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Limite, continuité, compacité et connexité

par arcs
Extrait du programme officiel :

CONTENUS CAPACITÉS & COMMENTAIRES

e) Étude locale d’une application, continuité

Limite en un point adhérent à une partie A.
Caractérisation séquentielle.

Extensions : limite de f (x) lorsque ‖x‖ tend vers +∞, limite de f (x)
quand x tend vers +∞ ou −∞ lorsque A est une partie deR, limite
infinie en a adhérent à A pour une fonction réelle.

Cas d’une application à valeurs dans un produit fini d’espaces
vectoriels normés.
Opérations algébriques sur les limites. Limite d’une composée.
Continuité en un point. Caractérisation séquentielle.
Opérations algébriques sur les applications continues. Composi-
tion de deux applications continues.

Deux applications continues qui coïncident sur une partie dense
sont égales.

Image réciproque d’un ouvert, d’un fermé par une application
continue.
Applications uniformément continues, applications lipschit-
ziennes.

Caractère 1-lipschitzien de l’application x 7→ d(x, A) où A est une
partie non vide de E .

f) Applications linéaires et multilinéaires continues

Critère de continuité d’une application linéaire entre deux es-
paces normés : u ∈L (E ,F ) est continue si et seulement s’il existe
C ∈R+ tel que

∀x ∈ E , ‖u(x)‖⩽C‖x‖.

Notation Lc (E ,F ).

Norme subordonnée (ou norme d’opérateur) d’une application
linéaire continue.

Notations �u�, ‖u‖op. La norme d’opérateur est une norme sur
Lc (E ,F ). Sous-multiplicativité de la norme d’opérateur.
Adaptation aux matrices.

Critère de continuité des applications multilinéaires. La démonstration n’est pas exigible.

g) Parties compactes d’un espace normé

Définition d’une partie compacte par la propriété de Bolzano-
Weierstrass.

La propriété de Borel-Lebesgue est hors programme.

Une partie compacte est fermée et bornée.
Un fermé relatif d’une partie compacte est compact.
Une suite d’éléments d’une partie compacte converge si et
seulement si elle admet une unique valeur d’adhérence.
Produit d’une famille finie de compacts.

h) Applications continues sur une partie compacte

Image continue d’une partie compacte.
Théorème de Heine.
Théorème des bornes atteintes pour une application numérique
définie et continue sur un compact non vide.

On souligne l’importance de la compacité dans les problèmes
d’optimisation, notamment en mettant en évidence des situa-
tions où l’on prouve l’existence d’un extremum à l’aide d’une
restriction à un compact.

i) Connexité par arcs

Dans un espace vectoriel normé, chemin (ou arc) joignant deux
points ; partie connexe par arcs.

Relation d’équivalence associée sur une partie A de E . Les
classes sont les composantes connexes par arcs.
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CONTENUS CAPACITÉS & COMMENTAIRES

Cas des parties convexes, des parties étoilées.
Les parties connexes par arcs de R sont les intervalles.
Image continue d’une partie connexe par arcs. Cas particulier des applications à valeurs réelles : théorème des

valeurs intermédiaires.

j) Espaces vectoriels normés de dimension finie

Équivalence des normes en dimension finie. La démonstration n’est pas exigible.
Invariance des différentes notions topologiques par rapport au
choix d’une norme en dimension finie. Topologie naturelle d’un
espace normé de dimension finie.

La convergence d’une suite (ou l’existence de la limite d’une
fonction) à valeurs dans un espace vectoriel normé de dimen-
sion finie équivaut à celle de chacune de ses coordonnées dans
une base.

Une partie d’un espace normé de dimension finie est compacte
si et seulement si elle est fermée et bornée.
Une suite bornée d’un espace normé de dimension finie
converge si et seulement si elle a une unique valeur d’adhé-
rence.
Un sous-espace de dimension finie d’un espace normé est
fermé.
Si E est de dimension finie, L (E ,F ) =Lc (E ,F ).
Continuité des applications polynomiales définies sur un espace
normé de dimension finie, des applications multilinéaires définies
sur un produit d’espaces vectoriels normés de dimensions finies.

Exemples : déterminant, produit matriciel, composition d’appli-
cations linéaires.
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VIII Topologie matricielle (HP) 30

On se donne (E ,‖·‖E ), (F,‖·‖F ), (G ,‖·‖G ) des K-espaces vectoriels normés, avec K =R ou C, dE , dF , dG les distances
associées à la norme pour chaque espace.

On fixe A et B des parties non vides de E et F respectivement.

I LIMITE

1 Limite en un point
Soit f ∈ F A , a ∈ A, b ∈ F .

Définition 1 : Limite en un point

On dit que f (x) −−−→
x→a

b lorsque pour tout ε> 0, il existe η> 0 tel que ∀x ∈ A,

dE (x, a) = ‖x −a‖E ⩽ η=⇒ dF ( f (x),b) = ∥∥ f (x)−b
∥∥

F ⩽ ε

Remarque
R 1 – Définitions équivalentes :

∀ε> 0, ∃η> 0, ∀x ∈ A, x ∈ BE (a,η) =⇒ f (x) ∈ BF (b,ε)

∀V voisinage de b, ∃W voisinage de a, f (A∩W ) ⊂V

∀V voisinage de b, ∃W ′ voisinage de a dans A, f (W ′) ⊂V∥∥ f (x)−b
∥∥−−−−→

x→a
0R

f (a +h) −−−−−→
h→0E

b

R 2 – Cette définition dépend des normes. Mais en changeant une norme en une norme équivalente on ne
change pas la définition.

Propriété 1 : Convergente ⇒ localement bornée

Si f admet b comme limite en a, alors f est bornée au voisinage de a.

Démonstration

Appliquer la définition avec ε= 1. ■

Propriété 2 : Caractérisation séquentielle

f (x) −−−→
x→a

b si et seulement si pour tout suite (an) ∈ AN telle que an → a, f (an) → b.

Démonstration

Semblable au cas numérique.
■ (=⇒) : Soit (an )n ∈ AN tel que an → a.
Soit ε> 0. On a η> 0 tel que si x ∈ A tel que ‖x −a‖E ⩽ η,

∥∥ f (x)−b
∥∥

F ⩽ ε.

On a aussi N ∈N tel que si n ⩾ N , ‖an −a‖E ⩽ η. Alors si n ⩾ N ,
∣∣ f (an )−b

∣∣⩽ ε.
En résumé : ∀ε> 0, ∃N ∈N, ∀n ⩾ N ,

∣∣ f (an )−b
∣∣⩽ ε.

■ (⇐=) : par contraposée,
Si f (x) 6→ b, alors on a ε> 0 tel que pour tout η> 0, on a x ∈ A tel que ‖x −a‖E ⩽ η et

∥∥ f (x)−b
∥∥

F > ε.
Si pour tout n ∈N, on considère η= 1

n+1 , on a an ∈ A tel que |an −a|⩽ 1
n+1 et

∥∥ f (an )−b
∥∥

F > ε.
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Alors an → a et pourtant f (an ) 6→ b. ■

Propriété 3 : Unicité de la limite

Si f −−−→
x→a

b et f −−−→
x→a

b′, alors b = b′.

Démonstration

Comme a ∈ A, on a une suite (an ) ∈ AN telle que an → a. alors f (an ) → b et f (an ) → b′ donc par unicité de la limite
des suites, b = b′. ■

Propriété 4 : Limite par majoration de la différence

Si g ∈RA telle que g (x) −−−→
x→a

0 et si, au voisinage de a,
∥∥ f (x)−b

∥∥⩽ g (x) alors f (x) −−−→
x→a

b.

Démonstration

Si an → a, à partir d’un certain rang N ,
∥∥ f (an )−b

∥∥⩽ g (an ) → 0 donc f (an ) → b donc par caractérisation séquen-
tielle, f (x) −−−−→

x→a
b. ■

Propriété 5 : Limites de normes

Si f (x) −−−→
x→a

b,
∥∥ f (x)

∥∥
F −−−→

x→a
‖b‖F .

Démonstration∣∣∥∥ f (x)
∥∥

F −‖b‖F
∣∣⩽ ∥∥ f (x)−b

∥∥
F . ■

2 Cas où F est de dimension finie

Propriété 6 : Limite coordonnée à coordonnée

Si F est de dimension finie n, B = (e1, . . . ,en) une base de F , f ∈ F A, b =
n∑

k=1
bk ek ∈ F .

On note fk ∈KA tel que pour tout x ∈ A, f (x) =
n∑

k=1
fk (x)ek .

Alors f (x) −−−→
x→a

b si et seulement si pour tout k ∈ J1,nK, fk (x) −−−→
x→a

bk .

Démonstration

Il suffit d’appliquer la caractérisation séquentielle et la propriété connue pour les suites. ■
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3 Fonction à valeurs dans un espace produit

Propriété 7

Si (F1, N1), . . . , (Fp , Np ) sont des K-espaces vectoriels normés, on munit F1×·· ·×Fp de la norme produit N .
Si f ∈ (F1 ×·· ·×Fp )A, a ∈ A. Pour i ∈ J1, pK, on pose fi ∈ F A

i tel que f : x 7→ ( f1(x), . . . , fp (x)).
Soit b = (b1, . . . ,bp ) ∈ F1 ×·· ·×Fp .
Alors f −−−→

x→a
b si et seulement si pour tout i ∈ J1, pK, fi (x) −−−→

x→a
bi .

Démonstration

Il suffit d’appliquer la caractérisation séquentielle et la propriété connue pour les suites. ■

4 Opérations algébriques
La caractérisation séquentielle permet de prouver facilement les propriétés sur les opérations algébriques sur les

limites.

Propriété 8 : Opérations sur les limites

Soient f , g ∈ F A, h ∈KA telles que f (x) −−−→
x→a

b ∈ F , g (x) −−−→
x→a

b′ ∈ F , h(x) −−−→
x→a

α ∈K.

(i) Si λ ∈K, alors f +λg −−−→
x→a

b +λb′.

(ii) h(x) · f (x) −−−→
x→a

α ·b.

(iii) Si α 6= 0 et h ne s’annule pas sur A, alors 1

h(x)
−−−→
x→a

1

α
.

Propriété 9 : Compositions de limites

Si f ∈ F A, telle que f (A) ⊂ B , g ∈GB , a ∈ A, b ∈ B , c ∈G tels que f (x) −−−→
x→a

b, g (y) −−−→
y→b

c alors g ◦ f (x) −−−→
x→a

c.

Exemple

E 1 – f : (x, y) 7→ x3 + y3

x2 + y2
en (0,0). f (x,0) −−−→

x→0
0 : s’il y a une limite, c’est 0. f (0, y) −−−→

x→0
0 aussi mais cela ne suffit pas !∣∣ f (x), y)

∣∣⩽ |x|+ ∣∣y
∣∣→ 0.

Autre méthode : changement de variable en polaire x = r cosθ et y = r sinθ avec r =
√

x2 + y2 → 0.
f (r cosθ,r sinθ) = r (cos3 θ+ sin3 θ) → 0.

E 2 – f : (x, y) 7→ x2∣∣x − y
∣∣ en (0,0). f (0, y) → 0 et f (x, x+x2) → 1doncpas de limite (par composition ou par caractérisation

séquentielle).
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5 Extension à l’infini

Définition 2 : Limite pour ‖x‖→+∞
Si A non bornée, f ∈ F A, b ∈ F .
On dit que f (x) −−−−−−−→

‖x‖E→+∞
b lorsque

∀ε> 0, ∃M ∈R, ∀x ∈ A, ‖x‖E ⩾ M =⇒ ∥∥ f (x)−b
∥∥

F ⩽ ε

Définition 3 : Limite vectorielle en +∞
Si A ⊂R, f ∈ F A, b ∈ F .
(i) Si A n’est pas majorée, on dit que f (x) −−−−−→

x→+∞ b lorsque

∀ε> 0, ∃M ∈R, ∀x ∈ A, x ⩾ M =⇒ ∥∥ f (x)−b
∥∥

F ⩽ ε

(ii) Si A n’est pas minorée, on dit que f (x) −−−−−→
x→−∞ b lorsque f (−x) −−−−−→

x→+∞ b c’est-à-dire

∀ε> 0, ∃M ∈R, ∀x ∈ A, x ⩽ M =⇒ ∥∥ f (x)−b
∥∥

F ⩽ ε

Définition 4 : Limite infinie en un vecteur
Soit f ∈RA et a ∈ A.
(i) On dit que f (x) −−−→

x→a
+∞ lorsque

∀M ∈R, ∃η> 0, ∀x ∈ A, ‖x −a‖⩽ η=⇒ f (x)⩾ M

(ii) On dit que f (x) −−−→
x→a

−∞ lorsque − f (x) −−−→
x→a

−∞ c’est-à-dire

∀M ∈R, ∃η> 0, ∀x ∈ A, ‖x −a‖⩽ η=⇒ f (x)⩽ M

Remarque
R 3 – Reste les définitions vues en première année de f (x) −−−−−→

x→±∞ ±∞ lorsque E = F =R :
■ Pour A non majorée

⋆ f (x) −−−−−→
x→+∞ +∞

∀M ∈R, ∃M ′ ∈R, ∀x ∈ A, x ⩾ M ′ =⇒ f (x)⩾ M .

⋆ f (x) −−−−−→
x→+∞ −∞ ssi − f (x) −−−−−→

x→+∞ +∞, ie

∀M ∈R, ∃M ′ ∈R, ∀x ∈ A, x ⩾ M ′ =⇒ f (x)⩽ M .

■ Pour A non minorée
⋆ f (x) −−−−−→

x→−∞ +∞ ssi f (−x) −−−−−→
x→+∞ +∞, ie

∀M ∈R, ∃M ′ ∈R, ∀x ∈ A, x ⩽ M ′ =⇒ f (x)⩾ M .

⋆ f (x) −−−−−→
x→−∞ −∞ ssi − f (−x) −−−−−→

x→+∞ +∞, , ie

∀M ∈R, ∃M ′ ∈R, ∀x ∈ A, x ⩽ M ′ =⇒ f (x)⩽ M .

R 4 – On définit de même f (x) −−−−−−−−→‖x‖E→+∞
±∞.

R 5 – La caractérisation séquentielle de la limite est encore valable pour l’infini, avec une démonstration similaire.
R 6 – On peut unifier toutes ces définitions en introduisant une notion de voisinage de l’infini dans R : un voisinage

de +∞ est une partie V telle qu’il existe M ∈R tel que ]M ,+∞[⊂ V , un voisinage de −∞ est une partie V telle
qu’il existe M ∈R tel que ]−∞, M [⊂V .
Alors toutes les définitions de f (x) −−−−→

x→a
ℓ s’écrivent

∀V voisinage de b, ∃W voisinage de a, f (A∩W ) ⊂V
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II RELATIONS DE COMPARAISON
Définition 5 : Relations de comparaison

Soit f , g ∈ F A où A partie de E , φ ∈RA, a ∈ A. Si A est une partie non minorée ou non majorée de R, a
peut aussi être ±∞.

■ f est dominée par φ au voisinage de a, et on note f =
a
O

(
φ

)
ou f (x) =

x→a
O

(
φ(x)

)
lorsqu’il existe un réel

M et un voisinage V de a tel que

∀x ∈V ∩ A,
∥∥ f (x)

∥∥
F ⩽ M

∣∣φ(x)
∣∣ .

Cela revient à dire que
∥∥ f (x)

∥∥
F =O

(∣∣φ(x)
∣∣).

Lorsque φ ne s’annule pas au voisinage de a (sauf éventuellement en a), cela revient à dire que

x 7→ 1

φ(x)
f (x) ou encore x 7→

∥∥ f (x)
∥∥

F∣∣φ(x)
∣∣ est bornée au voisinage de a.

■ f est négligeable devant φ au voisinage de a, et on note f =
a

o
(
φ

)
ou f (x) =

x→a
o

(
φ(x)

)
lorsque pour

tout ε> 0, il existe un voisinage V de a tel que

∀x ∈V ∩ A,
∥∥ f (x)

∥∥
F ⩽ ε

∣∣φ(x)
∣∣ .

Cela revient à dire que
∥∥ f (x)

∥∥
F = o

(∣∣φ(x)
∣∣).

Lorsque φ ne s’annule pas au voisinage de a (sauf éventuellement en a), cela revient à dire que∥∥ f (x)
∥∥

F∣∣φ(x)
∣∣ −−−→

x→a
0.

■ On dit que f est équivalente à g au voisinage de a et on note f ∼
a

g lorsque f (x)−g (x) est négligeable
devant

∥∥ f (x)
∥∥

F ou devant
∥∥g (x)

∥∥
F (cela revient au même) au voisinage de a :

f (x)− g (x) = o
(∥∥ f (x)

∥∥)
F ou o

(∥∥g (x)
∥∥)

F .

III CONTINUITÉ

1 En un point, sur une partie
Soient f : A ⊂ E → F et a ∈ A.

Définition 6 : Continuité
f est continue en a lorsque f admet une limite (finie) en a.
f est continue sur A si et seulement si f est continue en tout point de A.

Propriété 10

Si f est continue en a, la limite de f en a vaut f (a).

Démonstration

Pour tout ε> 0, on a η> 0 tel que ‖x −a‖⩽ η=⇒ ∥∥ f (x)−ℓ
∥∥⩽ ε : en particulier, pour x = a, ∀ε> 0,

∥∥ f (a)−ℓ
∥∥⩽ ε. ■
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Propriété 11 : Caractérisations séquentielles

f est continue en a si et seulement si

∀(an)n ∈ AN telle que an → a, f (an) → f (a)

si et seulement si
∀(an)n ∈ AN telle que an → a, ( f (an)) converge.

Démonstration

La première est une conséquence immédiate de la caractérisation séquentielle de la limite.
Pour la deuxième :
■ (=⇒) : Si f est continue en a, f (x) −−−−→

x→a
f (a) donc la conclusion découle de la caractérisation séquentielle de

la limite.
■ (⇐=) : Si pour toute suite (an )n ∈ AN telle que an → a, ( f (an )) converge, soient deux telles suites (an ) et (bn ), et ℓ
et ℓ′ tel que f (an ) → ℓ et f (bn ) → ℓ′.
Alors en considérant la suite (cn ) telle que cn = an si n est pair et cn = bn si n est impair, cn → a car c2n → a et
c2n+1 → a en tant que suites extraites de (an ) et de (bn ).
Donc on a ℓ′′ tel que f (cn ) → ℓ′ et par extraction et unicité de la limite, ℓ= ℓ′′ = ℓ′.
Finalement, pour toute suite (an ) telle que an → a, ( f (an )) converge vers une même limite ℓ donc f converge
en a d’après la caractérisation séquentielle, donc f est continue en a. ■

Propriété 12 : Opérations

■ Si f est continue, x 7→ ∥∥ f (x)
∥∥ l’est aussi.

■ Toute combinaison linéaire, toute composée de fonctions continues est continue.

■ Si f : A → F et h : A →K sont continues, h · f l’est aussi. Si h ne s’annule pas, 1

h
· f l’est aussi.

Démonstration

Conséquences immédiates des propriétés de la limite. ■

Remarque
R 7 – C (A,F ) est un K-espace vectoriel, C (A,K) est une K-algèbre.

Exemple

E 3 – f : (x, y) 7→ x y

x2 + y2
si (x, y) 6= (0,0) , 0 sinon, est discontinue en (0,0) malgré la continuité des applications partielles,

mais continue ailleurs.

E 4 – f : (x, y) 7→ y2

|x|+ y2
si (x, y) 6= (0,0) , 0 sinon, est discontinue en (0,0) vu les applications partielles, mais continue

ailleurs.
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2 Continuité et topologie

Propriété 13 : Image réciproque d’un ouvert ou d’un fermé par une application continue

L’image réciproque d’un ouvert (respectivement fermé) par une application continue est un ouvert
(respectivement un fermé) relatif de l’ensemble de départ.

Remarque
R 8 – Rappel : f −1 (

Bc )= (
f −1(B)

)c .

Démonstration

f : A → F

■ Si B fermé de F , soit (an ) ∈ f −1(B) une suite convergeant vers a ∈ A. Alors f (an ) ∈ B → f (a) par continuité donc
f (a) ∈ B car B est fermé, donc a ∈ f −1(B).

■ Pour les ouverts, il suffit de passer au complémentaire avec le rappel.
Mais il n’est pas inintéressant de faire une preuve directe : si O ouvert de F , on veut montrer que f −1(O ) est un
ouvert de E .
Soit a ∈ f −1(O ). Alors f (a) ∈O ouvert donc on a ε> 0 tel que B( f (a),ε) ⊂O .
Par continuité, on a η> 0 tel que x ∈ A∩B(a,η) =⇒ f (x) ∈ B( f (a),ε) ⊂O .
Donc A∩B(a,η) ⊂ f −1(B( f (a),ε)) ⊂ f −1(O ) et f −1(O ) est ouvert. ■

Exemple
E 5 – A = {

(x, y) ∈R2, x2 ⩽ y ⩽ x
}
est un fermé de R2.

Remarque
R 9 – Si f : A → R est continue, a ∈ R, {x ∈ A, f (x) > a} et {x ∈ A, f (x) < a} sont des ouverts de A, {x ∈ A, f (x) ⩾ a},

{x ∈ A, f (x)⩽ a} et {x ∈ A, f (x) = a} sont des fermés de A.
R 10 – Ce n’est plus vrai pour les images directes. Exemples : sin(]0,4π[) et Arctan(R).

Propriété 14 : Applications continues coïncidant sur une partie dense

Des applications continues coïncidant sur des parties denses sont égales.

Démonstration

Conséquence des caractérisations séquentielles. ■

Exercice 1 : CCINP 35
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3 Uniforme continuité

Définition 7 : Uniforme continuité
Soit f : A ⊂ E →F. On dit que f est uniformément continue sur A si ∀ε> 0, ∃η> 0, ∀x, y ∈ A,∥∥x − y

∥∥
E ⩽ η=⇒ ∥∥ f (x)− f (y)

∥∥
F ⩽ ε.

Remarque
R 11 – À ne pas confondre avec f continue sur A :

∀a ∈ A, ∀ε> 0, ∃η> 0, ∀x ∈ A,
‖x −a‖E ⩽ η=⇒ ∥∥ f (x)− f (a)

∥∥
F ⩽ ε.

Cela impose que si x et y sont suffisamment proches, mais n’importe où dans I , alors f (x) et f (y) sont proches
également.

Propriété 15 : Uniformément continue ⇒ continue

Une fonction uniformément continue sur A est continue sur A.
Réciproque fausse.

Démonstration

Si
∀ε> 0, ∃η> 0, ∀a, x ∈ A, ‖x −a‖E ⩽ η=⇒ ∥∥ f (x)− f (a)

∥∥
F ⩽ ε

alors
∀a ∈ A, ∀ε> 0, ∃η> 0, ∀x ∈ I , ‖x −a‖E ⩽ η=⇒ ∥∥ f (x)− f (a)

∥∥
F ⩽ ε. ■

Propriété 16 : Opérations sur les applications uniformément continues

Une combinaison linéaire, une composée de fonctions uniformément continue l’est encore.

Remarque

R 12 – " Faux pour un produit ou un quotient.

Exemple
E 6 – x 7→ |x| est uniformément continue sur R mais pas x 7→ x2.

4 Fonctions lipschitziennes

Définition 8 : Fonction lipschitzienne

f : A ⊂ E → F est dite k-lipschitzienne sur A (où k ∈R∗+) si

∀x, x ′ ∈ A,
∥∥ f (x)− f (x ′)

∥∥
F ⩽ k

∥∥x −x ′∥∥
E .
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Propriété 17 : Lipschitzienne ⇒ continue

Toute fonction lipschitzienne sur A y est uniformément continue.
La réciproque est fausse.

Démonstration

∀x, y ∈ A,
∥∥ f (x)− f (y)

∥∥
F ⩽ k

∥∥x − y
∥∥

E . Donc si η= ε

k
convient dans la définition de l’uniforme continuité. ■

Exemple
E 7 – x 7→ ‖x‖

Propriété 18 : Lispschziannité de la distance à une partie

E −→ R

x 7−→ d(x, A)
est 1-lipschitzienne donc uniformément continue sur E .

C’est en particulier le cas de x 7→ d(x, a) où a ∈ E avec A = {a}.

Démonstration

Déjà vu dans le chapitre espaces vectoriels normés. ■

Exemple
E 8 – On retrouve que les boules ouverte/fermée le sont, et que les sphères sont fermées.

5 Applications linéaires
Remarque
R 13 – Pour une application linéaire, on peut toujours déplacer un problème en un point donné en un problème en

0E , et la continuité revient à une lipschitziannité, et donc une uniformité continue.

Propriété 19 : Continuité des applications linéaires

Soit u ∈L (E ,F ). Les cinq propositions suivantes sont équivalentes :
(i) u est continue sur E .
(ii) u est continue en 0E .
(iii) Il existe k ∈R∗+ tel que pour tout x ∈ E ,

‖u(x)‖F ⩽ k ‖x‖E .

(iv) u est lipschitzienne sur E .
(v) u est uniformément continue sur E .

Remarque
R 14 – Ce qui importe vraiment en pratique, c’est (i ) ⇐⇒ (i i i ).
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Démonstration

(i =⇒ i i ) Immédiat.
(i i =⇒ i i i ) Supposons u est continue en 0E et remarquons que le résultat à montrer s’écrit, pour x 6= 0E ,∥∥∥∥u

(
x

k ‖x‖E

)∥∥∥∥
F
⩽ 1, avec

∥∥∥∥ x

k ‖x‖E

∥∥∥∥
E
= 1

k
.

Écrivons alors la définition de la continuité en 0E avec ε = 1 : on a η > 0 tel que si ‖x‖E ⩽ η, ‖u(x)‖F ⩽ 1 (car
u(0E ) = 0E ).

La remarque précédente nous incite à choisir k tel que 1

k
⩽ η. Poser k = 1

η
.

Alors, si x ∈ E \ {0E },
∥∥∥∥ x

k ‖x‖E

∥∥∥∥
E
= 1

k
= η, donc

∥∥∥∥u

(
x

k ‖x‖E

)∥∥∥∥
F
⩽ 1 ce qui donne bien ‖u(x)‖F ⩽ k ‖x‖E .

Comme cette inégalité est également vérifiée en 0E , k = 1

η
convient.

(i i i =⇒ i v) S’il existe k ∈ R∗+ tel que pour tout x ∈ E , ‖u(x)‖F ⩽ k ‖x‖E , alors pour tout x, x′ ∈ E ,∥∥u(x)−u(x′)
∥∥

F = ∥∥u(x −x′)
∥∥

F ⩽ k
∥∥x −x′∥∥

E donc u est k-lipschitzienne.
(i v =⇒ v) Connu.
(v =⇒ i ) Connu.

Notation 1
On note Lc (E ,F ) =L (E ,F )∩C (E ,F ) l’ensemble des applications linéaires continues sur E .

Remarque
R 15 – Lc (E ,F ) est un sous-espace vectoriel de L (E ,F ).

Exemple

E 9 – φ : f ∈ (C ([a,b],C), N∞) 7→
∫b

a
f (t )dt ∈ (C, |·|) est continue. En effet, c’est une forme linéaire telle que pour tout f ,

φ( f )⩽ (b −a)
∥∥ f

∥∥∞.
Elle est aussi continue si on munit C ([a,b],C) de la norme N1 de la convergence en moyenne.

E 10 – f ∈ (C ([0,1],C), N1) 7→ f (0) ∈ (C, |·|) est non continue avec fn telle que fn (0) = 1 mais N1( fn ) = 1

n
(par exemple un

triangle : fn (0) = 1, fn (x) = 0 si x ⩾ 2
n et fn affine entre 0 et 2

n ) ou alors fn : x 7→ (1−x)n).

Méthode 1 : Étudier la continuité d’une application linéaire
■ Pour montrer qu’une application linéaire est continue, on cherche une constante k telle que pour tout x ∈ E ,

‖u(x)‖F ⩽ k ‖x‖E ... Sauf si on est en dimension finie au départ : dans ce cas, c’est automatique.
■ Pour montrer qu’une application linéaire n’est pas continue, on cherche à nier la caractérisation séquentielle
de la continuité en 0 en trouvant une suite (xn )n ∈ EN telle que xn → 0E (ie ‖xn‖E → 0) et pourtant u(xn ) 6→ 0F

(ie ‖u(xn )‖F 6→ 0F ) , ou encore, comme pour nier une domination de normes, une suite telle que
(‖u(xn )‖F

‖x‖E

)
n

n’est pas bornée.

Exercice 2 : CCINP 1

Remarque
R 16 – La continuité dépend des normes au départ et à l’arrivée, mais ne change pas en prenant des normes

équivalentes.
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R 17 – La domination de norme est équivalente à la continuité de l’endomorphisme idE pour ces normes :
idE : (E , N1) → (E , N2) est continue ssi on a k tel que ∀ x ∈ E , N2(idE (x)) = N2(x) ⩽ kN1(x) si et seulement si N1
domine N2.

Exercice 3 : CCINP 36, 54

6 Applications multilinéaires

Propriété 20 : Continuité des applications multilinéaires

Si E1, . . . ,Ep ,F sont des K-espaces vectoriels normés et f : E1 × . . .×Ep → F est multilinéaire, alors les deux
propositions suivantes sont équivalentes :

(i) f est continue pour la norme produit sur E1 × . . .×Ep

(ii) Il existe k ∈K tel que
∀ (x1, . . . , xp ) ∈ E1 × . . .×Ep ,

∥∥ f (x, . . . , xp )
∥∥

F ⩽ k ‖x1‖1 · · ·
∥∥xp

∥∥
p

Démonstration : Non exigible

On traite le cas p = 2, le cas général se traite de la même manière.
■ Supposons f continue sur E1 ×E2. Comme dans le cas des applications linéaires, on veut montrer qu’on a

k ∈R∗+ tel que si (x, y) 6= (0,0),
∥∥∥∥∥ f

(
xp

k ‖x‖1
,

yp
k

∥∥y
∥∥

2

)∥∥∥∥∥
F

⩽ 1

On pose alors, avec ε= 1, en traduisant la continuité en (0,0), un η> 0 tel que, pour la norme produit N ,

N ((x, y)) = max
(‖x‖1 ,

∥∥y
∥∥

2

)
⩽ η=⇒ ∥∥ f (x, y)

∥∥
F ⩽ 1

Posons k = 1

η2
.

Alors, si (x, y) 6= (0,0), N

(
xp

k ‖x‖1
,

yp
k

∥∥y
∥∥

2

)
= max

(
η,η

)= η donc
∥∥∥∥∥ f

(
xp

k ‖x‖1
,

yp
k

∥∥y
∥∥

2

)∥∥∥∥∥
F

⩽ 1 donc

∥∥ f
(
x, y

)∥∥
F ⩽ k ‖x‖1

∥∥y
∥∥

2 .

Si x = 0E1 ou y = 0E2 , l’inégalité s’écrit 0⩽ k ·0.
■ Supposons qu’on ait k > 0 tel que pour tout (x, y) ∈ E1 ×E2,

∥∥ f (x, y)
∥∥

F ⩽ k ‖x‖1
∥∥y

∥∥
2.

Soit (a,b) ∈ E1 ×E2. Montrons que f est continue en (a,b).
Soit (x, y) ∈ E1 ×E2.
On remarque que f (x, y)− f (a,b) = f (x −a +a, y)− f (a,b) = f (x −a, y)+ f (a, y −b). Donc∥∥ f (x, y)− f (a,b)

∥∥
F ⩽

∥∥ f (x −a, y)
∥∥

F +∥∥ f (a, y −b)
∥∥

F ⩽ k
(‖x −a‖1

∥∥y
∥∥

2 +‖x‖1
∥∥y −b

∥∥
2

)−−−−−−−−−→
(x,y)→(a,b)

0.

On a bien f continue en (a,b).
■

Corollaire 1 : Continuité d’un produit scalaire

Si (E , |) est un espace préhilbertien réel, alors (x, y) 7→ (x|y) est continue.

Démonstration

C’est une application de l’inégalité de Cauchy-Schwarz avec k = 1. ■
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IV DIMENSION FINIE

1 Coordonnées

Propriété 21 : Continuité coordonnée à coordonnée

On suppose F de dimension finie n > 1.
Soit A une partie non vide de E , f ∈ F A , B = (e1, . . . ,en) une base de F . On pose f =

n∑
k=1

fk ek .

Alors f est continue sur A si et seulement si pour tout k ∈ J1,nK, fk est continue sur A.

Démonstration

Propriété analogue connue pour les limites. ■

2 Applications linéaires

Théorème 1 : Continuité des applications linéaires en dimension finie

Si E est de dimension finie, alors toute application linéaire de E vers F est continue sur E .
Autrement dit, Lc (E ,F ) =L (E ,F ).

Remarque
R 18 – Une domination de norme étant une continuité d’application linéaire (idE ), on a réciproquement que la

continuité de tout endomorphisme sur E implique l’équivalence de toute norme de E .

Démonstration

Soit B = (e1, . . . ,ep ) une base de E , u ∈L (E ,F ), x ∈ E .

On décompose x = x1e1 +·· ·+ xp ep . Alors ‖u(x)‖F =
∥∥∥∥∥ p∑

k=1
xk u(ek )

∥∥∥∥∥⩽
p∑

k=1

∣∣xk
∣∣∥∥u(ek )

∥∥
F ⩽C N1(x) où C = max

∥∥u(ek )
∥∥ ne

dépend pas de x et N1 norme sur E de dimension finie donc équivalente à ‖·‖E : on a α ∈R tel que N1 ⩽ α‖‖E et
alors ‖u(x)‖F ⩽αC ‖x‖E donc u est bien continue. ■

Exercice 4 : Montrer que si P ∈GL n (K), A ∈Mn (K) 7→ PAP−1 est continue.
Elle est continue car linéaire sur un espace de dimension finie. Ainsi, si Ak → A, alors PAk P−1 → PAP−1.

Exercice 5 : Montrer que l’ensemble des matrices de trace nulle est un fermé de Mn (K).
Image réciproque par la forme linéaire sur un espace de dimension finie donc continue trace du fermé {0} de

K.

Exercice 6 : Montrer que l’ensemble des matrices symétriques est un fermé de Mn (K).
Image réciproque par l’application linéaire sur un espace de dimension finie donc continue M 7→ M⊺ −M du

fermé {0n }.
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3 Applications polynomiales

Définition 9 : Applications polynomiales

Soit f : E →K, où E est de dimension finie, B = (e1, . . . ,ep ) une base de E . Pour x ∈ E , on note x1, . . . , xp ses
coordonnées dans B.

f est ditemonomiale s’il existe k1, . . . ,kp ∈Np tels que f : x 7→ xk1
1 · · ·x

kp
p .

f est dite polynomiale si elle est combinaison linéaire de fonctions monomiales.

Remarque
R 19 – En changeant de base, les anciennes coordonnées sont transformées en combinaisons linéaires de nouvelles

coordonnées. Ainsi, le caractère polynomial d’une fonction ne dépend pas de la base.

Propriété 22 : polynomiale en dimension finie ⇒ continue

Toute fonction polynomiale sur E de dimension finie est continue.

Démonstration

Les formes ie coordonnées φi : x 7→ xi sont linéaires donc continues, donc, par opérations, f l’est. ■

Exercice 7 : Montrer que det est continue sur Mn (K).
En effet, elle est polynomiale en les cœfficients de la matrice.

Exercice 8 : M 7→ Com(M) est continue sur Mn (K).
En effet, ses cœfficients sont polynomiaux en les cœfficients de la matrice.

Exercice 9 : GL n (K) est ouvert.
en tant que image réciproque de l’ouvert K\ {0} par l’application continue det.

4 Applications multilinéaires

Propriété 23 : Continuité des applications bilinéaires en dimension finie

Si (E ,‖‖E ), (F,‖‖F ) sont des K-espaces vectoriels de dimension finie, (G ,‖·‖G ) K-espace vectoriel, alors
toute application bilinéaire de E ×F dans G est continue.

Démonstration

B : E ×F →G bilinéaire, B = (
e1, . . . ,ep

)
une base de E et C = (

f1, . . . , fq
)
une base de F .

Si (x, y) ∈ E ×F , B(x, y) = B

(
p∑

k=1
xk ek ,

q∑
ℓ=1

yℓ fℓ

)
=

p∑
k=1

q∑
ℓ=1

xk yℓB(ek , fℓ).

Or (x, y) 7→ xk est continue car x 7→ xk l’est et (x, y) 7→ yℓ est continue car y 7→ yℓ donc par opérations B est continue.
■
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Propriété 24 : Généralisation

Plus généralement, toute application multilinéaire définie sur un produit d’espaces de dimension finie
est continue.

Démonstration

Démonstration similaire. ■

Exemple
E 11 – Si B base de E de dimension finie, detB est une forme n-linéaire de E donc est continue.

V NORMES D’OPÉRATEURS

1 Cas des applications linéaires

Définition 10 : Norme subordonnée
On considère deux K-espaces vectoriels normés (E ,‖·‖E ) et (F,‖·‖F ). Si u ∈Lc (E ,F ), on pose

�u�= ‖u‖op = sup

{‖u(x)‖F

‖x‖E
; x ∈ E \ {0E }

}
= sup

x 6=0E

‖u(x)‖F

‖x‖E
.

Remarque
R 20 – �u� est le plus petit k tel que pour tout x ∈ E ,

‖u(x)‖F ⩽ k ‖x‖E .

On vérifie qu’il suffit de prendre la borne supérieure au choix soit sur la sphère unité, soit sur la boule unité fermée.

Propriété 25 : Définition équivalente

Si u ∈Lc (E ,F ),

�u�= sup
‖x‖E=1

‖u(x)‖F = sup
x∈S(0E ,1)

‖u(x)‖F

= sup
‖x‖E⩽1

‖u(x)‖F = sup
x∈B(0E ,1)

‖u(x)‖F .

Démonstration

■ Si x 6= 0E ,
x

‖x‖E
est de norme 1, donc

‖u(x)‖F

‖x‖E
=

∥∥∥∥u

(
x

‖x‖E

)∥∥∥∥
F
⩽ sup

x∈S(0E ,1)
‖u(x)‖F .

On a donc �u�⩽ sup
x∈S(0E ,1)

‖u(x)‖F .

Réciproquement, si x est de norme 1, x 6= 0E et ‖u(x)‖F = ‖u(x)‖F

‖x‖E
⩽ �u�.

On a donc sup
x∈S(0E ,1)

‖u(x)‖F ⩽ �u�.
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■ Si x 6= 0E ,
∥∥∥∥ x

‖x‖E

∥∥∥∥
E
⩽ 1, donc

‖u(x)‖F

‖x‖E
=

∥∥∥∥u

(
x

‖x‖E

)∥∥∥∥
F
⩽ sup

x∈B(0E ,1)

‖u(x)‖F .

On a donc �u�⩽ sup
x∈B(0E ,1)

‖u(x)‖F .

Réciproquement, si ‖x‖E ⩽ 1 et x 6= 0E , ‖u(x)‖F ⩽ ‖u(x)‖F

‖x‖E
⩽ �u�.

On a donc sup
x∈B(0E ,1)

‖u(x)‖F ⩽ �u�.

■

Propriété 26 : C’est une norme

� ·� est une norme sur Lc (E ,F ) appelée norme subordonnée à ‖·‖E et ‖·‖F . On parle aussi de norme
d’opérateur.

Démonstration

Bonne définition Si u ∈Lc (E ,F ), �u� est bien défini par caractérisation de la continuité.
Définie positivité �u�⩾ 0 et si �u�= 0, alors pour tout x 6= 0E , ‖u(x)‖F = 0 donc u(x) = 0F et c’est encore vrai pour x = 0E .
Homogénéité Si u ∈ Lc (E ,F ) et λ ∈K, alors pour tout x ∈ S(0E ,1), ‖λu(x)‖F = |λ|‖u(x)‖F avec |λ|⩾ 0 donc, en passant

aux sup, �λu�= |λ|�u�.
Inégalité triangulaire découle sans problème de celle de ‖·‖F . ■

Propriété 27 : Norme subordonnée d’une composée

On considère trois K-espaces vectoriels normés (E ,‖·‖E ), (F,‖·‖F ) et (G ,‖·‖G ). Si u ∈Lc (E ,F ) et v ∈Lc (F,G)
et � ·�E ,F désigne la norme subordonnée sur Lc (E ,F ) par exemple, alors

�v ◦u�E ,F ⩽ �v�F,G�u�E ,F .

Démonstration

Si x 6= 0E , ‖v ◦u(x)‖G ⩽ �v�F,G ‖u(x)‖F ⩽ �v�F,G�u�E ,F ‖x‖E donc, par définition, �v ◦u�E ,F ⩽ �v�F,G�u�E ,F . ■

Corollaire 2 : Cas des endomorphismes

Ici, E = F . Si u ∈Lc (E), on définit

�u�= sup
x 6=0E

‖u(x)‖E

‖x‖E
= sup

‖x‖E=1
‖u(x)‖E = sup

‖x‖E⩽1
‖u(x)‖E .

Alors � ·� est une norme sur Lc (E) qui vérifie � idE �= 1 et

∀u, v ∈Lc (E), �v ◦u�⩽ �u�·�v�.

On dit que �·� est une norme d’algèbre unitaire.

Propriété 28 : Puissance et norme subordonnée

Pour tout u ∈Lc (E) et k ∈N, ���uk
���⩽ �u�k .
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Méthode 2 : Calcul d’une norme subordonnée
Pour calculer la norme subordonnée d’un opérateur (ie d’une application linéaire), on écrit des majorations

∀x ∈ E , ‖u(x)‖F ⩽ · · · = · · ·⩽ · · · = · · ·⩽ k ‖x‖E

en effectuant des majorations les plus fines possibles et en distinguant clairement les majorations et les égalités, afin
de pouvoir traiter plus facilement les cas d’égalité.

Soit on trouve au moins un cas d’égalité, c’est-à-dire un x ∈ E tel que ‖u(x)‖F = k ‖x‖E , alors k =�u� (et le sup est
en fait un max). On verra qu’en dimension finie, on peut toujours en trouver.

S’il n’y a pas de cas d’égalité, on peut chercher une suite (xn )n∈N ∈ (E \ {0E })N telle que ‖u(xn )‖F

‖xn‖E
→ k et alors

k =�u� (car le sup est le seul majorant limite d’une suite de l’ensemble).
On peut aussi, pour tout ε> 0, chercher xε 6= 0E tel que ‖u(xε)‖F ⩾ (k −ε)‖xε‖E .

Exercice 10 : CCINP 38

2 Traduction matricielle

Propriété 29 : Norme subordonnée matricielle

Soit ‖·‖ une norme quelconque sur Mn,1(K).
On définit, pour A ∈Mn(K),

�A�= sup
X 6=0n,1

‖AX ‖
‖X ‖ = sup

‖X ‖=1
‖AX ‖ = sup

‖X ‖⩽1
‖AX ‖

appelée norme subordonnée à ‖·‖.
Il s’agit d’une norme d’algèbre unitaire sur Mn(K), donc vérifiant �In�= 1 et

∀ A,B ∈Mn(K), �AB�⩽ �A��B�

ce qui implique
∀ A ∈Mn(K), ∀k ∈N,

���Ak
���⩽ �A�k .

VI COMPACITÉ

1 Suites extraites

Définition 11 : Suite extraite
Soit u ∈ EN. On appelle suite extraite ou sous-suite de u toute suite v ∈ EN telle qu’il existe φ : N→N

strictement croissante telle que ∀n ∈N, vn = uφ(n).
φ est appelée extractrice.

Lemme 1
Si φ est une extractrice, alors

∀n ∈N, φ(n)⩾ n.
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Propriété 30 : Limite d’une suite extraite convergente

Si u −→ ℓ, toute suite extraite de u converge vers ℓ.

Définition 12 : Valeur d’adhérence
On appelle valeur d’adhérence de u ∈ EN toute limite (dans E) de suite extraite de u.

Propriété 31 : Cas des suites convergentes

Une suite convergente a une unique valeur d’adhérence : sa limite. Réciproque fausse.

Corollaire 3 : Contraposée

Si une suite a plusieurs valeurs d’adhérence, elle diverge.

Propriété 32 : Condition suffisante de convergence

Si (u2n) et (u2n+1) convergent vers une même limite, alors u converge vers cette limite.

Exercice 11
Soit u ∈ EN, ℓ ∈ E .
1. Montrer qu’il y a équivalence entre

(i) ℓ est valeur d’adhérence de u.
(ii) Pour tout ε> 0, {n ∈N,un ∈ B(ℓ,ε)} est infini.
(iii) Pour tout ε> 0, pour tout p ∈N,

{
n ⩾ p,un ∈ B(ℓ,ε)

}
n’est pas vide.

2. Application classique : en déduire que l’ensemble des valeurs d’adhérence de u est fermé.

1.
(i)=⇒(ii) Si ℓ est valeur d’adhérence, φ extractrice telle que uφ(n) → ℓ, ε> 0, alors apcr uφ(n) ∈ B(ℓ,ε).
(ii)=⇒(iii) Soit ε> 0, si {n ∈N, un ∈ B(ℓ,ε)} est majoré et si p ∈N,

{
n ⩾ p,un ∈ B(ℓ,ε)

}
ne peut être vide, sinon l’ensemble

{n ∈N,un ∈ B(ℓ,ε)} serait majoré par p et inclus dans N donc fini.
(iii)=⇒(i) Si pour tout ε> 0, pour tout p ∈N,

{
n ⩾ p,un ∈ B(ℓ,ε)

}
n’est pas vide, on construit une suite extraite conver-

geant vers ℓ : on pose φ(0) ∈N tel que φ(0)⩾ 0 et uφ(0) ∈ B
(
ℓ, 1

20

)
.

Puis φ(1)⩾ p =φ(0)+1 tel que uφ(1) ∈ B
(
ℓ, 1

21

)
.

Et par récurrence, pour tout n ∈N∗, φ(n)⩾ p =φ(n −1)+1 tel que uφ(n) ∈ B
(
ℓ, 1

2n

)
.

Alors φ est strictement croissante et, par construction, uφ(n) → ℓ.

2. Ainsi, l’ensemble des valeurs d’adhérence de u est
⋂

p∈N

{
un , n ⩾ p

}
qui est bien fermé.

2 Parties compactes

a Définition

Définition 13 : de Bolzano-Weierstraß
Une partie K de E est dite compacte (ou est un compact) lorsque toute suite d’éléments de K a au

moins une valeur d’adhérence dans K , c’est-à-dire qu’on peut en extraire une suite qui converge dans
K .
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Remarque
R 21 – ∅ est compacte.
R 22 – Par théorème de Bolzano-Weierstraß, tout segment de R est compact.

b Un compact est fermé borné

Propriété 33 : compact ⇒ fermé et borné

Toute partie compacte est fermée et bornée.

Démonstration

Soit K une partie compacte de E .
Soit u = (un )n une suite d’éléments de K , convergeant vers ℓ ∈ E . Comme K est compacte, on peut extraire de

x une suite convergeant dans K . Par propriété des suites extraites et unicité de la limite, on a alors ℓ ∈ K . Ainsi, K est
fermée.

K est bornée sinon, on pourrait construire une suite u ∈ K n telle que ‖u‖→+∞ (avec, pour tout n ∈N, un ∈ B(0E ,n),
par exemple) et dont les suites extraites ne peuvent converger. ■

Remarque
R 23 – La réciproque est fausse en général, mais on va voir qu’elle est vraie en dimension finie.
R 24 – Tout compact de R est inclus dans un segment.

Exemple : Contre-exemple de partie fermée bornée non compacte
E 12 – Dans K[X ] muni de la norme ‖P‖∞ = sup

k∈N
∣∣pk

∣∣ (avec des notations évidentes), X n ∈ S(0,1) (qui est fermée et

bornée).
Si

(
X n)

a une valeur d’adhérence, on a P ∈ K[X ] et φ extractrice telle que
∥∥∥Xφ(n) −P

∥∥∥∞ → 0. Alors chaque
cœfficient de Xφ(n) tend vers le cœfficient correspondant de P , donc P = 0K[X ]. Mais alors 1 =

∥∥∥Xφ(n)
∥∥∥∞ → 0

ce qui est contradictoire.

Exercice 12 : CCINP 13

c Partie fermée d’un compact

Propriété 34 : Partie fermée d’un compact

Soit K une partie compacte de E et A une partie de K . Si A est fermée, alors A est compacte.

Remarque
R 25 – La réciproque est vraie ! Ainsi les parties de K fermées sont exactement les parties de K compactes.
R 26 – Parle-t-on de fermé de E ou de fermés relatifs de K ? En fait, c’est la même chose car le compact K est fermé.

Il n’y a donc pas d’ambiguïté.
R 27 – En dimension finie, ce ne sera pas très intéressant car on va montrer que les compacts en général sont

exactement les fermés bornés.
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Démonstration

En effet, si A ⊂ K est fermée, toute suite d’éléments de A donc de K a une valeur d’adhérence dans K et comme
A est fermée, cette limite de sous-suite est nécessairement dans A, donc A est compacte. ■

d Produit de compacts

Propriété 35 : Produit de compacts

Si p ∈N∗,
(
(E1,‖·‖1) , . . . ,

(
Ep ,‖·‖p

))
sont des K-espaces vectoriels normés et pour i ∈ J1, pK, Ki compact de

Ei , alors K = K1 ×·· ·×Kp est un compact de E = E1 × . . .×Ep muni de la norme produit.

Démonstration

C’est évident si p = 1, on montre le résultat pour p = 2 et la démonstration se généralise pour p quelconque.
Si, donc, K1 et K2 sont des compacts de E1 et E2, u = ((

xn , yn
))

n∈N ∈ KN.
Comme pour le théorème de Bolzano-Weierstraß, de (xn ) ∈ K1 compact, on extrait

(
xφ(n)

)
qui converge dans

K1, puis de
(
yφ(n)

)
on extrait

(
yφ(ψ(n))

)
convergeant dans K2.

Alors
(
uφ◦ψ(n)

)
n converge dans K1 ×K2, ce qu’il fallait démontrer.

Pour p > 2, il suffit de continuer le procédé avec chaque nouvelle composante. ■

Remarque
R 28 – La démonstration est intéressante, mais dans la pratique, en cas d’extractions multiples, il est légitime de se

poser la question : peut-on faire apparaître un produit de compact?

3 Fonctions continues sur des compacts

Propriété 36 : Image continue d’un compact

Si f : K → F avec K partie compacte de E et f continue, alors f (K ) est compacte.

Remarque
R 29 – L’image continue d’un compact est compacte, et donc en particulier fermée et bornée.
R 30 – À ne pas confondre avec la propriété qui dit que l’image réciproque d’une partie relativement ouverte ou

fermée de F l’est encore dans E .

Démonstration

Soit y ∈ f (K )N. On a, pour tout n ∈N, xn ∈ K tel que yn = f (xn ).
De (xn ) ∈ KN, on peut extraire une suite (xφ(n)) convergeant vers ℓ ∈ K .
Alors, par continuité, yφ(n) = f (xφ(n)) → f (ℓ) ∈ f (K ), ce qu’il fallait démontrer. ■

Corollaire 4 : théorème des bornes atteintes
Toute fonction continue sur un compact de E , à valeur réelles, est bornée et atteint ses bornes.
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Remarque
R 31 – Trèèèès utile ! Et avec un petit goût de déjà-vu...
R 32 – Ce théorème permet de montrer qu’en dimension finie, la norme subordonnées de u (resp. A) est nécessai-

rement atteinte sur S(0,1).

Démonstration

f : K →R continue et K compacte, alors f (K ) est une partie compacte de R, donc fermée et bornée.
Donc f est bornée et si M = sup f , alors on a une suite (yn ) ∈ f (K )N convergeant vers M par caractérisation

séquentielle du sup et comme f (K ) est fermée, M ∈ f (K ).
On montre de la même manière que l’inf est atteint. ■

Théorème 2 : de Heine
Toute application continue sur un compact y est uniformément continue.

Démonstration

Comme dans le cas réel, on raisonne classiquement par l’absurde.
Soit f : K → F continue et non uniformément continue. Alors

∃ε> 0, ∀η> 0, ∃ (
x, x′) ∈ K 2,

∥∥x −x′∥∥
E ⩽ η et

∥∥ f (x)− f (x′)
∥∥

F > ε

Soit un tel ε> 0, avec, pour n ∈N, η= 1

(ζ(2))n , on a xn , x′
n ∈K tel que

∥∥xn −x′
n
∥∥

E ⩽ 1

(ζ(2))n et
∥∥ f (xn )− f (x′

n )
∥∥

F > ε.

Mais
((

xn , x′
n
)) ∈ (

K 2)N et K 2 est compacte donc on peut en extraire une suite
(
xφ(n), x′

φ(n)

)
convergeant vers(

ℓ,ℓ′
) ∈K2.
Mais xn −x′

n → 0 donc ℓ= ℓ′ et par continuité ε<
∥∥∥ f

(
xφ(n)

)− f
(
x′
φ(n)

)∥∥∥
F
→ 0 ce qui est contradictoire. ■

4 Cas de la dimension finie

a
K

On a déjà vu que les segments de R étaient des compacts de R.
Le théorème de Bolzano Weierstraß permet de démontrer le résultat suivant, généralisé un peu plus loin.

Théorème 3 : de Bolzano-Weierstraß
De toutes suite bornée d’éléments du corps K=R ou C, on peut extraire une suite convergente.

Corollaire 5 : Compacts de R ou C

Les compacts du corps K=R ou C sont exactement les parties fermées et bornées de K.

Démonstration

Soit K un compact du corps K. On a déjà vu que K était fermé et borné.
Soit K une partie fermée et bornée du corpsK. Soit x ∈ KN une suite d’éléments de K . Par théorème de Bolzano-

Weierstraß, on peut en extraire une suite convergente.Mais comme K est fermée, la limite de la sous-suite est encore
dans K qui est bien compact. ■
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Remarque
R 33 – Les segments de R sont alors exactement les intervalles compacts de R.

Mais il existe bien d’autre compacts qui ne sont pas des intervalles.
Par exemple, un ensemble fini est toujours compact (pourquoi? – et c’est valable dans n’importe quel es-
pace vectoriel normé).
Cependant, tout compact de R étant fermé et borné, il est inclus dans [infK , supK ] = [minK ,maxK ] (le carac-
tère fermé assurant le fait que les bornes soient atteintes).
Ainsi, les propriétés vraies « sur tout segment de R » sont aussi les propriétés vraies « sur tout compact de R. »

b Équivalence des normes

Théorème 4 : Équivalence des normes en dimension finie

Dans un espace vectoriel de dimension finie, toutes les normes sont équivalentes.

Lemme 2
Les compacts de Kn muni de ‖·‖∞ sont exactement les parties fermées et bornées de (Kn ,‖‖∞).

Remarque
R 34 – On généralise à tout espace vectoriel normé de dimension finie ci-après.

Démonstration : du lemme

On sait déjà que les compacts sont fermés et bornés.
Soit A une partie fermée et bornée de

(
Kn ,‖‖∞

)
. Pour montrer qu’elle est compacte, il suffit de l’inclure dans un

compact.
Or on a M > 0 tel que x ∈ A =⇒ ‖x‖∞ ⩽ M . Alors, si K =R, A ⊂ [−M , M ]n et si K =C, A ⊂ D(0, M)n qui, dans les deux

cas, est un produit fini de compacts donc un compact (et ‖·‖∞ est bien la norme produit de |·| n fois.) ■

Démonstration : du théorème - Non exigible

Soit N une norme sur E espace vectoriel de dimension finie munie d’une base (e1, . . . ,en ). On va montrer que N

est équivalente à N∞ définie par N∞
(

n∑
i=1

xi ei

)
= max

1⩽i⩽n

∣∣xi
∣∣ ce qui suffit à conclure par transitivité.

Or, si x =
n∑

i=1
xi ei ∈ E \{0}, αN∞(x)⩽ N (x)⩽βN∞(x) revient à avoir α⩽ N

(
x

N∞(x)

)
⩽β, avec x

N∞(x)
de norme 1, donc

dans la sphère unité. Il se trouve qu’il n’est pas difficile de montrer que la sphère unité de Kn est compacte.

On introduit alors l’application ϕ :

(
Kn ,‖·‖∞

) −→ (R, |·|)

X = (x1, . . . , xn ) 7−→ N

(
n∑

i=1
xi ei

) .

L’idée est de
1. montrer que ϕ est continue,
2. montrer que la sphère unité S de Kn est compacte pour ‖·‖∞,
3. utiliser le fait que ϕ est bornée sur S,
4. conclure.
Allons-y.

1. ϕ est la composée de N qui est 1-lipschitzienne et de l’isomorphisme ϕ :

(
Kn ,‖·‖∞

) −→ (E , N∞)

X = (x1, . . . , xn ) 7−→
n∑

i=1
xi ei

qui est

linéaire sur un espace de dimension finie donc continue.
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2. Soit S = S(0,1) la sphère unité de Kn pour ‖·‖∞. C’est une partie fermée et bornée de Kn , donc compacte
d’après le lemme précédent.

3. Comme ϕ est continue sur le compact S, elle atteint un minimum α et un maximum β sur S. Remarquons
également que si x ∈ S, x 6= 0 et donc ϕ(x) 6= 0 et α> 0.

4. Soit x =
n∑

i=1
xi ei ∈ E \ {0}, alors 1

N∞(x)
(x1, . . . , xn ) ∈ S donc α⩽ N

(
x

N∞(x)

)
⩽ β puis αN∞(x) ⩽ N (x) ⩽ βN∞(x). Si x = 0E ,

l’encadrement reste valable.
Ainsi, N est équivalente à N∞. ■

c Compacts en dimension finie

Théorème 5 : Compacts en dimension finie

Les compacts d’un espace vectoriel normé de dimension finie sont exactement ses parties fermées
et bornées.

Démonstration

Soit n = dimE .
Résultat déjà vu sur Kn , que l’on transporte à E muni d’une base (e1, . . . ,en ) via l’isomorphisme

f :
Kn −→ E

(x1, . . . , xn ) 7−→
n∑

i=1
xi ei

, qui est continu pour toute norme car on est en dimension finie et tel que si

X = (x1, . . . , xn ) ∈Kn et x = f (X ) ∈ E , ‖X ‖∞ = N∞(x) : f « transporte la norme. »
Si A est une partie fermée bornée de E , f −1(A) est donc fermée par continuité et bornée car f transporte la

norme. Donc c’est un compact de Kn . Donc A = f
(

f −1(A)
)
(car f est bijective) est compacte comme image

continue d’un compact. ■

Corollaire 6 : Traduction en terme de valeur d’adhérence
Dans un espace vectoriel normé de dimension finie, toute suite bornée admet au moins une valeur

d’adhérence.

Démonstration

Une suite bornée est dans une boule fermée qui est fermée et bornée donc compacte. ■

Corollaire 7 : Théorème de Bolzano-Weierstraß
De toute suite bornée d’un espace vectoriel normé de dimension finie, on peut extraire une suite

convergente.

Corollaire 8 : important !

Un sous-espace de dimension finie d’un espace vectoriel normé est fermé.

Démonstration

E evn, F sev de dimension finie, (un ) ∈ FN une suite d’éléments de F , convergeant vers ℓ ∈ E .
Alors (un ) est bornée dans F qui est de dimension finie, donc admet une suite extraite convergeant dans F

d’après le théorème de Bolzano-Weierstraß.
Par unicité de la limite, ℓ ∈ F et F est fermé. ■
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Exercice 13 : classique : Tout sous-espace strict d’un espace vectoriel normé est d’intérieur vide.
Vu en TD en montrant, par contraposée, F̊ 6=∅=⇒ F = E .

Exercice 14 : Trèèèèès classique : O (n) = {
M ∈Mn (R), M⊺M = In

}
est compact.

On est en dimension finie, il suffit de montrer que O (n) est fermée et bornée pour n’importe quelle norme.
Or O (n) est fermée comme image réciproque du fermé {In } par l’application continue M 7→ M⊺M (bilinéarité du

produit matriciel et linéarité de la transposition) et bornée car, avec la norme euclidienne ‖M‖2 = tr
(
M⊺M

)
, on a

O (n) ⊂ B(0,
p

n).
On a aussi avec une autre norme N∞(M) = maxi , j

(∣∣∣mi , j

∣∣∣)⩽ 1 en admettant un résultat vu plus tard : les colonnes
de M sont nécessairement normées.

Remarque
R 35 – Si u ∈Lc (E ,F ), on a vu que la norme subordonnée s’écrivait :

�u�= sup
x∈S(0E ,1)

‖u(x)‖F .

Si E est de dimension finie, comme la sphère S(0E ,1) est fermée et bornée, elle est compacte. Et comme
x 7→ ‖u(x)‖F est continue sur E , elle est bornée et atteint ses bornes sur S(0E ,1). Autrement dit, en dimension
finie, la norme subordonnée de u s’écrit toujours ‖u(x0)‖F pour un certain x0 ∈ S(0E ,1).

R 36 – Le théorème de Riesz (HP) dit qu’un espace vectoriel normé est de dimension finie si et seulement si sa boule
unité fermée est compacte.

Exercice 15 : Mines : Montrer que la boule unité fermée de C ∞([0,1]) muni de la norme N∞ n’est pas compacte.
fn : x ∈ [0,1] 7→ xn est continue, de norme 1 et converge simplement vers δ·,1. Si on pouvait en extraire une suite

uniformément convergente, la limite devrait être continue.

5 Suites convergente dans un compact

Propriété 37 : CNS de convergence dans un compact

Soit K un compact. Une suite d’éléments de K est convergente si et seulement si elle a une unique
valeur d’adhérence.

Démonstration

Le sens direct est vrai sans hypothèse de compacité.
Pour le sens réciproque, on raisonne par contraposée. On suppose que u ∈ KN ne converge pas. On sait qu’elle

a au moins une valeur d’adhérence ℓ ∈ K .
On a ε0 > 0 tel que pour tout N ∈N, il existe n ⩾ N tel que ‖un −ℓ‖ > ε0.
On a donc ϕ(0) ⩾ 0 tel que

∥∥uφ(0) −ℓ
∥∥ > ε0, puis ϕ(1) ⩾ φ(0)+ 1 tel que

∥∥uφ(1) −ℓ
∥∥ > ε0 et on construit ainsi par

récurrence une fonction φ :N→N strictement croissante telle que pour tout n ∈N,
∥∥uφ(n) −ℓ

∥∥> ε0.
Mais

(
uφ(n)

)
étant à valeur dans le compact K , on peut en extraire une suite convergente. Sa limite, valeur

d’adhérence de u ne peut valoir ℓ. ■

Corollaire 9 : CNS de convergence des suites bornées en dimension finie

En dimension finie, toute suite bornée converge si et seulement si elle a une unique valeur d’adhé-
rence.
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Démonstration

Toute boule fermée est compacte. ■

VII CONNEXITÉ PAR ARCS

1 Une relation d’équivalence

Définition 14 : chemin continu
Soit A une partie d’un espace vectoriel normé (E ,‖·‖). Si (a,b) ∈ A2, on appelle chemin continu joignant

a à b dans A toute application ϕ : [0,1] 7→ E vérifiant les trois propriétés suivantes :
■ ϕ est continue
■ ∀ t ∈ [0,1], ϕ(t ) ∈ A

■ ϕ(0) = a et ϕ(1) = b

Propriété 38 : Relation d’équivalence

La relation R sur A2 « sont joints par un chemin continu » est une relation d’équivalence.

Démonstration

On vérifie facilement
Réflexivité Prendre ϕ constante, qui est bien continue.
Symétrie Si ϕ est un chemin continu joignant a à b, 1−ϕ est un chemin continu joignant b à a.

Transitivité Si ϕ joint a à b et ψ joint b à c, alors ζ : t 7→
{
ϕ(2t ) si t ∈ [0, 1/2]

ψ(2t −1) si t ∈ [1/2,1]
est un chemin continu joignant a à c.

■

2 Connexité par arcs

Définition 15 : Composantes connexes par arcs

Soit A une partie de E . On appelle composantes connexes par arcs de A les classes d’équivalence
pour la relation R définie précédemment.

Remarque
R 37 – La composante connexe par arc de a ∈ A est l’ensemble des b ∈ A pouvant être joints à a par un chemin

continu.

Propriété 39 : Partition des composantes connexes

Les composantes connexes par arcs de A partitionnent A.

Exemple
E 13 – A = {

(x, y) ∈R2, x y 6= 0
}
possède quatre composantes connexes par arcs.
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Définition 16 : partie connexe par arcs
On dit que A est connexe par arcs lorsqu’il y a une unique composante connexe par arcs : A elle-

même.

Remarque
R 38 – A est connexe par arcs si tout couple de points est joignable par un chemin continu dans A.

Exercice 16 : Montrer que S(0E ,1) est connexe par arcs.
Soient a,b ∈ S(0E ,1).
Si 0E ∉ [a,b] ie b 6= −a, il suffit de poser φ : t 7→ (1− t )a + tb

‖(1− t )a + tb‖ , chemin continu sur la sphère reliant a et b.
Sinon il suffit, par transitivité, de passer par un troisième point sur la sphère en utilisant un chemin comme le

précédent.

Propriété 40 : convexe =⇒ connexe par arc

Toute partie convexe de E est connexe par arcs.

Démonstration

On choisit le segment comme chemin continu. ■

Exercice 17 : Montrer qu’une boule est connexe par arcs.
Elle est convexe.

Définition 17 : Partie étoilée
A est dite étoilée s’il existe un point a ∈ A tel que pour tout point b de A, le segment [a,b] est inclus dans

A.

Remarque
R 39 – Une partie convexe est étoilée par rapport à chacun de ses points.

Propriété 41 : étoilée =⇒ connexe par arc

Toute partie étoilée de E est connexe par arcs.

Démonstration

Si A est étoilée par rapport à a, b,c ∈ A, alors le chemin continu constitué des segments [b, a] et [a,c] joint b à c
en restant dans A. ■

3 Cas des parties de R

Propriété 42 : Connexes par arcs de R

Les parties connexes par arcs de R sont les intervalles.
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Démonstration

Les intervalles étant convexes, ils sont connexes par arcs.
Si réciproquement, A ⊂R est connexe par arcs, on montre que A est convexe, ce qui permet de conclure.
Si x, y ∈ A, on a ϕ : [0,1] → A continue telle que ϕ(0) = x et ϕ(1) = y. Si z ∈ [x, y], le théorème des valeurs intermédiaires

nous garantit l’existence de t0 ∈ [0,1] tel que ϕ(t0) = z ∈ A. ■

Remarque
R 40 – Les connexes par arcs de R sont les convexes. C’est faux en général, par exemple dans R2.

4 Image continue d’une partie connexe par arcs

Propriété 43 : Image continue d’une partie connexe par arcs

Si E ,F sont des espaces vectoriels normés, A une partie connexe par arcs de E , f : A → F une applica-
tion continue, alors f (A) est connexe par arcs.

Remarque
R 41 – Pour les ouverts et les fermés, c’est l’image réciproque par une application continue qui est ouverte ou

fermée.
Pour les compacts ou les connexes par arcs, c’est l’image directe par une application continue qui est
compacte ou connexe par arcs.

Démonstration

Il suffit de composer les chemins continus par f . ■

Corollaire 10 : Cas d’une fonction réelle, TVI

Si f est une application continue, définie sur une partie A connexe par arcs, et à valeurs réelles, alors
f (A) est un intervalle.

Autrement dit, f vérifie la propriété des valeurs intermédiaires : s’il existe a ∈ A tel que f (a) =α et b ∈ A
tel que f (b) =β, alors, pour tout γ ∈ [α,β], il existe c ∈ A tel que f (c) = γ.

Remarque
R 42 – Si, pour résoudre une question, on a envie d’appliquer le théorème des valeurs intermédiaires, mais si on

a une application (continue) qui n’est pas définie sur un intervalle de R, on peut penser à se demander si
l’application ne serait pas, par hasard, définie sur une partie connexe par arcs d’un espace vectoriel normé...

Méthode 3 : Montrer qu’une partie est ou non connexe par arcs
Le plus difficile est de déterminer dans dans quel cas on se trouve.
■ Pour montrer que A est connexe par arcs, on peut

⋆ Utiliser la définition en construisant un chemin continu dans A reliant deux points de A.
⋆ Montrer que A est convexe ou étoilé par rapport à un de ses points.
⋆ Montrer que A est l’image continue d’un connexe par arcs.

■ Pour montrer que A n’est pas connexe par arcs, on peut
⋆ Trouver un couple de points qui ne sont pas reliables par un chemin continu dans A.
⋆ Trouver une fonction continue f telle que f (A) ne soit pas connexe par arcs. Si f est à valeurs réelles, il

suffit que f (A) ne soit pas un intervalle.
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VIII TOPOLOGIE MATRICIELLE (HP)
Rien n’est explicitement au programme dans les exercices suivants, mais ils sont tous très classiques.
On est en dimension finie, toutes les normes sont équivalentes, la convergence se fait cœfficient à cœfficient. On

peut expliciter les normes usuelles

‖A‖1 = ∑
1⩽i , j⩽n

∣∣∣ai , j

∣∣∣ ,

‖A‖2 =
√√√√ ∑

1⩽i , j⩽n

∣∣∣ai , j

∣∣∣2
(
=

√
tr(A · A⊺) si K=R,

√
tr

(
A · A

⊺)
si K =C

)
,

‖A‖∞ = max
1⩽i , j⩽n

∣∣∣ai , j

∣∣∣ .

qui ne sont pas les plus pratiques car ce ne sont pas des normes d’algèbres vérifiant N (AB)⩽ N (A)N (B).
On leur préfère pour des applications pratiques (voir séries matricielles) des normes subordonnées sans nécessaire-

ment avoir à les expliciter.
Voir TD pour des exercices sur ces normes subordonnées.

Exercice 18 : Montrer de deux manières différentes que GL n (K) est dense dans Mn (K). En déduire que si
A,B ∈Mn (K), χAB =χB A .

1re méthode : pour k assez grand, 1

k
n’est pas valeur propre de M ∈Mn (K) car le nombre de valeurs propres est

fini. Alors Mk = M − 1

k
In ∈GL n (K) et Mk → M .

2eméthode : on a P,Q inversibles telles que M = P Jr Q avec r = rg M . On pose Jr,k = Jr + 1

k
In . Alors Jr,k est inversible

et Jr,k −−−−−→
k→+∞

Jr . Par continuité de l’application linéaire sur un espace de dimension finie A 7→ PAQ, (Mk )k = (P Jr,kQk

est une suite de matrices inversibles telles que Mk → M .
On vérifie que χAB =χB A si A est inversible car AB = A(B A)A−1 et le polynôme caractéristique est un invariant de

similitude.
Donc A 7→χAB −χB A est nulle sur GL n (K) et continue car les cœfficients du polynôme χAB −χB A sont polynomiaux

en ceux de A.
Autre argument : si (Ak ) suite de matrices inversibles convergeant vers A, alors pour tout k, χAk B = χB Ak

, puis
Ak B → AB et B Ak → B A car A 7→ AB et B 7→ B A sont linéaires en dimension finie (au départ) donc continues. Et
A 7→χA = det(X In − A) est continue car les cœfficient du polynôme caractéristiques sont polynomiaux en ceux de A.

Donc avec k →+∞, χAB =χB A .

Exercice 19 : Démontrer que GL n (K) est un ouvert de Mn (K).
GL n (K) = det−1(K\ {0}) image réciproque d’un ouvert par une application continue (car polynomiale).

Exercice 20 : Montrer que l’ensemble des matrices triangulaires supérieures, triangulaires inférieures, symétriques,
antisymétriques, de trace nulle (respectivement) de Mn (K) sont fermés.

Soit φi , j : A 7→ ai , j , linéaire donc continue sur Mn (K). T +
n (K) = ⋂

1⩽ j<i⩽n
φ−1

i , j ({0}) fermé comme intersection (finie)

de fermés.
Soit u : A ∈Mn (K) 7→ A⊺−A définie sur un espace de dimension finie et linéaire donc continue. Sn (K) = u−1({0}) est

fermé comme image réciproque d’un fermé par cette application.

Exercice 21 : Démontrer que l’ensemble O (n) = {
M ∈Mn (R), M M⊺ = In

}
des matrices orthogonales est compact.

On est en dimension finie, il suffit de montrer que O (n) est fermée et bornée pour n’importe quelle norme.
Or O (n) est fermée comme image réciproque du fermé {In } par l’application continue M 7→ M⊺M (bilinéarité du

produit matriciel et linéarité de la transposition) et bornée car, avec la norme euclidienne ‖M‖2 = tr
(
M⊺M

)
, on a

O (n) ⊂ B(0,
p

n).
On a aussi avec une autre norme N∞(M) = maxi , j

(∣∣∣mi , j

∣∣∣)⩽ 1 en admettant une résultat vu plus tard : les colonnes
de M sont nécessairement normées.
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Exercice 22 : Montrer que l’ensemble des matrices diagonalisables de Mn (C) est dense. En déduire le théorème
de Cayley-Hamilton.

Soit M ∈ Mn (C). M est trigonalisable : on peut écrire M = PT P−1 avec T triangulaire, avec sur la diagonale les
valeurs propres λ1, . . . ,λn comptées avec multiplicité.

Soit, pour k ⩾ 1, Tk = T +diag
(

1
k , 2

k , . . . , n
k

)
.

Il n’y a qu’un nombre fini de k pour lesquels on ait λi + i
k = λ j + j

k avec i 6= j (ce qui revient à 1
k = λi−λ j

i− j ), on est
sûr à partir d’un certain rang que Tk possède n valeurs propres distinctes en dimension n, donc est diagonalisable.
C’est donc aussi le cas de Mk = PTk P−1.

Or Mk → M car Tk → T et A 7→ PAP−1 linéaire sur un espace de dimension finie donc continue.
D’où la densité.
Or le théorème de Cayley-Hamilton est facile pour une matrice diagonalisable : si A = PDP−1,

χA(A) =χD (A) = PχD (D)P−1 = 0 car les cœfficients diagonaux de D sont justement les racines de χD =χA .
Soit pour une matrice A ∈Mn (K) quelconque, une suite (Ak )k de matrices diagonalisables tendant vers A.
Alors pour tout k ∈N, χAk

(Ak ) = 0.
En remarquant que χ : B ∈ Mn (C) 7→ χB (B) ∈ Mn (C) est continue car les cœfficients de χB sont polynomiaux en

ceux de B et les fonctions B 7→ B p sont continues car (B1, . . . ,Bp ) 7→ B1 ×·· ·×Bp est p-linéaire, on tire, en passant à la
limite, χA(A) = 0.

Remarquons qu’il n’y a pas de problème de corps car le polynôme caractéristique de A dans K est le même
que celui dans C.

Exercice 23 : L’ensemble des matrices diagonalisables de Mn (R) est-il dense?
On pourra considérer l’application qui à une matrice 2×2 associe le discriminant de son polynôme caractéris-

tique.

∆ : M 7→ le discriminant de χM est continue car polynomiale en les cœfficients de M .
Tout matrice diagonalisable M dansM2(R) a des racines réelles donc ∆(M)⩾ 0. Ainsi, tout matrice M limite d’une

suite de matrices diagonalisable vérifie aussi ∆(M)⩾ 0.
Or il existe des matrices réelles sans valeur propre réelle, d’où l’absence de densité.

Exercice 24 : Montrer que l’ensemble des matrices de rang p ∈ J1,n−1K n’est ni ouvert ni fermé. Étudier les cas p = 0
et p = n.

Notons Rp = {
M ∈Mn (K), rg M = p

}
.

Il suffit de trouver une suite de matrice de rang p qui converge vers une matrice qui ne l’est pas et une suite de
matrices qui ne sont pas de rang p et qui convergent vers une matrice qui l’est.

Pour le deuxième point, il suffit d’utiliser la densité de GL n (K) : toute matrice de rang p est limite d’une suite de
matrices de rang n 6= p : Rc

p n’est pas fermée donc Rp n’est pas ouverte.

Pour le premier point, considérons Mk = diag

(
1

k
, . . . ,

1

k
,0, . . . ,0

)
matrice diagonale avec exactement p cœfficients

diagonaux non nuls, donc de rang p. Alors Mk → 0n qui est de rang 0 6= p donc Rp n’est pas fermée.
Enfin, R0 = {0n } est fermée et non ouverte (une suite de matrices non nulles peut tendre vers la matrice nulle) et

Rn =GL n (K), est ouverte (classique) et non fermée, car, classiquement aussi GL n (K) =Mn (K) 6=GL n (K) (densité).

Exercice 25 : Montrer que l’application qui à M ∈GL n (K) associe son inverse est continue.
Formule de la comatrice !

Exercice 26 : Soit n ⩾ 2. Montrer que l’application qui à M ∈Mn (K) associe son polynôme minimal et l’application
rang ne sont pas continue. Cas n = 1?

Si M =



0 1 (0)

1

0 0

, alors Mk = 1

k
M −−−−−→

k→+∞
0n avec πMk

= X n 6→ X .

On a aussi rg Mk = n −1 6→ rg0n = 0.
Si n = 1, M 7→πM devient continue (car π(m) = X −m).
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Exercice 27 : Donner le cœfficient de degré 1 de χA en fonction de la trace et de la comatrice de A.
On suggère de commencer par supposer A inversible et d’exprimer χA en fonction de χA−1 .

Si A est inversible, on montre que χA(X ) = (−1)n X n det(A)χA−1

(
1
X

)
et on en déduit que le cœfficient recherché est

(−1)n+1 tr(Com A).
Puis, ce cœfficient étant une fonction continue de A car polynomiale et l’application A 7→ (−1)n+1 tr(Com A)

l’étant aussi (linéarité en dimension finie de la trace et application comatrice polynomiale), on généralise la formule
par densité de GL n (K) dans Mn (K).

Exercice 28 : Étudier la connexité par arcs de GL n (R), GL n (C), et O (n).
■ GL n (R) n’est pas connexe par arcs car detGL n (R) =R∗ non connexe par arcs alors que det est continue.
■ GL n (C) est connexe par arcs : on montre que chaque matrice inversible peut être jointe continûment à In .
Pour cela, on trigonalise (on peut), M = PT P−1. On note di les cœfficients diagonaux de T .
Par connexité par arcs de C∗, pour chaque di ( 6= 0), on a un chemin continu ϕi : [0,1] →C∗ tel que ϕi (1) = di et
ϕi (0) = 1.

On pose alors A(t ) =


ϕ1(t )

(
t · ti , j

)

0 ϕn (t )

.
Φ : t 7→ PA(t )P−1 continue par opérations (car t 7→ A(t ) l’est et M 7→ P MP−1 est linéaire sur un espace de dimen-
sion finie donc continue), à valeurs inversibles, Φ(0) = In et Φ(1) = M .

■ O (n) n’est pas connexe par arcs car detO (n) = {±1} non connexe par arcs alors que det est continue.

Exercice 29 : Montrer que l’ensemble des matrices diagonalisables de Mn (K) est connexe par arcs.
L’ensemble des matrices diagonalisable est étoilé par rapport à la matrice diagonalisable 0n .
En effet, si M est diagonalisable, pour tout t ∈ [0,1], (1− t ) ·0n + t ·M = t ·M l’est aussi.
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