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Limite, continuité, compacité et connexité

Extrait du programme officiel :

CONTENUS

par arcs

CAPACITES & COMMENTAIRES

e) Etude locale d’une application, continuité

Limite en un point adnhérent & une partie A.
Caractérisation séquentielle.

Cas d'une application & valeurs dans un produit fini d’espaces
vectoriels normés.

Opérations algébriques sur les limites. Limite d’une composée.
Continuité en un point. Caractérisation séquentielle.

Opérations algébriques sur les applications continues. Composi-
tion de deux applications continues.

Image réciproque d’un ouvert, d'un fermé par une application
continue.

Applications uniformément continues, applications lipschit-
ziennes.

Extensions : limite de f(x) lorsque | x| tend vers +oo, limite de f(x)
quand x tend vers +oo OU —oo lorsque A est une partie de R, limite
infinie en a adhérent & A pour une fonction réelle.

Deux applications continues qui coincident sur une partie dense

sont égales.

Caractere 1-lipschitzien de I'application x — d(x, A) ou A est une
partie non vide de E.

f) Applications linéaires et multilinéaires continues

Critere de conftinuité d’une application linéaire entre deux es-
paces normeés : u e £ (E,F) est contfinue si et seulement s’il existe
CeR* tel que

Vx€eE, [lu(x)l < Clxll.

Norme subordonnée (ou norme d’opérateur) d’une application
linéaire continue.

Critere de continuité des applications multilinéaires.

Notation £, (E, F).

Notations [lull. llulep. La norme d’opérateur est une norme sur
“%.(E,F). Sous-multiplicativité de la norme d’opérateur.
Adaptation aux matrices.

La démonstration n’est pas exigible.

g) Parties compactes d’'un espace normé

Définition d’une partie compacte par la propriété de Bolzano-
Weierstrass.

Une partie compacte est fermée et bornée.

Un fermé relatif d’une partie compacte est compact.

Une suite d’éléments d’une partie compacte converge si et
seulement si elle admet une unique valeur d’adhérence.

Produit d"une famille finie de compacts.

La propriété de Borel-Lebesgue est hors programme.

h) Applications continues sur une partie compacte

Image continue d’une partie compacte.
Théoreme de Heine.

Théoréme des bornes atteintes pour une application numérique
définie et continue sur un compact non vide.

On souligne I'importance de la compacité dans les problemes
d’optimisation, notfamment en mettant en évidence des situa-
tions ou I'on prouve |’existence d’un extremum & I'aide d'une
restriction & un compact.

i) Connexité par arcs

Dans un espace vectoriel normé, chemin (ou arc) joignant deux
points; partie connexe par arcs.

Relation d’équivalence associée sur une partie A de E. Les
classes sont les composantes connexes par arcs.
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CONTENUS

Cas des parties convexes, des parties étoilées.
Les parties connexes par arcs de R sont les infervalles.
Image continue d’une partie connexe par arcs.

CAPACITES & COMMENTAIRES

Cas particulier des applications & valeurs réelles : théoreme des
valeurs intermédiaires.

j) Espaces vectoriels normés de dimension finie

Equivalence des normes en dimension finie.

Invariance des différentes notions topologiques par rapport au
choix d’une norme en dimension finie. Topologie naturelle d’un
espace normé de dimension finie.

Une partie d’un espace normé de dimension finie est compacte
si et seulement si elle est fermée et bornée.

Une suite bornée d'un espace normé de dimension finie
converge si et seulement si elle a une unique valeur d’adhé-
rence.

Un sous-espace de dimension finie d'un espace normé est
fermé.

Si E est de dimension finie, £(E, F) = £, (E, F).

Continuité des applications polynomiales définies sur un espace
normé de dimension finie, des applications multilinéaires définies
sur un produit d’espaces vectoriels normés de dimensions finies.

La démonstration n’est pas exigible.

La convergence d’une suite (ou I'existence de la limite d’une
fonction) & valeurs dans un espace vectoriel normé de dimen-
sion finie équivaut & celle de chacune de ses coordonnées dans
une base.

Exemples : déterminant, produit matriciel, composition d’appli-
cations linéaires.
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VIl Topologie matticielle (HP) 30

On se donne (E,I-lg). (FlIg). (G, l-lg) des K-espaces vectoriels normés, avec K =R ou C, dg, dr, dg les distances
associées & la norme pour chaque espace.
On fixe A et B des parties non vides de E et F respectivement.

“ LiMmITE

|'.| Limite en un point

Soit feFA, acA, beF.

Définition 1 : Limite en un point

On dit que f(x) — b lorsque pour tout € > 0, il existe n >0 fel que V x € A,

dp(x,a) = |lx—allg <n=dp(f(x),b) = | f(x) - b|| <

Remarque

R1 - Définitions équivalentes :
Ve>0, An>0, Yxe A, xe€Bg(an) = f(x)e€ Br(be)

vV V voisinage de b, 3W voisinage de a, f(AnW)cV
v V voisinage de b, 3W’ voisinage de adans A, f(W)cV
I£ G =b] s Or

fla+h) b

h—0g

R2 - Cette définition dépend des normes. Mais en changeant une norme en une norme équivalente on ne
change pas la définition.

Propriété 1: Convergente = localement bornée

Si f admet b comme limite en a, alors f est bornée au voisinage de a.

Démonstration

Appliquer la définition avec e =1. [ |

Propriété 2 : Caractérisation séquentielle

f(x) — b si et seulement si pour tout suite (a,) € AN telle que a,, — a, f(a,) — b.

Démonstration

Semblable au cas numérique.

m (=) : Soif (an), € AN 1g| que ay — a.
Soit>0.Onan>0telquesixe Atelque [x-alg <n. |f(x)-b|p<e.
OnaaussiNeNtelquesin> N, la,—allg<n. Alorssin> N, |f(an)—b| <e.
Enrésumé:ve>0, INelN, Va>N, |f(an) -b|<e.

B (<) par contraposée,
Si f(x) # b, alors on a >0 tel que pour tout n>0,0on a xe Atel que llx—alg <n et | f(x)-b||p>e.
Si pour tout ne N, on considére n=71;, on a a, € Atel que la, - al < 715 et || flan) - b||z > €.
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Alors a, — a et pourtant f(ay) # b.

Propriété 3 : Unicité de la limite

S/fﬁbeffﬁb’, alorsb=1'.

Démonstration

Comme a€ 4, on a une suite (a,) € AN telle que a,, — a. alors flan) — b et f(ay) — b’ donc par unicité de la limite
des suites, b=1b'.

Propriété 4 : Limite par majoration de la différence

Si ge R4 telle que g(x) — 0 etsi, au voisinage de a,

f)-b| < g alors f(x) —b.

Démonstration

Si an — a, & partir d’un certain rang N, || f(ax) - b|| < g(ax) — 0 donc f(a,) — b donc par caractérisation séquen-
tielle, f(x) b.

X—a

Propriété 5 : Limites de normes

Si f@) —=b, | f@)| g — IbllE.

Démonstration

[l F | = 1blg| < | £ = b g

E Cas ou F est de dimension finie

Propriété 6 : Limite coordonnée a coordonnée

n
Si F est de dimension finie n, 2 = (ey,...,e,) une base de F, fe FA, b= byer€F.
k=1

n
On note fi e KA tel que pour tout xe A, f(x) =Y fi(x)ex.

k=1
Alors f(x) — b si ef seulement si pour tout ke [1,n], fi(x) — by.

Démonstration

I suffit d"appliquer la caractérisation séquentielle et la propriété connue pour les suites.
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Fonction a valeurs dans un espace produit

Propriété 7

Si (F1,Nv),...,(Fp, Np) sont des K-espaces vectoriels normeés, on munit F, x --- x F, de la norme produit N.
Sife(F x--xFp4, aeA Pouriel,p], onpose f; eFifelque f:x— (fi(x),..., f(x)).

Soit b= (b1,...,bp) € Fy x -+ x Fp.

Alors f — b si et seulement si pour fout i € [1, p], fi(x) — b;.

Démonstration

Il suffit d’appliquer la caractérisation séquentielle et la propriété connue pour les suites.

ﬂ Opérations algébriques

La caractérisation séquentielle permet de prouver facilement les propriétés sur les opérations algébriques sur les
limites.

Propriété 8 : Opérations sur les limites

Soient f,ge FA, he KA telles que f(x) ——beF, gx) ——~beF h(x) ——ack.
() SireXK, alors f+/1gm b+AD'.
(i h(x)- f(x) — a-b.

o , 1 1
(i Si a #0 ef h ne s’annule pas sur A, alors — —— —.
h(x) »~a «

Propriété 9 : Compositions de limites

Si fe FA, telle que f(A)c B, ge G5, ae A, be B, ce G tels que f(x)ﬁb, g(y)—b»calors gof(x) —c
= — =

Exemple

3] 3
X+ on N 0 A q .
El- f:(x))— = y2 en (0,0). f(x,00——0:5s’ily aune limite, c’est 0. f(0, y) —— 0 aussi mais cela ne suffit pas!
X+ Yy x—0 x—0

|F(x), )] < lxl+|y| —o0.
Autre méthode : changement de variable en polaire x = rcosf et y=rsin avec r = /x% + y2 — 0.

f(rcos,rsind) = r(cos® 0 +sin® ) — 0.

2
E2— f:(x,))— > _en (0,0). f(0,y)— 0et f(x,x+x%) — 1 donc pas de limite (par composition ou par caractérisation
e

séqguentielle).
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H Extension & l'infini

Définition 2 : Limite pour | x| — +co

Si Anon bornée, fe F4, beF.
On dit que f(x) b lorsque

llxll g—+o0

Ve>0, IMeR, Vxe A, lxlg>M= ||fx)-b|,<e

Définition 3 : Limite vectorielle en +co
SiAcR, feF4, beF.
@) Si An’est pas majorée, on dit que f(x)

b lorsque

X—+00

Ve>0, AMeR, VxeA x>M=|f(x)-b|.<e

b c’est-a-dire

(i) Si An"est pas minorée, on dit que f(x) b lorsque f(—x)

X——00 X—+00

Ve>0, IMeR, VxeA x<M= |fx)-b|,<¢

Définition 4 : Limite infinie en un vecteur
Soit fe R4 et ae A.
@) On dit que f(x) — -+ lorsque

VMeR, d3n>0, VxeA, x—al<n=fx)>M
(i) On dit que f(x) 7 ® lorsque —f(x) — c’est-a-dire

VMeR, d3n>0, Vxe€A, x—al<n=fx)<M

Remarque

R3 — Reste les définitions vues en premiére année de f(x) +oolorsque E=F=R:

X—+00
m Pour A non majorée

* f(x)

+0o0
X—+00

VMeR, AM eR, VxeA, x>M = f(x)> M.

* f(x) —00 SSi — f(x) +00, i€

X—+00 X—+00

VMeR, AM eR, VxeA, x>M = f(x) <M.

m Pour A non minorée

* f(x) T T® Ssi f(—x) o Too ie
VMeR, 3IM eR, VxeA, x<M = f(x)>M.
* f(x) o ™ SSi —f(—x) - +00, , i€

VMeR, AM eR, VxeA, x<M = f(x) <M.
R4 — On définit de méme f(x) +
x|l g—+o00
R5 — La caractérisation séquentielle de la limite est encore valable pour I'infini, avec une démonstration similaire.
R6 — On peut unifier foutes ces définitions en infroduisant une notion de voisinage de I'infini dans R. : un voisinage
de +oo est une partie V telle qu’il existe M € R tel que |M,+ool[c V, un voisinage de —oo est une partie V telle
qu’il existe M e R tel que | —oco, M[C V.

Alors toutes les définitions de f(x) ¢ s"écrivent

xX—a

vV V voisinage de b, 3W voisinage de a, f(AnW)cV
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m RELATIONS DE COMPARAISON

Définition 5 : Relations de comparaison

Soit f,g € FA ol A partie de E, g e R4, a€ A. Si A est une partie non minorée ou non majorée de R, a
peut aussi étre +oo.

= f est dominée par ¢ au voisinage de a, et on note f =0 () ou f(x) =0 () lorsqu’il existe un réel
M et un voisinage V de a fel que

VxeVnA4, |f|z<Mlew)|.

Cela revient a dire que || f(0)| = O (|ex)]).

Lorsgue ¢ ne s'annule pas au voisinage de a (sauf éventuellement en a), cela revient & dire que
IF @

est bornée au voisinage de a.
o)

1
x— —— f(x) OU encore x —
@(x)

= f est négligeable devant ¢ au voisinage de a, et on note f = o(¢p) ou f(x) = o () lorsque pour
tout € > 0, il existe un voisinage V de a fel que

VxeVnA, ||f(x)||F§£|<p(x)|.

Cela revient a dire que || f(0) |z = o(|ex)]).

Lorsque ¢ ne s‘annule pas au voisinage de a (sauf éventuellement en a), cela revient a dire que
IF
|(p(x)i X—a

= Ondit que f est équivalente & g au voisinage de a et on note f ~8 lorsque f(x)—g(x) est négligeable
devant | f(x)| » ou devant ||g(x) || (cela revient au méme) au voisinage de a :

f) =g =o(|f@])s ouo(lg])-

m CONTINUITE

Il En un point, sur une partie

Soient f:AcE—F et ac A.

Définition 6 : Continuité

f est continue en a lorsque f admet une limite (finie) en a.
f est continue sur A si et seulement si f est contfinue en fout point de A.

Propriété 10

Si f est continue en a, Ia limife de f en a vaut f(a).

Démonstration

Pour tout e >0, on an>0tel que l[x-all <n=> | f(x)-¢| <e: en particulier, pour x=a,Ve>0, |fla)-¢||<e. ®
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Propriété 11 : Caractérisations séquentielles

f est continue en a si et seulement si
V(an)n € AN telle que a, — a, f(an) — f(a)

si et seulement si
Y(an), € AN telle que a, — a, (f(ay)) converge.

Démonstration

La premiere est une conséquence immédiate de la caractérisation séquentielle de la limite.
Pour la deuxiéme :

m (=) Si f est confinue en a, f(x) f(a) donc la conclusion découle de la caractérisation séquentielle de

la limite.

m (<) : Si pour foute suite (an), € AN telle que a,, — a, (f(apn)) converge, soient deux telles suites (ay) et (by,). et ¢
et ¢' tel que flap) — ¢ et f(bp) — ¢’
Alors en considérant la suite (c,) telle que ¢, = ay, Si n est pair et ¢, = by, si n est impair, ¢, — a car ¢z, — a et
con+1 — a en tant que suites extraites de (ay) et de (by,).
Donc on a ¢" tel que f(cy) — ¢' et par extraction et unicité de la limite, ¢=¢" = ¢'.

Finalement, pour toute suite (ay) telle que a, — a, (f(ay)) converge vers une méme limite ¢ donc f converge
en a d’aprés la caractérisation séquentielle, donc f est contfinue en a.

X—a

Propriété 12 : Opérations

= Si f est continue, x — | f(x)| I’est aussi.
m Joute combinaison linéaire, toute composée de fonctions continues est continue.

m Sif:A—Fefth:A—IK sont confinues, h- f I'est aussi. Si h ne s’annule pas, o - f I'est aussi.

Démonstration

Conséqguences immédiates des propriétés de la limife.

Remarque
R7 — €(A F) est un K-espace vectoriel, €(4,K) est une K-algebre.

Exemple

E3— f:(x,))— 2x+y 5 Sl (x,) # (0,0), 0 sinon, est discontinue en (0,0) malgré la continuité des applications partielles,
x“+y
mais continue ailleurs.
2
Ed— f:(x,))— ||y7 si (x,y) # (0,0) , 0 sinon, est discontinue en (0,0) vu les applications partielles, mais continue
Xty
ailleurs.
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E Continuité et topologie

Propriété 13 : Image réciproque d’un ouvert ou d’un fermé par une application continue

L'image réciproque d’un ouvert (respectivement ferme) par une application continue est un ouvert
(respectivement un fermé) relatif de I'ensemble de départ.

Remarque
R8 - Rappel: f~1(B) = (f"'®)".

Démonstration
f:A—F

m Si B fermé de F, soit (a,) € f~1(B) une suite convergeant vers a € A. Alors f(ay,) € B— f(a) par continuité donc
f(a) € B car B est fermé, donc ae f~1(B).

m Pour les ouverts, il suffit de passer au complémentaire avec le rappel.

Mais il n"est pas inintéressant de faire une preuve directe : si @ ouvert de F, on veut montrer que f~1(6) est un
ouvert de E.

Soit ae f~1(@). Alors f(a) € @ ouvert donc on a ¢ > 0 tel que B(f(a),&) c 0.
Par continuité, on an >0 tel que xe AnB(a,n) = f(x) € B(f(a),e) <O.
Donc AnB(a,n) c f 1 (B(f(a),e) c 1) et f~1(@) est ouvert.

Exemple

ES — A={(x,y) e R? x*> <y<x} estunfermé de R?.

Remarque

R9—- Si f: A— R est continue, ae R, {xe€ A, f(x)>a} et {xe A, f(x) <a} sont des ouverts de A, {xe A, f(x) > a},
{xe A, f(x)<a}et{xeA f(x)=a}sontdesfermésde A.

R10 - Ce n’est plus vrai pour les images directes. Exemples : sin(10,47[) et Arctan(R).

Propriété 14 : Applications continues coincidant sur une partie dense

Des applications continues coincidant sur des parties denses sont égales.

Démonstration

Conséqguence des caractérisations séquentielles.

Exercice 1: CCINP 35
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Uniforme continuité

Définition 7 : Uniforme continuité

Soit f: Ac E—T. On dit que f est uniformément continue sur AsivVe>0, 3n>0, Vx,y€ A,

lx-ylp<n=|f®-rmlp<e

Remarque

R11- A ne pas confondre avec f continue sur A :
VYaeA, Ye>0, d3n>0, VxeA,
lx-alg<n=|fx)-fla)|p<e.

Celaimpose que si x et y sont suffisamment proches, mais n‘importe ot dans 1, alors f(x) et f(y) sont proches
également.

Propriété 15 : Uniformément continue = continue

Une fonction uniformément continue sur A est continue sur A.
Réciproque fausse.

Démonstration

Ve>0, 3n>0, VaxeA, |x—alp<n=|f@-f@|,<e

YacA, VYe>0, An>0, Vxel, Ix—alg<n=|fx)-f@a)|p<e ™

Propriété 16 : Opérations sur les applications uniformément continues

Une combinaison linéaire, une composee de fonctions uniformément continue I’'est encore.

Remarque

R12 - A Faux pour un produit ou un quotient.

Exemple

E6— x— |x| est uniformément continue sur R mais pas x — x2.

ﬂ Fonctions lipschitziennes

Définition 8 : Fonction lipschitzienne

f:AcE— F est dite k-lipschitzienne sur A (oU ke RY) si

Vx,x €A, Hf(x)—f(x’)HFgk”x—x/”E.
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Propriété 17 : Lipschitzienne = continue

Toute fonction lipschitzienne sur A y est uniformément confinue.
La réciproque est fausse.

Démonstration

Vx,yeA, |f@)-fW|g<k|x-y|g Doncsin= % convient dans la définition de I'uniforme continuité.

Exemple
E7 — x— |l

Propriété 18 : Lispschziannité de la distance a une partie

E — R
est l-lipschitzienne donc uniformément contfinue sur E.
x — d(x, A

C’est en particulier le cas de x+— d(x,a) ol a€ E avec A= {a}.

Démonstration

Déja vu dans le chapitre espaces vectoriels normés.

Exemple
E8 — On retrouve que les boules ouverte/fermée le sont, et que les sphéres sont fermées.

E Applications linéaires

Remarque

R13 — Pour une application linéaire, on peut toujours déplacer un probleme en un point donné en un probléme en
0g. et la continuité revient & une lipschitziannité, et donc une uniformité continue.

Propriété 19 : Continuité des applications linéaires

Soit ue £ (E,F). Les cing propositions suivantes sont équivalentes :
() u est continue sur E.
(i u est continue en 0.
(i Il existe ke R* tel que pour tout x € E,
lu)lr < kllxlg-
(iv) u est lipschitzienne sur E.
(V) u est uniformément continue sur E.

Remarque
R14 — Ce qui importe vraiment en pratique, c’est (i) < (iii).
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Démonstration
(i=ii) Immédiat.
(ii = iii) Supposons u est continue en 0 et remarquons que le résultat & montrer s'écrit, pour x # 0Og.

'u( X ) X !
klxlg/llp klixlglg &

Ecrivons alors la définition de la continuité en 0Ogavec e=1:onan>0telquesilxllg <n, luxlg <1 (car
u(0g) =0g).

. T - 1 1
La remarque précédente nous incite a choisir k tel que P <n. Poser k= 1_;

“{eveiz)

Comme ceftte inégalité est également vérifiée en 0, k = — convient.
n

<1, avec H

<1 ce qui donne bien |uX)|Ir < klxlg.
F

Alors, si xe E\{0g}, donc

kixlglg &

(ii=iv) S'il existe k € RY tel que pour tout x € E, lluxlr < klxlg. alors pour fout x,x' € E,
| ux) —utx"| g = ||ux - x)||p < k|| x—x'|  donc u est k-lipschitzienne.

(iv=wv) Connu.
(v=1i) Connu.

On note %.(E,F) = 4(E,F)n€(E, F) I'’ensemble des applications linéaires continues sur E.

Remarque
R15 - Z.(E,F) est un sous-espace vectoriel de Z(E,F).

Exemple

b
E9— ¢:fe(€([a, b],C),Neo) »»f f(®dee (C,|) est continue. En effet, c’est une forme linéaire telle que pour tout f,

PN < b= |floo:
Elle est aussi continue si on munit €([a, b], C) de la norme N; de la convergence en moyenne.

E10— fe(%(0,1],C),N;) — f(0) € (C,|-]) est non continue avec f, telle que f,(0) =1 mais Ny (fn) = % (par exemple un
triangle : f,(0) =1, fu(x)=0si x> 2 et f, offine entre 0 et 2) ou dlors f,, : x— (1 - x)").

! 7

Méthode 1 : Etudier la continuité d’une application linéaire

m Pour montrer qu’une application linéaire est continue, on cherche une constante k telle que pour tfout x€ E,
lux) g < klxlg... Sauf si on est en dimension finie au départ : dans ce cas, ¢’est automatique.

m Pour montrer qu’une application linéaire n’est pas continue, on cherche a nier la caractérisation séquentielle

de la continuité en 0 en frouvant une suite (x,), € EN telle que x,, — 0g (i lxullp — 0) et pourtant u(xy) £ 0
lu(x)l F)
n

(ie lu(xp)llg # 0g) , OU encore, comme pour nier une domination de normes, une suite telle que ( Il
E

n‘est pas bornée.

Exercice 2: CCINP 1

Remarque

R16 — La continuité dépend des normes au départ et a I'arrivée, mais ne change pas en prenant des normes
équivalentes.
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R17 - La domination de norme est équivalente & la continuité de I'endomorphisme idg pour ces normes :
idg : (E,N1) — (E,N») est continue ssion a k fel que Vxe E, Na(idg(x)) = Na(x) < kN;p(x) si et seulement si Ny
domine No.

Exercice 3 : CCINP 36, 54

ﬂ Applications multilinéaires

Propriété 20 : Continuité des applications multilinéaires

Si Ey,...,Ep, F sont des K-espaces vectoriels normeés et f : E x...x E,, — F est multilinéaire, alors les deux
propositions suivantes sont équivalentes :

(0 f est continue pour la norme produit sur Ey x ... x Ep,

(i) Il existe ke K tel que
V(x1,..., Xp) €E1 X x Ep, || f(x,...,xp)|| < k||x1||1---||xp“p

Démonstration : Non exigible

On traite le cas p =2, le cas général se traite de la méme maniere.
m Supposons f continue sur E; x E;. Comme dans le cas des applications linéaires, on veut montrer qu’on a

ke R} tel que si (x,y) # (0,0),

{Cermiter
VeIl VEIyI

On pose alors, avec ¢ =1, en traduisant la continuité en (0,0), un >0 tel que, pour la norme produit N,

N((x, y) =max(Ixll, |¥],) <n=||fx»| <1

Posons k =

dl\?l (=

<1donc
F

. X y x y
Alors, si (x,y);é(0,0),N( , ):max n,n) =n donc ”f( , )
VElxl VE|yll, ) VElxly VE|yll,

If Gyl e < Kzl ¥l

Si x=0g, OU y=0g,, l'inégalité s’écrit 0 < k-0.
m Supposons qu’on ait k>0 tel que pour tout (x, y) € E1 x Ea, || f(x, || < kllxly ||y,
Soit (a, b) € E1 x E,. Montrons que f est continue en (a, b).
Soit (x,y) € E1 x Ea.
On remarque que f(x,y) - f(a,b) = f(x—a+a,y)— f(a,b) = f(x—a,y) + f(a,y—b). Donc

159 @Dl < £ 5=+ 1@yl < K=yl + e |y= o)

On a bien f continue en (a, b).

Corollaire 1 : Continuité d’un produit scalaire

Si (E,|) est un espace préhilbertien réel, alors (x,y) — (x|y) est continue.

Démonstration

C’est une application de I'inégalité de Cauchy-Schwarz avec k =1.

LIMITE, CONTINUITE, COMPACITE ET CONNEXITE PAR ARCS - PAGE 14 SUR 32


https://mpi.lecontedelisle.re

J. Larochette VERSION DU 9 FEVRIER 2026

m DIMENSION FINIE

Il Coordonnées

Propriété 21 : Continuité coordonnée a coordonnée

On suppose F de dimension finie n > 1.

n
Soit A une partie non vide de E, f e FA, B = (ey,...,e,) Une base de F. Onpose f =) frey.
k=1
Alors f est confinue sur A si et seulement si pour tout k € [1,n], fi est continue sur A.

Démonstration

Propriété analogue connue pour les limites.

E Applications linéaires

Théoreme 1 : Continuité des applications linéaires en dimension finie

Si E est de dimension finie, alors foute application linéaire de E vers F est continue sur E.
Autrement dit, £.(E,F) = 4 (E,F).

Remarque

R18 — Une domination de norme étant une continuité d’application linéaire (idg), on a réciproquement que la
continuité de fout endomorphisme sur E implique |I'équivalence de toute norme de E.

Démonstration

Soit B = (ey,...,ep) Une base de E, ue Z(E,F), x€ E.

p
Z xpu(er)
k=1
dépend pas de x et N; norme sur E de dimension finie donc équivalente @ ||| : on a a € R fel que Ny < allllg et
alors lu(x) g < aCllxllg donc u est bien continue.

On décompose x = xjey +---+ xpep. Alors |u(x)lF =

p
< ) |xk| ||uter) | p < CN1(x) OU C = max |u(er) | ne
k=1

Exercice 4: Montrer que si P e 4%, (K), Ae 4,(K) — PAP~! est continue.
Elle est continue car linéaire sur un espace de dimension finie. Ainsi, si A, — A, alors PA.P~! — PAP~!,

Exercice 5 : Montrer que 'ensemble des matrices de trace nulle est un fermé de ./, (K).

Image réciproque par la forme linéaire sur un espace de dimension finie donc confinue frace du fermé {0} de
K.

Exercice 6 : Montrer que 'ensemble des matrices symétriques est un fermé de .4, (K).

Image réciproque par I'application linéaire sur un espace de dimension finie donc continue M — MT — M du
fermeé {0,}.
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Applications polynomiales

Définition 9 : Applications polynomiales

Soit f: E—IK, ou E est de dimension finie, 8 = (ey,...,ep) Uune base de E. Pour x € E, on note xy,...,x, $€S
coordonnées dans 2.

f est dite monomiale s'il existe ki, ..., k, € N” fels que f:x— x! ---x];”.

f est dite polynomiale si elle est combinaison linéaire de fonctions monomiales.

Remarque

R19 — En changeant de base, les anciennes coordonnées sont transformées en combinaisons linéaires de nouvelles
coordonnées. Ainsi, le caractéere polynomial d’une fonction ne dépend pas de la base.

Propriété 22 : polynomiale en dimension finie = continue

Toute fonction polynomiale sur E de dimension finie est confinue.

Démonstration

Les formes i® coordonnées ¢; : x — x; sont linéaires donc continues, donc, par opérations, f I'est. [

Exercice 7 : Montrer que det est continue sur ./, (K).
En effet, elle est polynomiale en les coefficients de la matrice.

Exercice 8 : M — Com(M) est continue sur ./, (KK).
En effet, ses coefficients sont polynomiaux en les coefficients de la matrice.

Exercice 9 : %<, (K) est ouvert.
en tfant que image réciproque de I'ouvert K\ {0} par I’application continue det.

ﬂ Applications multilinéaires

Propriété 23 : Continuité des applications bilinéaires en dimension finie

Si (E,g). (Flllr) sont des K-espaces vectoriels de dimension finie, (G, |I-lg) K-espace vectoriel, alors
foute application bilinéaire de E x F dans G est confinue.

Démonstration

B:ExF — G bilinéaire, 2 = (ey,...,ep) une base de E et € =(f,..., f4) une base de F.

p q p 4
Si(x,y)€e ExF, B(x,y) = B(Z Xier Y ygfg) =YY xpyeBlek fo).
k=1 (=1 k=1¢=1
Or (x,y) — x; est continue car x — x; I'est et (x, y) — y, est continue car y — y, donc par opérations B est continue.
|
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Propriété 24 : Généralisation

Plus généralement, foute application multilinéaire définie sur un produit d’espaces de dimension finie
est continue.

Démonstration

Démonstration similaire. [ |

Exemple
E11 - Si 28 base de E de dimension finie, detg est une forme n-linéaire de E donc est continue.

m NORMES D’OPERATEURS

Il Cas des applications linéaires

Définition 10 : Norme subordonnée

On considere deux K-espaces vectoriels normés (B, |I-1lg) et (F |-Ilg). Si u e Z.(E,F), on pose

lu()ll g

; er\{oE}} = sup Jutallp
lxllg

Mlzell = Nlullop = SUP{
x#0p IxlE

Remarque
R20 — |[|ul| est le plus petit k tel que pour tout x € E,

lullp <klxlg.

On vérifie qu’il suffit de prendre la borne supérieure au choix soit sur la sphére unité, soit sur la boule unité fermée.

Propriété 25 : Définition équivalente

Siue %.(E,F),
llzell = sup lu()p= sup lux)lg
lxlg=1 x€S(0g,1)

= sup uXx)llp= sup lu@)lF.
lxllp<1 x€B(0g,1)

Démonstration

. X
m Six#0g, —— est de norme 1, donc

lxll g
lu() |l g “ ( X )
=llu
llxll g llxll g

< sup  u)lEg.
F  xeS(0g,1)

Onadonc flull< sup lu@lF.
x€S(0g,1)

lu(x)llF
lxlg

Réciproquement, si x est de norme 1, x #0g et ||lu(x) g = < lull.

Onadonc sup lu)lg<Ilull
xeS(0g,1)
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m Six#0p, ||[——| <1,donc
Ixllg g
()l x
F_|y < sup  Nu@lE.
lxlg IXIEJNF  eBog
Onadonc flull < sup lu@®)lEg.
x€B(0g,1)
o i lu)lp
Réciprogquement, si llxllp <1 et x#0g, lu(x)lF < % < lull.
xllg

On adonc sup  Ju)p < lull.
xeB(0g,1)

Propriété 26 : C’est une norme

Il- Il est une norme sur £.(E,F) appelée norme subordonnée A ||| et ||-|lz. On parle aussi de norme
d’opérateur.

Démonstration

Bonne définition Si ue Z.(E,F), llu|l est bien défini par caractérisation de la continuité.
Définie positivité ||ull > 0 et si [|ull = 0, alors pour tout x # 0g, llu(x) | = 0 donc u(x) = 0 et c’est encore vrai pour x = 0.

Homogénéité Si ue £ (E,F) et A€ K, dlors pour fout x € S(0g, 1), IAu(x)llF = IAllu(x)lF avec |A| >0 donc, en passant
aux sup, fiAull = A1zl

Inégalité triangulaire découle sans probléme de celle de || .

Propriété 27 : Norme subordonnée d’'une composée

On considére trois IK-espaces vectoriels normeés (E, |-lg). (F -7 et (G, |-llg). Si ue L.(E,F) et ve £.(F,G)
et - llgr désigne la norme subordonnée sur ¥, (E, F) par exemple, alors

lvoulle,r < Nvilgcliulle,F.

Démonstration

Six#0g, lvoulg < vl luMlr < lviigcllulg,r I xl g donc, par définition, llve ullg,r < llvliEcllullg,F-

Corollaire 2: Cas des endomorphismes
Ici, E=F. Si ue ¥.,(E), on définit

[lze(x) ]I
Null = sup ——= = sup lu)lg= sup u)lg.

xzop NXlE  jxpp=1 Ixlp<1
Alors || - |l est une norme sur £.(E) qui vérifie ||lidg |l =1 et
Yu,ve ZL(BE), llvoull < llull-livi.

On dit que || - I est une norme d’algébre unitaire.

Propriété 28 : Puissance et norme subordonnée

Pour tout ue £.(E) ef ke N,
]| < wean*
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Méthode 2 : Calcul d’une norme subordonnée
Pour calculer la norme subordonnée d’un opérateur (ie d’'une application linéaire), on écrit des majorations

VX€E, [uXlp<-=-<-=-<klxlg

en effectuant des majorations les plus fines possibles et en distinguant clairement les majorations et les égalités, afin
de pouvoir traiter plus facilement les cas d’égalité.

Soit on frouve au moins un cas d’'égalité, c’est-a-dire un x € E tel que u(x)lr = klxllg. alors k = llull (et le sup est
en fait un max). On verra qu’en dimension finie, on peut toujours en trouver.

S'il n'y a pas de cas d’égalité, on peut chercher une suite (xp) e € (E\0phY telle que lutnle

— k et alors
lxnllg

k= llull (carle sup est le seul majorant limite d’une suite de I'ensemble).
On peut aussi, pour tout € >0, chercher x # 0 tel que lu(x) g > (k—e) llxell g.

Exercice 10: CCINP 38

E Traduction matricielle

Propriété 29 : Norme subordonnée matricielle

Soit |-l une norme quelconque sur ) (K).
On définit, pour A€ 4, (IK),

IAX|
lAll = sup ——— = sup [|AX] = sup [|AX]
xz0,1 I1XI yxi=1 IX1<1

appelée norme subordonnée & ||-|.
Il s’agit d’une norme d’algébre unitaire sur 4,(K), donc vérifiant ||1,]l =1 et

VA Be 4,(K), IABI<IAINNBI

ce quiimplique
VAe My(K), VkeN, ”|Ak“| <Al

m COMPACITE

Il Suites extraites

Définition 11 : Suite extraite

Soit u € EN, On appelle suite extraite ou sous-suite de u toute suite v € EN felle qu’il existe ¢ : IN — IN
strictement croissante telle que VnelN, v, = uym).
¢ est appelée extractrice.

Lemme 1

Si @ est une extractrice, alors
VnelN, ¢(n) > n.
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Propriété 30 : Limite d’'une suite extraite convergente

Si u— ¢, foute suite extraite de u converge vers ¢.

Définition 12 : Valeur d’adhérence

On appelle valeur d’adhérence de u e EN toute limite (dans E) de suite extraite de u.

Propriété 31 : Cas des suites convergentes

Une suite convergente a une unique valeur d’adhérence : sa limite. Réciproque fausse.

Corollaire 3 : Contraposée

Si une suite a plusieurs valeurs d’adhérence, elle diverge.

Propriété 32 : Condition suffisante de convergence

Si (uan) et (upn+1) cOnvergent vers une méme limite, alors u converge vers cette limite.

Exercice 11
Soit uc EN, ¢ € E.
1. Montrer qu’il y a équivalence entre

(i) ¢ est valeur d’adhérence de u.
(ii) Pourtout ¢ >0, {ne N, u, € B(¢,¢)} est infini.
(iii) Pour tout ¢ >0, pour tout p e IN, {n > p,u;, € B(¢,¢)} n’est pas vide.
2. Application classique : en déduire que 'ensemble des valeurs d’adhérence de u est fermé.

1.

()==(ii) Si ¢ est valeur d’adhérence, ¢ extractrice telle que uy,) — £, € >0, Alors APCr gy € B/, €).

(il=>(iii)y Soite>0,si{neN, u, e B, &)} est majoré etsipe N, {n> p,u, € B(¢,¢)} ne peut étre vide, sinon |I'ensemble
{neN,uy € B(¢,¢)} serait majoré par p et inclus dans IN donc fini.

(iiy)=(i) Si pourtout e>0, pourtout peN, {n> p,u, € B(¢,e)} n'est pas vide, on construit une suite extraite conver-
geant vers ¢ : on pose ¢(0) € IN fel que ¢(0) >0 et uy () € B ([, ZLO)
PUis (1) > p = ¢(0) + 1 tel que u,y) € B [(, 2%)
Ef par récurrence, pour fout ne IN*, ¢p(n) > p = @p(n—1) +1 tel que uy, € B (2, ZLHJ
Alors ¢ est strictfement croissante ef, par construction, ug,) — ¢

2. Ainsi, I'ensemble des valeurs d’adhérence de u est [ {un, n> p} qui est bien fermé.
pelN

E Parties compactes
n Définition

Une partie K de E est dite compacte (ou est un compact) lorsque toute suite d’éléments de K a au
moins une valeur d’adhérence dans K, c’est-a-dire qu’on peut en extraire une suite qui converge dans
K.
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Remarque
R21 — g est compacte.
R22 — Par théoreme de Bolzano-WeierstraB, tout segment de R est compact.

n Un compact est fermé borné

Propriété 33 : compact = fermé et borné

Toute partie compacte est fermée et bornée.

Démonstration

Soit K une partie compacte de E.

Soit u = (uy), Une suite d’éléments de K, convergeant vers ¢ € E. Comme K est compacte, on peut extraire de
x une suite convergeant dans K. Par propriété des suites extraites et unicité de la limite, on a alors ¢ € K. Ainsi, K est
fermée.

K est bornée sinon, on pourrait construire une suite u e K™ telle que |ull — +oo (avec, pour tout ne N, uy, € B(0g, n),
par exemple) et dont les suites extraites ne peuvent converger.

Remarque
R23 — La réciproque est fausse en général, mais on va voir qu’elle est vraie en dimension finie.
R24 — Tout compact de R est inclus dans un segment.

Exemple : Contre-exemple de partie fermée bornée non compacte

E12 - Dans K[X] muni de la norme ||P|s = sup |pk| (avec des notations évidentes), X € S(0,1) (qui est fermée et
bornée). e
Si (X™) a une valeur d’adhérence, on a P € K[X] et ¢ extractrice telle que HX‘P(”) —PHOO — 0. Alors chaque
ceefficient de X" fend vers le coefficient correspondant de P, donc P = 0 x;. Mais alors 1= "X‘/’(’” -0

ce qui est contradictoire.

[ee]

Exercice 12: CCINP 13

Partie fermée d’un compact

Propriété 34 : Partie fermée d’un compact

Soit K une partie compacte de E et A une partie de K. Si A est fermée, alors A est compacte.

Remarque
R25 — La réciproque est vraie ! Ainsi les parties de K fermées sont exactement les parties de K compactes.

R26 — Parle-t-on de fermé de E ou de fermés relatifs de K ? En fait, c’est la méme chose car le compact K est fermé.
Ny a donc pas d’ambiguité.

R27 — En dimension finie, ce ne sera pas frés intéressant car on va montrer que les compacts en général sont
exactement les fermés bornés.
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Démonstration

En effet, si Ac K est fermée, toute suite d’éléments de A donc de K a une valeur d’adhérence dans K et comme
A est fermée, cette limite de sous-suite est nécessairement dans A, donc A est compacte.

n Produit de compacts

Propriété 35 : Produit de compacts

SipeIN*, (Ey, 1), ..., (Ep, I-1,)) sont des K-espaces vectoriels normés et pour i € [1, p], K; compact de
E;, alors K = K x --- x K, est un compact de E = E; x ... x E, muni de la norme produit.

Démonstration

C’est évident si p =1, on montre le résultat pour p =2 et la démonstration se généralise pour p quelconqgue.
Si, donc, K et Kz sont des compacts de E;y et Bz, u=((xn, yn)) pe € KN

Comme pour le théoréme de Bolzano-WeierstraB, de (xp) € K1 compact, on extrait (x,,)) qui converge dans
K1, puis de (yy(n)) On extrait (yyq ) convergeant dans K.

AlOTS (Ugoy (n)), CONVerge dans Ky x Kz, ce qu'il fallait démontrer.

Pour p > 2, il suffit de continuer le procédé avec chaque nouvelle composante.

Remarque

R28 — La démonstration est intéressante, mais dans la pratique, en cas d’extractions multiples, il est I€gitime de se
poser la question : peut-on faire apparaitre un produit de compact?

Fonctions continues sur des compacts

Propriété 36 : Image continue d’un compact

Si f:K — F avec K partie compacte de E ef f continue, alors f(K) est compacte.

Remarque

R29 — L'image continue d’un compact est compacte, et donc en particulier fermée et bornée.

R30 - A ne pas confondre avec la propriété qui dit que I'image réciproque d’une partie relativement ouverte ou
fermée de F |'est encore dans E.

Démonstration
Soit ye fF(K)N., On a, pour tout ne N, x, € K tel que y, = f(xn).

De (xn) € K, on peut extraire une suite (xp(n)) CONvergeant vers ¢ € K.
Alors, par contfinuité, y,m) = f(xpm) — f(0) € f(K), ce qu'il fallait démontrer.

Corollaire 4 : théoréeme des bornes atteintes

Toute fonction continue sur un compact de E, & valeur réelles, est bornée et atteint ses bornes.
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Remarque

R31 - Treeees utile! Et avec un petit golt de déja-vu...

R32 — Ce théoreme permet de montrer qu’en dimension finie, la norme subordonnées de u (resp. A) est nécessai-
rement atteinte sur S0, 1).

Démonstration

f:K— TR confinue et K compacte, alors f(K) est une partie compacte de R, donc fermée et bornée.

Donc f est bormée et si M = sup f, alors on a une suite (y,) € f(K)N convergeant vers M par caractérisation
séquentielle du sup et comme f(K) est fermée, M € f(K).

On montre de la méme maniére que I'inf est atteint.

Théoréeme 2 : de Heine

Toute application continue sur un compact y est uniformement continue.

Démonstration

Comme dans le cas réel, on raisonne classiquement par I'absurde.
Soit f: K — F continue et non uniformément continue. Alors

3e>0, V>0, 3(xx)ek?

|x=x| g <net | f) - f(N)|p>e

1 1
cayr o e xn, Xp € K tel que | xp —xp || g < @ et | f(xn) = Fxp)| g > €.
Mais ((xn,x},)) € (KZ)]N et K? est compacte donc on peut en extraire une suite (x(p(n),
(¢,0') e K2

Mais x,, — xj, — 0 donc ¢ = ¢' et par continuité e < Hf(x‘/’(”’) i [x:p(m) HF — 0 ce qui est contradictoire.

Soit un tel e >0, avec, pour ne N, n =

/
xq)(n)) convergeant vers

ﬂ Cas de la dimension finie

o [

On a déja vu que les segments de R étaient des compacts de R.
Le théoréme de Bolzano WeierstraB permet de démontrer le résultat suivant, généralisé un peu plus loin.

Théoréeme 3 : de Bolzano-Weierstra

De toutes suite bornée d’éléments du corps K =R ou C, on peut extraire une suite convergente.

Corollaire 5: Compacts de R ou C

Les compacts du corps K =R ou C sont exactement les parties fermées et bornées de K.

Démonstration

Soit K un compact du corps K. On a déjd vu que K était fermé et borné.

Soit K une partie fermée et bornée du corps K. Soit x € KN une suite d’éléments de K. Par théoréme de Bolzano-
WeierstraB, on peut en exiraire une suite convergente. Mais comme K est fermée, la limite de la sous-suite est encore
dans K qui est bien compact.
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Remarque
R33 — Les segments de R sont alors exactement les intervalles compacts de R.
Mais il existe bien d’autre compacts qui ne sont pas des intervalles.
Par exemple, un ensemble fini est toujours compact (pourquoi? — et c’est valable dans n‘importe quel es-

pace vectoriel normé).
Cependant, tout compact de R étant fermé et borné, il est inclus dans [infK,sup K] = [min K, max K] (le carac-

tere fermé assurant le fait que les bornes soient atteintes).
Ainsi, les propriétés vraies « sur tout segment de R » sont aussi les propriétés vraies « sur tout compact de R. »

H Equivalence des normes

Théoréeme 4: Equivalence des normes en dimension finie

Dans un espace vectoriel de dimension finie, foutes les normes sont équivalentes.

Les compacts de K" muni de |-« Sont exactement les parties fermées et bornées de (K", |||loo)-

Remarque
R34 — On généralise & tout espace vectoriel normé de dimension finie ci-aprés.

Démonstration : du lemme

On sait déja que les compacts sont fermés et bornés.
Soit A une partie fermée et bornée de (K", llllw). Pour montrer qu‘elle est compacte, il suffit de I'inclure dans un

compact.
OronaM>0telque xe A= |lxlloc < M. Alors, siK=R, Ac[-M,M]" et siIKK=C, A< D0, M)" qui, dans les deux

cas, est un produit fini de compacts donc un compact (et |-l est bien la norme produit de |-| n fois.)

Démonstration : du théoréme - Non exigible
Soit N une norme sur E espace vectoriel de dimension finie munie d’une base (ey,...,e;). On va montrer que N
n
est équivalente & N, définie par Neo (Z xiei) = max |x;| ce qui suffit & conclure par transitivité.
<isn

i=1
de norme 1, donc

. I . N , x x
Or, si x= izzlxie,- € E\{0}, @Noo(x) < N(x) < BNoo(x) revient & avoir a < N(Noo(x)) < B.avec Noo D)
dans la sphére unité. Il se frouve qu’il n’est pas difficile de montrer que la sphére unité de K” est compacte.

(K" Moo)  — (R,

n .
X=(x1,...,xXp) — N(Z x,-ei)
i=1

On infroduit alors I’application ¢ :

Lidée est de

1. montrer que ¢ est continue,

2. montrer que la sphére unité S de K" est compacte pour ||lloo.
3. utiliser le fait que ¢ est bornée sur S,

4. conclure.

Allons-y.
(K™, I-lloo) —  (E,Neo)
qui est

1. ¢ estlacomposée de N qui est 1-lipschitzienne et de I'isomorphisme ¢ : n
X=(X1,...,Xp) — Y Xje
i=1

linéaire sur un espace de dimension finie donc continue.
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2. Soit S =5(0,1) la sphere unité de K" pour |-l.. C’est une partie fermée et bornée de K", donc compacte
d’apres le lemme précédent.

3. Comme ¢ est continue sur le compact S, elle atteint un minimum a et un Maximum g sur S. Remarquons
également que si xe S, x#0 et donc ¢(x) #0 et a>0.

n
1
4, Soit x=) x;e; € E\{0}, alors
i:zl ie; € E\{0} T
I’'encadrement reste valable.

(X1,...,xp) € Sdonc a < N( ) < B PUIS & Noo(x) < N(x) < BNoo (). Sl x =0,

Noo (x)

Ainsi, N est équivalente & Neo.

Compacts en dimension finie

Théoréme 5 : Compacts en dimension finie

Les compacts d’un espace vectoriel normé de dimension finie sont exactement ses parties fermées
et bornées.

Démonstration
Soit n=dimE.
Résultat déja vu sur K", que l'on transporte & E muni d’'une base (e,...,ey) Via Iisomorphisme
K" — E

n , qui est continu pour toute norme car on est en dimension finie et tel que si
(X1, Xn) — Y xie
i=1

X=(x1,...,xp) e K" et x_= fX)€E, | Xlloo = Noo(x) : f «transporte la norme. »
Si A est une partie fermée bornée de E, f~1(4) est donc fermée par continuité et bornée car f transporte la

norme. Donc c¢’est un compact de K”". Donc A = f(f1(4)) (car f est bijective) est compacte comme image
continue d’un compact.

Corollaire 6 : Traduction en terme de valeur d’adhérence

Dans un espace vectoriel normé de dimension finie, foute suite bornée admet au moins une valeur
d’adhérence.

Démonstration

Une suite bornée est dans une boule fermée qui est fermée et bornée donc compacte.

Corollaire 7 : Théoreme de Bolzano-Weierstraf

De toute suite bornée d’un espace vectoriel normé de dimension finie, on peut extraire une suite
convergente.

Corollaire 8 : important!

Un sous-espace de dimension finie d’un espace vectoriel normé est ferme.

Démonstration

E evn, F sev de dimension finie, (u,) € FN une suite d’éléments de F, convergeant vers ¢ € E.

Alors (uy) est bornée dans F qui est de dimension finie, donc admet une suite extraite convergeant dans F
d’aprés le théoreme de Bolzano-WeierstraB.

Par unicité de la limite, ¢ € F et F est fermé.
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Exercice 13: classique : Tout sous-espace strict d’'un espace vectoriel normé est d’intérieur vide.
Vu en TD en montrant, par contraposée, F # & = F = E.

~~~~~

On est en dimension finie, il suffit de montrer que @ (n) est fermée et bornée pour n'importe quelle norme.

Or 0(n) est fermée comme image réciproque du fermé {I,,} par I’'application continue M — MTM (bilinéarité du
produit matriciel et linéarité de la tfransposition) et bornée car, avec la norme euclidienne |M|? = tr(MTM), on a
©(n) < B0, Vn).

On a aussi avec une aufre Norme Noo(M) = max;, (‘m,]‘) < 1 en admettant un résultat vu plus fard : les colonnes
de M sont nécessairement normées.

Remarque
R35— Siue %.(E F), on avuqgue lanorme subordonnée s’écrivait :

llull= sup [u)lF.
x€S(0g,1)

Si E est de dimension finie, comme la sphére S(0g,1) est fermée et bornée, elle est compacte. Et comme
x— llux)| g est continue sur E, elle est bornée et atteint ses bornes sur S(0g,1). Autrement dit, en dimension
finie, la norme subordonnée de u s'écrit toujours |lu(xg) |l pour un certain xg € S(0g, 1).

R36 — Le théoréme de Riesz (HP) dit qu’un espace vectoriel normé est de dimension finie si et seulement si sa boule
unité fermée est compacte.

Exercice 15 : Mines : Montrer que la boule unité fermée de ¥°([0,1]) muni de la norme N, n’est pas compacte.

fn:x€(0,1]— x" est continue, de norme 1 et converge simplement vers 6. 1. Si on pouvait en extraire une suite
uniformément convergente, la limite devrait étre continue.

H Suites convergente dans un compact

Propriété 37 : CNS de convergence dans un compact

Soit K un compact. Une suite d’éléments de K est convergente si et seulement si elle a une unique
valeur d’adhérence.

Démonstration

Le sens direct est vrai sans hypothése de compacité.

Pour le sens réciproque, on raisonne par contraposée. On suppose que u € KN ne converge pas. On sait qu’elle
a au moins une valeur d’adhérence ¢ € K.

On a ¢y >0 tel que pour tout Ne N, il existe n> N tel que |u, — 2| > «g.

On a donc ¢(0) > 0 tel que |luge) | > €0, PUis ¢p1) = @(0) +1 fel que |uya) £ > g0 et on construit ainsi par
récurrence une fonction ¢ : IN — IN strictement croissante telle que pour fout ne IN, | uy ) — || > £o.

Mais (uy () €fant & valeur dans le compact K, on peut en extraire une suite convergente. Sa limite, valeur
d’adhérence de u ne peut valoir ¢.

Corollaire 9 : CNS de convergence des suites bornées en dimension finie

En dimension finie, toute suite bornée converge si et seulement si elle a une unique valeur d’adhé-
rence.
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Démonstration

Toute boule fermée est compacte. [ |

m CONNEXITE PAR ARCS

Il Une relation d’équivalence

Définition 14 : chemin continu

Soit A une partie d'un espace vectoriel normé (E, ||-1). Si (a, b) € A?, on appelle chemin continu joignant
a A b dans A toute application ¢ : [0,1] — E vérifiant les trois propriétés suivantes :

m ¢ est continue
m Viel0,1], ¢p(r)eA
B p0)=aetpl)=bh

Propriété 38 : Relation d’équivalence

La relation % sur A?> « sont joints par un chemin continu » est une relation d’équivalence.

Démonstration

On vérifie facilement
Réflexivité Prendre ¢ constante, qui est bien continue.
Symétrie Si ¢ est un chemin continu joignant a & b, 1-¢ est un chemin continu joignant b & a.
G20 Si t€0,1/2]

, est un chemin continu joignant a & c.
y2t—-1) Sitell/2,1]

Transitivité Si ¢ joint a & b et y joint ba ¢, alors {: t— {

E Connexité par arcs

Définition 15 : Composantes connexes par arcs

Soit A une partie de E. On appelle composantes connexes par arcs de A les classes d’équivalence
pour la relation 2 définie précédemment,

Remarque
R37 — La composante connexe par arc de a € A est I'ensemble des b e A pouvant étre joints & a par un chemin
continu.

Propriété 39 : Partition des composantes connexes

Les composantes connexes par arcs de A partitionnent A.

Exemple
E13- A={(x,y)€ R2,xy # 0} possede quatre composantes connexes par arcs.

LIMITE, CONTINUITE, COMPACITE ET CONNEXITE PAR ARCS - PAGE 27 SUR 32



LYCEE LECONTE DE LISLE — LA REUNION HTTPS://MPI.LECONTEDELISLE.RE I I E] p%

Ej H :i'ql‘-.ﬂ

Définition 16 : partie connexe par arcs

On dit que A est connexe par arcs lorsqu’il y a une uniqgue composante connexe par arcs : A elle-
méme.

Remarque
R38 — A est connexe par arcs si tout couple de points est joignable par un chemin continu dans A.

Exercice 16 : Montrer que S(0g,1) est connexe par arcs.
Soient a,be S(0g,1).

Si0g ¢ [a,b] ie b#—a, il suffit de poser ¢: t— (=nattb

IQ-0a+tbl|’
Sinon il suffit, par transitivité, de passer par un troisieme point sur la sphére en utilisant un chemin comme le

précédent.

chemin continu sur la sphere reliant a et b.

Propriété 40 : convexe — connexe par arc

Toute partie convexe de E est connexe par arcs.

Démonstration

On choisit le segment comme chemin continu. [

Exercice 17 : Montrer qu’une boule est connexe par arcs.
Elle est convexe.

Définition 17 : Partie étoilée

A est dite étoilée s'il existe un point a € A tel que pour tout point b de A, le segment [a, b] est inclus dans
A.

Remarque
R39 — Une partie convexe est étoilée par rapport & chacun de ses points.

Propriété 41 : étoilée — connexe par arc

Toute partie éfoilée de E est connexe par arcs.

Démonstration

Si A est étoilée par rapport & a, b,c € A, alors le chemin continu constitué des segments [b, a] et [a,c] joint b a ¢
en restant dans A. [ |

Cas des parties de R

Propriété 42 : Connexes par arcs de R

Les parties connexes par arcs de R sont les intervalles.
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Démonstration

Les intervalles étant convexes, ils sont connexes par arcs.
Si réciproguement, Ac R est connexe par arcs, on montre que A est convexe, ce qui permet de conclure.

Six,ye A,ona¢:[0,1] — A continue felle que ¢(0) = x et ¢p(1) = y. Si z € [x, yl. le théoréme des valeurs infermédiaires
nous garantit I'existence de 1 € [0,1] tel que ¢(1p) = z€ A. [ |

Remarque
R40 — Les connexes par arcs de R sont les convexes. C’est faux en général, par exemple dans R2.

ﬂ Image continue d’'une partie connexe par arcs

Propriété 43 : Image continue d’'une partie connexe par arcs

Si E, F sont des espaces vectoriels normes, A une partie connexe par arcs de E, f: A— F une applica-
tion confinue, alors f(A) est connexe par arcs.

Remarque
R41— Pour les ouverts et les fermés, c’est I'image réciproque par une application continue qui est ouverte ou
fermée.

Pour les compacts ou les connexes par arcs, c’est I'image directe par une application confinue qui est
compacte ou connexe par arcs.

Démonstration

Il suffit de composer les chemins continus par f.

Corollaire 10 : Cas d’une fonction réelle, TVI

Si f est une application confinue, définie sur une partie A connexe par arcs, et & valeurs réelles, alors

f(A) est un intervalle.
Aufrement dit, f vérifie la propriété des valeurs intermédiaires : s’il existe ae A tel que f(a)=a et be A

fel que f(b) = B, alors, pour tout y € [a, Bl. il existe ce A tel que f(c) =y.

Remarque

R42 — Si, pour résoudre une question, on a envie d’appliquer le théoreme des valeurs infermédiaires, mais si on
a une application (continue) qui n“est pas définie sur un infervalle de R, on peut penser d se demander si
I’application ne serait pas, par hasard, définie sur une partie connexe par arcs d’un espace vectoriel normé...

Méthode 3 : Montrer qu’une partie est ou non connexe par arcs
Le plus difficile est de déterminer dans dans quel cas on se frouve.
m Pour montrer que A est connexe par arcs, on peut
* Utiliser la définition en construisant un chemin continu dans A reliant deux points de A.
* Monftrer que A est convexe ou étoilé par rapport & un de ses points.
*x Montrer que A est I'image continue d’un connexe par arcs.
m Pour montrer que A n’est pas connexe par arcs, on peut
* Trouver un couple de points qui ne sont pas reliables par un chemin continu dans A.
* Trouver une fonction continue f telle que f(A) ne soit pas connexe par arcs. Si f est a valeurs réelles, |l
suffit que f(A) ne soif pas un intervalle.
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m ToPoOLOGIE MATRICIELLE (HP)

Rien n’est explicitement au programme dans les exercices suivants, mais ils sont fous trés classiques.
On est en dimension finie, toutes les normes sont équivalentes, la convergence se fait coefficient & coefficient. On
peut expliciter les normes usuelles

IAlv =) |aij|,
1<i,j<n
2 —
lal= | ¥ a (:\/tr(A~AT)si]K:]R, tr(A~AT]SiK:C),
1<i,j<n
IAloo = max |y |-

1<i,j<n
qui ne sont pas les plus pratiques car ce ne sont pas des normes d’algébres vérifiant N(AB) < N(A)N(B).
On leur préfere pour des applications pratiques (voir séries matricielles) des normes subordonnées sans nécessaire-
ment avoir a les expliciter.
Voir TD pour des exercices sur ces normes subordonnées.

Exercice 18 : Montrer de deux maniéres différentes que ¥.#,,(KK) est dense dans ./, (IK). En déduire que si
A,Be Mn(K), xAB = XBA-

. 1,
1" méthode : pour k assez grand, T n’est pas valeur propre de M € 4, (K) car le nombre de valeurs propres est
- 1
fini. Alors M. = M - %In €9%n(K) et My — M.

7 . . 1 . .
2¢ méthode : on a BQ inversibles telles que M = PJ,Q avec r =1gM. On pose J,.,. = Jr + Eln. Alors J,. i estinversible
et J, k P Jr. Par continuité de I'application linéaire sur un espace de dimension finie A— PAQ, (M) = (PJxQk
— 400

est une suite de matrices inversibles telles que My — M.

On vérifie que yap = x4 Sl A est inversible car AB = A(BA)A™! et le polyndme caractéristique est un invariant de
similitude.

Donc A— yag—xBa €St nulle sur¢.%,(K) et continue car les coefficients du polyndme y 4 — x4 SONt polynomiaux
en ceux de A.

Aufre argument : si (Ay) suite de matrices inversibles convergeant vers A, alors pour tout k. x4, B = XBa,. PUIS
ArB — AB et BA, — BA car A— AB et B — BA sont linéaires en dimension finie (au départ) donc continues. Et
A— x4 =det(XI, — A) est continue car les coefficient du polyndme caractéristiques sont polynomiaux en ceux de A.

Donc avec k— 400, Y AB = XBA-

Exercice 19 : Démontrer que ¥.#,(KK) est un ouvert de ./, (K).
4 %K) = det™ (K \ {0}) image réciproque d’un ouvert par une application continue (car polynomiale).

Exercice 20 : Montrer que I'ensemble des matrices triangulaires supérieures, triangulaires inférieures, symétriques,
antisymétriques, de trace nulle (respectivement) de ./, (K) sont fermés.
Soit ¢;,j: A= a; j, linéaire donc continue sur ./, (K). 7, (K) = N (pi_}({O}) fermé comme infersection (finie)
1<j<i<n
de fermés.
Soit u: Ae ., (K) — AT — A définie sur un espace de dimension finie et linéaire donc continue. %, (K) = u~1({0}) est
fermé comme image réciproque d’un fermé par cette application.

Exercice 21:Démontrer que 'ensemble 6 (n) = {M € .4,(R), MMT = I,} des matrices orthogonales est compact.

On est en dimension finie, il suffit de montrer que @ (n) est fermée et bornée pour n'importe quelle norme.

Or 0(n) est fermée comme image réciproque du fermé {I,,} par I’'application continue M — MTM (bilinéarité du
produit matriciel et linéarité de la tfransposition) et bormée car, avec la norme euclidienne [|M|? = tr(MTM), on a
©(n) < B0, Vn).

On a aussi avec une autre Norme Neo(M) = max; (‘mi_j D <1 en admettant une résultat vu plus tard : les colonnes
de M sont nécessairement normées.
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Exercice 22 : Montrer que 'ensemble des matrices diagonalisables de ./, (C) est dense. En déduire le théoréme
de Cayley-Hamilton.

Soit M € .4,(C). M est trigonalisable : on peut écrire M = PTP~! avec T triangulaire, avec sur la diagonale les
valeurs propres A4,...,A, comptées avec multiplicité.
; (12
Soit, pour k> 1, Ty = T+d1ag(E, Epocog %)

, , o . 1 j ., Lo N Ai=Aj
N’y a gu’un nombre fini de k pour lesquels on ait A; +% =1; +}—c avec i # j (ce quirevient & % = ;_jf ), on est

sQr & partir d’un certain rang que Ty posséde n valeurs propres distinctes en dimension n, donc est diagonalisable.
C’est donc aussi le cas de M. = PT;.P7L,

Or My — M car Ty, — T et A— PAP™! linéaire sur un espace de dimension finie donc continue.

D’ou la densité.

Or le théoréme de Cayley-Hamilton est facile pour une matrice diagonalisable : si A = PDP7L,
ya(A) = yp(A) = Pyp(D)P~! =0 car les coefficients diagonaux de D sont justement les racines de yp = y 4.

Soit pour une matrice A e .4, (K) quelconque, une suite (Ay); de matrices diagonalisables tendant vers A.

Alors pour tout ke IN, y 4, (Ag) = 0.

En remarquant que y : B € 4, (C) — yp(B) € 4, (C) est continue car les coefficients de yp sont polynomiaux en
ceux de B et les fonctions B — BP sont continues car (By,...,Bp) — By x -+ x By, est p-linéaire, on fire, en passant & la
limite, y a(A) =0.

Remarquons qu’il Ny a pas de probléme de corps car le polyndme caractéristique de A dans K est le méme
que celui dans C.

Exercice 23 :L'ensemble des matrices diagonalisables de ./, (R) est-il dense ?

On pourra considérer I’application qui & une matrice 2 x 2 associe le discriminant de son polyndébme caractéris-
tique.

A: M~ le discriminant de y s est continue car polynomiale en les coefficients de M.

Tout matrice diagonalisable M dans .4, (IR) a des racines réelles donc A(M) > 0. Ainsi, fout matrice M limite d'une
suite de matrices diagonalisable vérifie aussi A(M) > 0.

Or il existe des matrices réelles sans valeur propre réelle, d’ou I'absence de densité.

Exercice 24 : Montrer que I'ensemble des matrices de rang p € [1,n—1] n’est ni ouvert ni fermé. Etudier les cas p =0
et p=n.

Notons 2, = {M € .4, (K), rgM = p}.

I suffit de trouver une suite de matrice de rang p qui converge vers une matrice qui ne I'est pas et une suite de
matrices qui ne sont pas de rang p et qui convergent vers une matrice qui |’ est.

Pour le deuxieéme point, il suffit d’utiliser la densité de ¥.%,,(K) : toute matrice de rang p est limite d’une suite de
matrices de rang n# p : %, n'est pas fermée donc %), n'est pas ouverte.

k!
diagonaux non nuls, donc de rang p. Alors My — 0, qui est de rang 0 # p donc 2, n'est pas fermée.
Enfin, ¢ = {0,} est fermée et non ouverte (une suite de matrices non nulles peut tendre vers la matrice nulle) et
Rn=9%n(K), est ouverte (classique) et non fermée, car, classiquement aussi 4.2, (K) = 4, (K) # 4%, (K) (densité).

. . . 1 1 ) . .
Pour le premier point, considérons M;. = diag(%,..., - 0,...,0) matrice diagonale avec exactement p coefficients

Exercice 25 : Montrer que I'application qui & M € 9.2, (K) associe son inverse est continue.
Formule de la comatrice!

Exercice 26 : Soit n > 2. Montrer que I'application qui & M € .4, (IK) associe son polynédme minimal et I'application
rang ne sont pas continue. Cas n=17?

0. 1. (0)

_ DT T 1

SiM=]: - ,alors M =—M 0, Qvec myy, = X" £ X,
c °_ °1l k k—+00
O-vevvnneenns 0

On aaussirgMy =n—-1#1g0, =0.
Sin=1, M— mp; devient continue (car ) = X - m).
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Exercice 27 : Donner le coefficient de degré 1 de y 4 en fonction de la trace et de la comatrice de A.
On suggere de commencer par supposer A inversible et d’exprimer y 4 en fonction de y 4-1.

Si A estinversible, on montre que y4(X) = (-1)" X" det(A) y 41 (%] et on en déduit que le ccefficient recherché est
(-1 tr(Com A).

Puis, ce coefficient étant une fonction continue de A car polynomiale et I'application A — (=1)**! tr(Com A)
I’étant aussi (linéarité en dimension finie de la trace et application comatrice polynomiale), on généralise la formule
par densité de 9.2, (K) dans ., (K).

Exercice 28: Etudier la connexité par arcs de 9., (R), 9% ,(C), et G(n).

B 9%,(R)n'est pas connexe par arcs car det¥.% ,(R) = R* non connexe par arcs alors que det est confinue.

B 9.%,(C) est connexe par arcs : on montre que chagque matrice inversible peut étre jointe continlment & 1,,.
Pour cela, on trigonalise (on peut), M= PTP~!, On note d; les coefficients diagonaux de T.
Par connexité par arcs de C*, pour chaqgue d;(# 0), on a un chemin continu ¢; : [0,1] — C* tel que ¢;(1) = d; et
¢;(0)=1.

wo (en)
On pose alors A(zr) = '
0 on(D)

®:t— PA(HP~! continue par opérations (car r— A(1) I'est et M— PMP~! est linéaire sur un espace de dimen-
sion finie donc continue), & valeurs inversibles, ®(0) = I, et ®(1) = M.

E O(n) n'est pas connexe par arcs car det@(n) = {+1} hon connexe par arcs alors que det est continue.

Exercice 29 : Monirer que I’ensemble des matirices diagonalisables de ./, (K) est connexe par arcs.

L'ensemble des matrices diagonalisable est étoilé par rapport & la matrice diagonalisable 0.
En effet, si M est diagonalisable, pour tout t€[0,1], (1-1)-0,+t-M = t- M |'est Aussi.
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