrer que l’application qui à M ∈GL n (K) associe son inverse est
continue.

Exercice 26 : Soit n ⩾ 2. Montrer que l’application qui à M ∈Mn (K) associe son
polynôme minimal et l’application rang ne sont pas continue. Cas
n = 1?

Exercice 27 : Donner le cœfficient de degré 1 de χA en fonction de la trace et
de la comatrice de A.

On suggère de commencer par supposer A inversible et d’exprimer χA en
fonction de χA−1 .

Exercice 28 : Étudier la connexité par arcs de GL n (R), GL n (C), et O (n).

Exercice 29 : Montrer que l’ensemble des matrices diagonalisables de Mn (K)
est connexe par arcs.
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