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Espaces Vectoriels Normés

Extrait du programme officiel :
Les notions d’espace métrique et, a fortiori, d’espace topologique, sont hors programme. Il en est de même des notions de suite

de Cauchy et d’espace de Banach.

Dans toute cette section, K désigne R ou C.

CONTENUS CAPACITÉS & COMMENTAIRES

a) Normes et espaces vectoriels normés

Norme sur un K-espace vectoriel. Structure d’espace vectoriel
normé.

Vecteurs unitaires.

Distance associée à une norme. Inégalité triangulaire.
Boules fermées, boules ouvertes, sphères. Convexité des boules. On introduit à cette occasion la notion de partie convexe d’un

espace vectoriel réel.
Parties, suites, fonctions bornées.
Normeassociée à un produit scalaire sur un espace préhilbertien
réel.
Normes ‖ ‖1, ‖ ‖2, ‖ ‖∞ sur Kn .
Norme de la convergence uniforme sur l’espace des fonctions
bornées à valeurs dans K.

Notation ‖ ‖∞.
Pour les applications pratiques, on peut utiliser sans justification
l’égalité sup(k A) = k sup(A) pour A partie non vide de R et k ∈R+.

Normes de la convergence en moyenne et de la convergence
en moyenne quadratique sur l’espace des fonctions continues
sur un segment à valeurs réelles ou complexes.

Notations ‖ ‖1 et ‖ ‖2.

Produit fini d’espaces vectoriels normés.

b) Suites d’éléments d’un espace vectoriel normé

Suite convergente, divergente. Unicité de la limite. Caractère
borné d’une suite convergente. Opérations algébriques sur les
suites convergentes. Convergence d’une suite à valeurs dans un
produit fini d’espaces vectoriels normés.
Suites extraites, valeurs d’adhérence. Une suite ayant au moins deux valeurs d’adhérence diverge.

c) Comparaison des normes

Normes équivalentes. Invariance du caractère borné, de la
convergence d’une suite.

Utilisation de suites pour établir que deux normes ne sont pas
équivalentes.

d) Topologie d’un espace normé

Ouvert d’un espace normé. Stabilité de l’ensemble des ouverts
par réunion quelconque, par intersection finie.

Une boule ouverte est un ouvert. Un produit (fini) d’ouverts est un
ouvert.

Voisinage d’un point.
Fermé d’un espace normé. Stabilité de l’ensemble des fermés
par intersection quelconque, par réunion finie.

Une boule fermée, une sphère, sont fermées. Un produit (fini) de
fermés est fermé.

Point intérieur, point adhérent.
Intérieur, adhérence, frontière d’une partie.
Caractérisation séquentielle des points adhérents, des fermés.
Partie dense.
Invariance des notions topologiques par passage à une norme
équivalente.
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CONTENUS CAPACITÉS & COMMENTAIRES

Si A est une partie d’un espace normé, ouvert et fermé relatifs
de A. Voisinage relatif.

Par définition, une partie U de A est un ouvert relatif si U est voisi-
nage relatif de chacun de ses points.
Caractérisation comme intersection avec A d’un ouvert de E .
Les fermés relatifs sont par définition les complémentaires dans A
des ouverts relatifs. Caractérisation séquentielle. Caractérisation
comme intersection avec A d’un fermé de E .

j) Espaces vectoriels normés de dimension finie

Équivalence des normes en dimension finie. La démonstration n’est pas exigible.
Invariance des différentes notions topologiques par rapport au
choix d’une norme en dimension finie. Topologie naturelle d’un
espace normé de dimension finie.

La convergence d’une suite (ou l’existence de la limite d’une
fonction) à valeurs dans un espace vectoriel normé de dimen-
sion finie équivaut à celle de chacune de ses coordonnées dans
une base.
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Dans tout le chapitre, K désigne R ou C.

I NORME SUR UN ESPACE VECTORIEL
Soit (E ,+, ·) un K-espace vectoriel.

1 Norme et distance

Définition 1 : Norme, espace vectoriel normé

On appelle norme sur E toute application N : E −→R+ vérifiant
Séparation Pour tout x ∈ E , N (x) = 0R =⇒ x = 0E .
Homogénéité Pour tout x ∈ E et pour tout λ ∈K, N (λx) = |λ|N (x).

Inégalité triangulaire (ou sous-additivité) Pour tout x, y ∈ E , N (x + y)⩽ N (x)+N (y).
On dit alors que le couple (E , N ) est un espace vectoriel normé.

Remarque

R 1 – Souvent notée ‖·‖ également.
R 2 – Pas de cas d’égalité dans l’inégalité triangulaire.
R 3 – La positivité est en fait automatique ! Par homogénéité et inégalité triangulaire, si x ∈ E ,

2N (x) = N (x)+N (−x)⩾ N (x −x) = N (0E ) = |0|N (0E ) = 0

Exemple
E 1 – Valeur absolue sur R (y en a-t-il d’autres?) et module sur C.

Propriété 1 : d’une norme

Soit (E ,‖·‖) un espace vectoriel normé, x, y ∈ E .

(i) ‖0E‖ = 0R

(ii) ‖−x‖ = ‖x‖
(iii)

∣∣‖x‖−∥∥y
∥∥∣∣⩽ ∥∥x ± y

∥∥⩽ ‖x‖+∥∥y
∥∥

Démonstration

(i) Il suffit de prendre λ= 0 dans l’homogénéité.
(ii) C’est encore l’homogénéité.
(iii) On a déjà

∥∥x + y
∥∥⩽ ‖x‖+∥∥y

∥∥ puis ∥∥x − y
∥∥⩽ ‖x‖+∥∥y

∥∥ avec la propriété précédente, puis
∥∥x + y − y

∥∥⩽ ∥∥x + y
∥∥+∥∥y

∥∥
donne ‖x‖−∥∥y

∥∥ ⩽
∥∥x + y

∥∥ puis par symétrie des rôles
∥∥y

∥∥−‖x‖⩽ ∥∥x + y
∥∥ ce qui donne bien

∣∣‖x‖−∥∥y
∥∥∣∣ ⩽ ∥∥x + y

∥∥.
Enfin, on tire

∣∣‖x‖−∥∥y
∥∥∣∣⩽ ∥∥x − y

∥∥ de la propriété précédente.

■

Définition 2 : Vecteur unitaire
Dans un espace vectoriel normé (E ,‖·‖), un vecteur unitaire ou normé est un vecteur x ∈ E tel que

‖x‖ = 1.

Remarque

R 4 – Si x 6= 0E , 1
‖x‖ xest le vecteur normé associé à x (de même direction et de même sens.)
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Définition 3 : Distance associée à une norme
Soit (E ,‖·‖) un espace vectoriel normé. On appelle distance associée à ‖·‖ l’application

d :
E 2 −→ R+

(x, y) 7−→ ∥∥x − y
∥∥

Propriété 2 : d’une distance

Soit (E ,‖·‖) un espace vectoriel normé, d distance associée, x, y, z ∈ E .

(i) d(x, y) = 0 ⇐⇒ x = y .

(ii) Symétrie : d(x, y) = d(y, x).

(iii) Double inégalité triangulaire :∣∣d(x, z)−d(z, y)
∣∣⩽ d(x, y)⩽ d(x, z)+d(z, y).

Démonstration

(i) Facile.
(ii) Facile.
(iii) d(x, y) = ∥∥x − z + z − y

∥∥⩽ d(x, z)+d(z, y) d(x, z)⩽ d(x, y)+d(y, z) donc d(x, z)−d(z, y)⩽ d(x, y) d’où on tire par symétrie∣∣d(x, z)−d(z, y)
∣∣⩽ d(x, y). ■

Remarque

R 5 – Il existe une notion plus générale (Hors Programme) de distance sur un ensemble E : c’est une application
de E 2 dansR+ symétrique, telle que d(x, y) = 0 ⇐⇒ x = y et vérifiant l’inégalité triangulaire d(x, z)⩽ d(x, y)+d(y, z).
On dit alors que (E ,d) est un espace métrique.
C’est bien le cas de la distance associée à une norme.

Définition 4 : distance à une partie

Soit (E ,‖·‖) un espace vectoriel normé, A une partie non vide de E , x ∈ E .
On appelle distance de x à A le réel d(x, A) = inf

a∈A
d(x, a) = inf

a∈A
‖x −a‖ qui est bien défini.

Démonstration

{‖x −a‖ , a ∈ A} est une partie non vide de R (car A non vide) minorée par 0. ■

Propriété 3 : 1-lipschitzianité de la distance à une partie

E −→ R

x 7−→ d(x, A)
est 1-lipschitzienne sur E dans le sens où

∀x, y ∈ E ,
∣∣d(x, A)−d(y, A)

∣∣⩽ ∥∥x − y
∥∥ .

C’est en particulier le cas de x 7→ d(x, a) où a ∈ E avec A = {a}.

Démonstration

Si a ∈ A, par inégalité triangulaire, d(x, A) ⩽ d(x, a) ⩽ d(x, y)+d(y, a) donc pour tout a ∈ A, d(y, a) ⩾ d(x, A)−d(x, y)
qui ne dépend pas de a donc qui est un minorant de {d(y, a), a ∈ A}, donc par définition de la borne inférieure,
d(y, A) ⩾ d(x, A)−d(x, y), ce qui donne d(x, A)−d(y, A) ⩽ d(x, y), par symétrie on a aussi d(y, A)−d(x, A) ⩽ d(x, y) et donc∣∣d(x, A)−d(y, A)

∣∣⩽ d(x, y). ■
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2 Norme associée à un produit scalaire

Définition 5 : Norme euclidienne
Soit (E , (·|·)) un espace préhilbertien réel. Pour tout vecteur x de E , on pose

‖x‖ =
√

(x|x).

L’application ‖·‖ est appelée norme euclidienne sur E associée au produit scalaire (·|·).

Propriété 4 : Toute norme euclidienne est une norme

La norme euclidienne associée à un produit scalaire est une norme sur E .

Démonstration

Soient x ∈ E et λ ∈R.
■ ‖x‖ =p

(x|x)⩾ 0

■ ‖x‖ = 0 ⇒‖x‖2 = 0 ⇒ (x|x) = 0 ⇒ x = 0E

■ ‖λx‖ =
√

(λx|λx) =
√
λ2(x|x) = |λ|‖x‖

■ Inégalité triangulaire : Soient x et y des vecteurs de E . Il est plus pratique de travailler avec le carré des
normes : ∥∥x + y

∥∥2 = (x + y |x + y)

= (x|x)+2(x|y)+ (y |y)

= ‖x‖2 +∥∥y
∥∥2 +2(x|y)

⩽ ‖x‖2 +∥∥y
∥∥2 +2‖x‖∥∥y

∥∥ d’après l’inégalité de Cauchy-Schwarz

⩽
(‖x‖+∥∥y

∥∥)2

■

3 Normes usuelles

a Sur Kn

Définition 6 : Normes usuelles sur Kn

On définit, pour x = (x1, . . . , xn) ∈Kn ,

‖x‖1 =
n∑

k=1

|xk |

‖x‖2 =
√

n∑
k=1

|xk |2 =
(

n∑
k=1

|xk |2
)1/2

‖x‖∞ = max
k∈J1,nK |xk |.

Remarque

R 6 – On rappelle que ‖·‖2 sur Rn est la norme euclidienne associée au produit scalaire canonique

(x|y) =
n∑

k=1
xk yk .
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Rappelons l’inégalité de Cauchy-Schwarz : si x, y ∈Rn ,
∣∣(x|y)

∣∣⩽ ‖x‖2
∥∥y

∥∥
2 soit encore∣∣∣∣∣ n∑

k=1
xk yk

∣∣∣∣∣⩽
√√√√ n∑

k=1
x2

k

n∑
k=1

y2
k

avec égalité si et seulement si (x, y) liée.
Attention : pas de produit scalaire ni d’inégalité de Cauchy-Schwarz pour K=C dans notre programme.

Propriété 5 : Ce sont des normes

Il s’agit de normes sur Kn .

Démonstration

Cas de ‖·‖1

Séparation Si x ∈Kn et si ‖x‖1 =
n∑

k=1

∣∣xk
∣∣= 0, pour tout k ∈ J1,nK, ∣∣xk

∣∣= 0 car on somme des termes positifs, donc

x = 0Kn .
Homogénéité Pas de difficulté.

Inégalité triangulaire Si x, y ∈Kn ,
∥∥x + y

∥∥
1 =

n∑
k=1

∣∣xk + yk
∣∣⩽ n∑

k=1

(∣∣xk
∣∣+ ∣∣yk

∣∣)= ‖x‖1 +
∥∥y

∥∥
1.

Cas de ‖·‖∞
Séparation Si x ∈Kn et si ‖x‖∞ = max

k∈J1,nK ∣∣xk
∣∣= 0, pour tout k ∈ J1,nK, ∣∣xk

∣∣= 0 car on prend le maximum de termes

positifs, donc x = 0Kn .
Homogénéité Si x ∈Kn et λ ∈K, ‖λx‖∞ = max

k∈J1,nK(|λ| ∣∣xk
∣∣)= |λ| max

k∈J1,nK ∣∣xk
∣∣= |λ|‖x‖∞ car |λ|⩾ 0.

Inégalité triangulaire Si x, y ∈ Kn , pour tout k ∈ J1,nK, ∣∣xk + yk
∣∣ ⩽ ∣∣xk

∣∣+ ∣∣yk
∣∣ ⩽ ‖x‖∞ + ∥∥y

∥∥∞ donc en particulier∥∥x + y
∥∥∞ ⩽ ‖x‖∞+∥∥y

∥∥∞.
Cas de ‖·‖2

Cas K=R : Il s’agit de la norme euclidienne associée au produit scalaire canonique.
Cas K=C : Pas de produit scalaire au programme pour K=C.

Bonne définition Si x ∈Cn ,
n∑

k=1

∣∣xk
∣∣2 ∈R+ donc ‖x‖2 est bien défini (et positif)/

Séparation Si x ∈ Cn et si ‖x‖2 =
√

n∑
k=1

∣∣xk
∣∣2 = 0, pour tout k ∈ J1,nK, ∣∣xk

∣∣2 = 0 car on somme des termes

positifs, donc x = 0Kn .
Homogénéité Pas de difficulté.
Inégalité triangulaire Pas d’inégalité de Cauchy-Schwarz dans le cas complexe au programme. On se

ramène au cas réel.∥∥x + y
∥∥2

2 =
n∑

k=1

∣∣xk + yk
∣∣2 =

n∑
k=1

(
xk + yk

)(
xk + yk

)= n∑
k=1

(∣∣xk
∣∣2 + ∣∣yk

∣∣2 +xk yk +xk yk

)
= ‖x‖2

2+
∥∥y

∥∥2
2+2

n∑
k=1

Re
(
xk yk

)
Or, pour tout k ∈ J1,nK, Re

(
xk yk

)
⩽

∣∣xk yk
∣∣= ∣∣xk

∣∣ ∣∣yk
∣∣ donc

n∑
k=1

Re
(
xk yk

)
⩽

n∑
k=1

∣∣xk
∣∣ ∣∣yk

∣∣⩽
√√√√ n∑

k=1

∣∣xk
∣∣2

n∑
k=1

∣∣yk
∣∣2 = ‖x‖2

∥∥y
∥∥

2

en appliquant l’inégalité de Cauchy-Schwarz aux vecteurs réels (|x1| , . . . , |xn |) et
(∣∣y1

∣∣ , . . . ,
∣∣yn

∣∣).
Finalement,

∥∥x + y
∥∥2

2 ⩽
(‖x‖2 +

∥∥y
∥∥

2

)2 donc
∥∥x + y

∥∥
2 ⩽ ‖x‖2 +

∥∥y
∥∥

2. ■
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Remarque

R 7 – On peut montrer que plus généralement, si p ⩾ 1,

‖x‖p =
(

n∑
k=1

∣∣xk
∣∣p

)1/p

est une norme sur Kn et même que ‖x‖p −−−−−−→
p→+∞ ‖x‖∞ (cf TD) d’où la notation.

R 8 – Plus généralement, sur un K-espace vectoriel de dimension n, de base B = (e1, . . . ,en ), on décompose un
vecteur x =

n∑
k=1

xk ek et on pose

‖x‖1 =
n∑

k=1

∣∣xk
∣∣,

‖x‖2 =
√√√√ n∑

k=1

∣∣xk
∣∣2 =

(
n∑

k=1

∣∣xk
∣∣2

)1/2

et
‖x‖∞ = max

k∈J1,nK ∣∣xk
∣∣

qui définissent des normes sur E .

Exemple

E 2 – Sur Kn [X ], on peut définir des normes, pour P =
n∑

k=0
ak X k , ‖P‖1 =

n∑
k=1

∣∣ak
∣∣, ‖P‖2 =

√
n∑

k=1

∣∣ak
∣∣2 et ‖P‖∞ = max

k∈J1,nK ∣∣ak
∣∣.

E 3 – Sur Mn (K), on peut définir des normes ‖A‖1 = ∑
(i , j )∈J1,nK2

∣∣∣ai , j

∣∣∣, ‖A‖2 =
√√√√ ∑

(i , j )∈J1,nK2

∣∣∣ai , j

∣∣∣2
, ‖A‖∞ = max

(i , j )∈J1,nK2

∣∣∣ai , j

∣∣∣.

b Sur B(X ,K) = L∞(X ,K)

Propriété 6 : K-espace vectoriel B(X ,K)

Si X est un ensemble non vide, l’ensemble B(X ,K), encore noté L∞(X ,K) (notations hors-programme)
des fonctions bornées définies sur X à valeurs dans K est un K-espace vectoriel.

Remarque

R 9 – C’est même une K-algèbre.

Démonstration

C’est une sous-espace vectoriel de KX car une partie de cet espace, non vide (contient toute fonc-
tion constante) et si f , g ∈ B(X ,K), M f , Mg ∈ R+ tel que

∣∣ f
∣∣ ⩽ M f et

∣∣g ∣∣ ⩽ Mg , λ ∈ K, alors pour tout x ∈ X ,∣∣ f (x)+λg (x)
∣∣⩽ M f +|λ|Mg donc f +λg ∈B(X ,K). ■

Définition 7 : Norme infini
On définit, pour f ∈ E =B(X ,K), ∥∥ f

∥∥∞ = N∞( f ) = sup
x∈X

∣∣ f (x)
∣∣.

Remarque

R 10 – Bien défini que Im f = {∣∣ f (x)
∣∣ , x ∈ X

}
est une partie non vide majorée de R.
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Propriété 7 : Rappel

Si λ ∈R+ et A une partie non vide majorée de R, alors

sup(λA) =λsup A

Propriété 8 : La norme infini en est une

N∞ est une norme sur B(X ,K).

Démonstration

Bonne définition Soit f ∈B(X ,K). N∞( f ) est bien défini (et positif).
Séparation Soit f ∈B(X ,K). Si N∞( f ) = 0, pour tout x ∈ X , 0⩽

∣∣ f (x)
∣∣⩽ N∞( f ) = 0 donc f = 0KX .

Homogénéité C’est la formule rappelée ci-dessus.
Inégalité triangulaire Si f , g ∈ B(X ,K) et x ∈ X ,

∣∣ f (x)+ g (x)
∣∣ ⩽ ∣∣ f (x)

∣∣+ ∣∣g (x)
∣∣ ⩽ N∞( f )+N∞(g ) qui ne dépend pas de x,

donc N∞( f + g )⩽ N∞( f )+N∞(g ). ■

c Sur C ([a,b],K)

Définition 8 : Normes usuelles sur C ([a,b],K)

On définit, pour f ∈ E =C ([a,b],K),

∥∥ f
∥∥

1 = N1( f ) =
∫b

a

∣∣ f
∣∣ dx

∥∥ f
∥∥

2 = N2( f ) =
√∫b

a

∣∣ f (x)
∣∣2 dx =

(∫b

a

∣∣ f (x)
∣∣2 dx

)1/2

∥∥ f
∥∥∞ = N∞( f ) = sup

x∈[a,b]

∣∣ f (x)
∣∣ .

Remarque

R 11 – Pour f ∈C ([a,b],K), on a même N∞( f ) = max
[a,b]

∣∣ f
∣∣.

R 12 – On rappelle que N2 sur C ([a,b],R) est la norme associée au produit scalaire canonique

( f |g ) =
∫b

a
f (t )g (t )dt .

Rappelons l’inégalité de Cauchy-Schwarz : si f , g ∈C ([a,b],K),∣∣( f |g )
∣∣⩽ N2( f )N2(g )

soit encore ∣∣∣∣∫b

a
f (t )g (t )dt

∣∣∣∣⩽
√∫b

a

(
f (t )

)2 dt
∫b

a

(
g (t )

)2 dt

avec égalité si et seulement si ( f , g ) liée.
Attention : pas de produit scalaire ni d’inégalité de Cauchy-Schwarz pour K=C dans notre programme.

Propriété 9 : Ce sont des normes

Il s’agit de normes sur C ([a,b],K).
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Démonstration

Soit E =C ([a,b],K).
Cas de N1

Bonne définition Si f ∈ E ,
∣∣ f

∣∣ ∈ E et N1( f ) =
∫b

a

∣∣ f (t )
∣∣ dt est bien défini (et positif).

Séparation Si f ∈ E et si N1( f ) =
∫b

a

∣∣ f (t )
∣∣ dt = 0, comme

∣∣ f
∣∣ est continue et positive, par positivité améliorée,

∣∣ f
∣∣

donc f est la fonction nulle sur [a,b].
Homogénéité Pas de difficulté, par linéarité de l’intégrale.

Inégalité triangulaire Si f , g ∈ E , N1( f +g ) =
∫b

a

∣∣ f (t )+ g (t )
∣∣ dt ⩽

∫b

a

∣∣ f (t )
∣∣ dt+

∫b

a

∣∣g (t )
∣∣ dt =N1( f )+N1(g )par inégalité

triangulaire dans K et linéarité de l’intégrale.
Cas de N∞ Se déduit directement de ce qui a été vu sur B([a,b],K) car E ⊂B([a,b],K). Notons qu’ici la preuve est

un peu plus simple car le sup est atteint : c’est un max.
Cas de N2

Bonne définition Si f ∈ E ,
∫b

a

∣∣ f (t )
∣∣2 dt ∈R+ donc N2( f ) est bien défini (et positif).

Séparation Si f ∈ E et si N2( f ) =
√∫b

a

∣∣ f (t )
∣∣2 dt = 0, comme

∣∣ f
∣∣2 est continue et positive, par positivité améliorée,∣∣ f

∣∣2 donc f est la fonction nulle sur [a,b].
Homogénéité Pas de difficulté.
Inégalité triangulaire (Appelée inégalité de Minkowski dans ce cas.) Soient f , g ∈ E .

Cas K=R

N2( f +g )2 =
∫b

a

(
f (t )+ g (t )

)2 dt =
∫b

a

(
f (t )

)2 dt+
∫b

a

(
g (t )

)2 dt+2
∫b

a
f (t )g (t )dt ⩽ N2( f )2+N2(g )2+2N2( f )N2(g ) = (

N2( f )+N2(g )
)2

par inégalité de Cauchy-Schwarz appliquée au produit scalaire canonique de C ([a,b],R).
Comme tout est positif, on a bien N2( f + g )⩽ N2( f )+N2(g ).

Cas K=C Pas d’inégalité de Cauchy-Schwarz dans le cas complexe au programme. On se ramène
au cas réel.

N2( f + g )2 =
∫b

a

∣∣ f + g
∣∣2 =

∫b

a

(
f + g

)(
f + g

)
=

∫b

a

[∣∣ f
∣∣2 + ∣∣g ∣∣2 + f g + f g

]
= N2( f )2 +N2(g )2 +2

∫b

a
Re

(
f g

)
⩽ N2( f )2 +N2(g )2 +2

∫b

a

∣∣∣ f g
∣∣∣

⩽ N2( f )2 +N2(g )2 +2
∫b

a

∣∣ f
∣∣ ∣∣g ∣∣

⩽ N2( f )2 +N2(g )2 +2N2( f )N2(g ) par inégalité de Cauchy-Schwarz (réelle), avec
∣∣ f

∣∣ ,
∣∣g ∣∣ ∈C ([a,b],R)

⩽
(
N2( f )+N2(g )

)2

Finalement, N2( f + g )⩽ N2( f )+N2(g ). ■

4 Boules et sphères
On fixe (E ,‖·‖) un espace vectoriel normé.

Définition 9 : Boule et sphères

Soient a ∈ E et r ∈R+.
Boule ouverte de centre a et de rayon r : B(a,r ) = {x ∈ E , ‖x −a‖ < r } .

Boule fermée de centre a et de rayon r : B(a,r ) = B ′(a,r ) = B f (a,r ) = B(a,r ) = {x ∈ E , ‖x −a‖⩽ r } .

Sphère de centre a et de rayon r : S(a,r ) = {x ∈ E , ‖x −a‖ = r } .
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Exemple

E 4 – Cas où r = 0 : B(a,0) =∅ et B(a,0) = S(a,0) = {a}.
E 5 – Cas de (R, |·|) : B(a,r ) =]a − r, a + r [, B(a,r ) = [a − r, a + r ], S(a,r ) = {a − r, a + r }.
E 6 – Boule unité fermée dans R2 pour les trois normes usuelles.

Définition 10 : Partie convexe
Une partie A de E est dite convexe lorsque pour tout x, y ∈ E et pour tout t ∈ [0,1], t x + (1− t )y ∈ A.

Remarque

R 13 – {t x + (1− t )y, t ∈ [0,1]} représente le segment formé par les extrémités des vecteurs x et y .

Propriété 10 : Convexité des boules

Les boules sont convexes.

Démonstration

Si x, y ∈ B(a,r ), t ∈]0,1[, z = (1− t )x + t y , ‖z −a‖ = ∥∥(1− t )(x −a)+ t (y −a)
∥∥⩽ (1− t )‖x −a‖+ t

∥∥y −a
∥∥< r .

Le cas de B(a,r ) est similaire. ■

5 Parties, suites et fonctions bornées

Définition 11 : Partie bornée
A ∈P (E) est bornée s’il existe M ∈R+ tel que pour tout x ∈ A, ‖x‖⩽ M .

Propriété 11 : Les boules sont bornées

Toute boule (ouverte ou fermée) de E est bornée.

Démonstration

Si z ∈ B(a,r )∪B(a,r ), ‖z‖ = ‖z −a +a‖⩽ r +‖a‖. ■

Remarque

R 14 – Une partie est bornée si et seulement si elle est incluse dans une boule (par exemple fermée).

Définition 12 : Fonction bornée
Soit X un ensemble non vide, f ∈ E X .
On dit que f est bornée s’il existe M ∈R+ tel que pour tout x ∈ X ,

∥∥ f (x)
∥∥ ⩽ M (ie si f (A) est une partie

bornée de E .)
On note L∞(X ,E) =B(X ,E) l’ensemble des fonctions de E X bornées (notations hors-programme).
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Propriété 12 : Norme infini

On pose, pour f ∈B(X ,E),
∥∥ f

∥∥∞ = sup
x∈X

∥∥ f (x)
∥∥, bien défini.

Alors (B(X ,E),‖·‖∞) est un espace vectoriel normé.

Démonstration

Démonstration similaire à B(X ,K) en remplaçant |·| par ‖·‖ (ce qui est bien licite). ■

On obtient en particulier, pour X =N :

Définition 13 : Suite bornée
Soit u ∈ EN. On dit que u est bornée s’il existe M ∈R+ tel que pour tout n ∈N, ‖un‖⩽ M (ie si {un , n ∈N}

est une partie bornée de E .)
On note ℓ∞(E) =B(N,E) l’ensemble des suites bornées à valeurs dans E (notation hors-programme).

Remarque

R 15 – On peut aussi définir une norme infini sur l’ensemble ℓ∞(E) des suites bornées :

‖u‖∞ = sup
n∈N

‖un‖

6 Produit fini d’espaces vectoriels normés

Propriété 13

Si (E1, N1), . . . , (Ep , Np ) sont des K-espaces vectoriels normés.
On pose, pour x = (x1, . . . , xp ) ∈ E1 ×·· ·×Ep ,

N (x) = max
1⩽k⩽n

Nk (xk ).

Alors N est une norme sur E1 ×·· ·×Ep appelée norme produit.

Remarque
R 16 – En prenant |·| sur K, la norme produit sur Kn est ‖·‖∞.

II SUITE D’ÉLÉMENTS D’UN ESPACE VECTORIEL NORMÉ
On fixe (E ,‖·‖) un K-espace vectoriel normé non nul.

1 Convergence d’une suite

Définition 14 : Suite convergente, divergente

Soit u ∈ EN et ℓ ∈ E .
On dit que u converge vers ℓ lorsque pour tout ε> 0, il y a un rang à partir duquel un est à distance au

plus ε de ℓ.
Autrement dit,

∀ε> 0, ∃N ∈N, ∀n ⩾ N , ‖un −ℓ‖⩽ ε.

Dans ce cas, on dit que u est convergente et que ℓ est sa limite. On note un −→ ℓ ou un
‖·‖−→ ℓ.

Lorsque u n’est pas convergente, elle est dite divergente.
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Remarque

R 17 – un −→ ℓ si et seulement si la suite réelle (‖un −ℓ‖)n converge vers 0.
R 18 – un −→ ℓ si et seulement si

∀ε> 0, ∃N ∈N, ∀n ⩾ N , un ∈ B(ℓ,ε).

R 19 – La convergence dépend a priori de la norme.

Définition 15 : Modes de convergences d’une suite de fonctions

Si E =C ([a,b],K), ( fn) ∈ EN, f ∈ E .
Si fn

N1−→ f , on parle de convergence en moyenne.
Si fn

N2−→ f , on parle de convergence en moyenne quadratique.
Si fn

N∞−→ f , on parle de convergence uniforme (convergence graphique).

Propriété 14 : Unicité de la limite

Soit u ∈EN, ℓ,ℓ′ ∈ E . Si un −→ ℓ et un −→ ℓ′, alors ℓ= ℓ′.

Démonstration

Démonstration similaire à celle des suites numérique en remplaçant les valeurs absolues/modules par des
normes. ■

Propriété 15 : Caractère borné d’une suite convergente

Toute suite convergente est bornée.

Démonstration

Il suffit par exemple de prendre ε= 1 dans la définition. ■

Propriété 16 : Convergence de la norme des termes

Soit u ∈EN, ℓ ∈ E . Si un −→ ℓ, alors ‖un‖ −→‖ℓ‖.

Démonstration

Par inégalité triangulaire, |‖un‖−‖ℓ‖|⩽ ‖un −ℓ‖. ■

Propriété 17 : Convergence par majoration

Si u ∈ EN, α ∈RN, ℓ ∈ E tel qu’à partir d’un certain rang ‖un −ℓ‖⩽αn et αn −→ 0, alors un −→ ℓ.

Démonstration

Par propriété sur les suites réelles, on a ‖un −ℓ‖→ 0 ce qui signifie un → ℓ. ■

Définition 16 : Valeur d’adhérence
On appelle valeur d’adhérence de u ∈ EN toute limite (dans (E ,‖·‖)) de suite extraite de u.
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Propriété 18 : Cas des suites convergentes

Une suite convergente a une unique valeur d’adhérence : sa limite.

Démonstration

En effet, si un → ℓ, toute suite extraite converge vers ℓ car ‖un −ℓ‖ → 0 implique que pour tout extractrice φ,∥∥uφ(n) −ℓ
∥∥→ 0 d’après la propriété connue sur les suites réelles. ■

Remarque

R 20 – Réciproque fausse en général. On verra bien un contexte dans lequel elle est vrai (spoiler : il suffit qu’elle soit
à valeur dans un compact.)

Corollaire 1 : Contraposée

Si une suite a plusieurs valeurs d’adhérence, elle diverge.

2 Opérations algébriques

Propriété 19 : Espace vectoriel des suites convergentes

Soit u, v ∈EN, ℓ,ℓ′ ∈ E ,λ ∈K. Si un −→ ℓ et vn −→ ℓ′, alors u +λv est convergente et un +λvn −→ ℓ+λℓ′.

Démonstration ∥∥(un +λvn )− (ℓ+λℓ′)
∥∥⩽ ‖un −ℓ‖+|λ|∥∥vn −ℓ′

∥∥→ 0. ■

Propriété 20 : Produit externe de suites convergentes

Si (un) ∈ EN et (αn) ∈KN tel que un −→ ℓ ∈ E et αn −→α ∈K, alors αnun −→αℓ.

Démonstration

‖αn un −αℓ‖ = ‖(αn −α)un +α(un −ℓ)‖⩽ |αn −α|‖un‖+|α|‖un −ℓ‖→ 0

car u est bornée car convergente. ■

3 Suite à valeurs dans un produit

Propriété 21 : Convergence de suite dans un produit d’evn

Si (E1, N1), . . . , (Ep , Np ) sont des K-espaces vectoriels normés, N la norme produit sur E1 × ·· · × Ep ,
u = (

u(1), . . . ,u(p)
) ∈ (

E1 ×·· ·×Ep
)N, ℓ= (ℓ1, . . . ,ℓp ) ∈ E1 ×·· ·×Ep . Alors

u
N−→ ℓ si et seulement si pour tout k ∈ J1, pK, u(k) Nk−→ ℓk .
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Démonstration

Conséquence immédiate de la définition de la norme produit

N (un −ℓ) = max
1⩽k⩽n

Nk

(
u(k)

n −ℓk

)
. ■

III COMPARAISON DE NORMES
Soit (E ,+,×) unK-espace vectoriel et N1 et N2 deux normes sur E . On note B1(a,r ) (respectivement B2(a,r )) une boule

ouverte pour N1 (respectivement N2).

1 Domination

Définition 17 : Domination
On dit que N1 est dominée par N2 lorsqu’il existe α> 0 tel que N1 ⩽αN2.

Remarque
R 21 – Traduction avec les boules : B2(a,r /α) ⊂ B1(a,r ).
R 22 – Si une partie ou une fonction ou une suite est bornée pour N2, elle l’est automatiquement pour N1 aussi.

Propriété 22 : Implication de convergences

Soit N1 dominée par N2 et u ∈ EN et ℓ ∈ E . Si un
N2−→ ℓ, alors un

N1−→ ℓ.

Remarque

R 23 – Si N1 n’est pas dominée par N2, on fabrique une suite qui tend vers 0 pour N2 et diverge pour N1 : pour tout
n ∈N, on a xn ∈ E tel que N1(xn ) > nN2(xn ). Il suffit alors de poser zn = 1p

nN2(xn )
xn ...

Méthode 1 : Montrer que N1 n’est pas dominée par N2

On peut chercher une suite (un ) telle que
■ (N2(un )) borné mais pas (N1(un ))

■ ou alors telle que N2(un ) −→ 0 et non N1(un )

■ ou encore tel que N1(un )

N2(un )
−→+∞.

2 Équivalence

a Définition

Définition 18 : Normes équivalentes

N1 et N2 sont équivalentes si et seulement si elles se dominent mutuellement, si et seulement s’il existe
α,β ∈R+∗ tel que αN2 ⩽ N1 ⩽βN2.
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Remarque

R 24 – C’est une relation d’équivalence.

Propriété 23 : Équivalence de convergence

Si N1 et N2 sont équivalentes, un
N1−→ ℓ si et seulement si un

N2−→ ℓ.

Démonstration

Par la définition de l’équivalence des normes, N1(un −ℓ) → 0 ⇐⇒ N2(un −ℓ) → 0. ■

b Cas de Kn

Propriété 24 : Équivalence des normes

Les trois normes usuelles sont équivalentes sur Kn .

Démonstration

Visualiser avec des boules.
■ ‖·‖1 ⩽ n ‖·‖∞ cas d’égalité : vecteur constant.
■ ‖·‖∞ ⩽ ‖·‖1 cas d’égalité : tous nuls sauf 1.
■ ‖·‖1 ⩽

p
n ‖·‖2 CS - cas d’égalité : celui de CS = tous égaux.

■ ‖·‖2 ⩽ ‖·‖1 cas d’égalité : tous nuls sauf 1.
■ ‖·‖2 ⩽

p
n ‖·‖∞ cas d’égalité : tous égaux.

■ ‖·‖∞ ⩽ ‖·‖2 cas d’égalité : tous nuls sauf 1.
■

c Cas de C ([a,b],K)

Propriété 25 : Domination des normes

Sur C ([a,b],K),
■ N1 ⩽ (b −a)N∞ et N∞ n’est pas dominée par N1.
■ N2 ⩽

p
b −aN∞ et N∞ n’est pas dominée par N2.

■ N1 ⩽
p

b −aN2 et N2 n’est pas dominée par N1.

Démonstration

N1 ⩽ (b −a)N∞ : plus facile de converger en moyenne qu’uniformément. Égalité pour une fonction constante.
N2 ⩽

p
b −aN∞ : égalité pour f constante.

N1 ⩽
p

b −aN2 par Cauchy-Schwarz. Égalité pour f constante.
N∞ n’est pas dominée par N1 : sur [0,1], fn telle que N∞( fn ) = n et N1( fn ) = 1

n
: triangle entre (0,n) et

(
2

n2
,0

)
.
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x

y

n

2
n2

1

Avec la même suite de fonctions (sur
[

0,
2

n2

]
, fn (x) = n − n3

2
x) et un changement de variable simple, N2( fn ) = 2

3
:

N2 n’est pas dominée par N1.
Et donc N∞ n’est pas dominée par N2 non plus.

On peut aussi utiliser gn : t 7→ t n sur [0,1] avec N∞(gn ) = 1, N1(gn ) = 1

n +1
→ 0 et N2(gn ) = 1p

2n +1
→ 0 qui permet de

montrer que N∞ n’est dominée ni par N1 ni par N2, et comme N2(gn )

N1(gn )
→+∞, N2 n’est pas dominée non plus par N1.

0.5 1

0.5

1

■

d Cas de la dimension finie

Théorème 1 : Équivalence des normes en dimension finie

Toutes les normes sont équivalentes en dimension finie.

Démonstration

Non exigible, admis provisoirement. ■

Propriété 26 : Convergence coordonnée à coordonnée

Dans un espace de dimension finie, une suite converge vers une limite si et seulement si chaque
coordonnée dans une base tend vers la coordonnée correspondante de la limite.

Démonstration

Il suffit d’utiliser l’équivalence avec la norme infini pour cette base. ■
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IV TOPOLOGIE DES ESPACES VECTORIELS NORMÉS
On se donne (E ,‖·‖) un K-espace vectoriel normé fixé, avec K=R ou C, d la distance associée.

1 Voisinages, ouverts, fermés

a Voisinage

Définition 19 : Voisinage

Soient a ∈ E et V une partie de E .
On dit que V est un voisinage de a s’il existe r > 0 tel que B(a,r ) ⊂V , c’est-à-dire qu’il existe une boule

ouverte centrée en a contenue dans V .

Remarque

R 25 – Cela revient à dire qu’on a une distance de sécurité autour de a qui permet de s’en approcher dans toutes
les directions en restant dans V .
En particulier, a ∈V .

Propriété 27 : des voisinages

(i) Si V voisinage de a et V ⊂W , alors W est un voisinage de a.
(ii) Une réunion non vide quelconque de voisinages de a est un voisinage de a.
(iii) Une intersection finie de voisinages de a est un voisinage de a.

Démonstration

(i) Facile.
(ii) Si (Vi )i∈I est une famille de voisinages de a, pour n’importe quel j ∈ I , V j ⊂

⋃
i∈I

Vi donc, d’après la propriété (i),⋃
i∈I Vi est un voisinage de a.

(iii) Si V1, . . . ,Vn sont des voisinages de a, pour tout i ∈ J1,nK, on a ri > 0 tel que B(a,ri ) ⊂ Vi . Soit r = min
1⩽i⩽n

ri . Alors

B(a,r ) ⊂ ⋂
i∈I

Vi qui est un voisinage de a. ■

Remarque

R 26 – " Ce n’est pas valable pour des intersections infinies.
Par exemple, dans R, les Vi =

]
− 1

i , 1
i

[
sont des voisinages de 0, mais

⋂
i∈N∗

Vi = {0} n’est pas un voisinage de 0.

Propriété 28 : Voisinages et domination de norme

Si N1 est une norme dominée par N2, alors les voisinages pour N1sont des voisinages pour N2.
Si les normes sont équivalentes, les voisinages pour l’une sont exactement les voisinages pour l’autre.
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Démonstration

On a α> 0 tel que N1 ⩽αN2.
Si V est un voisinage de a pour N1, on a un r > 0 tel que N1(x −a) < r =⇒ x ∈V .
Alors N2(x −a) < r

α =⇒ x ∈V .
Donc V est un voisinage de a pour N2. ■

b Parties ouvertes

Définition 20 : Ouvert
Une partie O de E est dite ouverte ou un ouvert de E lorsque O est voisinage de tous ses points, autre-

ment dit ∀a ∈O , ∃ r > 0, B(a,r ) ⊂O .
Par convention, ∅ est ouvert.

Remarque
R 27 – Intuitivement, cela signifie qu’il n’y a pas de point « au bord ».

Exemple
E 7 – Les intervalles ]0,1[, ]0,1], [0,1] sont-ils des ouverts de (R, |·|)?
E 8 – Le quart de plan A = {

(x, y) ∈R2, x > 0 et y > 0
}
est-il un ouvert de

(
R2,‖·‖2

)
?

E 9 – Si a,b ∈R tels que a < b, alors ]a,b[ est un ouvert de R.

Propriété 29 : Cas des boules ouvertes

Toute boule ouverte est ouverte (!)

Démonstration

Si x ∈ E , r > 0, O = B(x,r ).
Soit a ∈O . Alors B(a,r −d(x, a)) ⊂O . En effet, si d(a,b) < r −d(a, x), alors d(x,b) < d(x, a)+d(a,b) < r . ■

Propriété 30 : des ouverts

(i) ∅, E sont ouverts.
(ii) Une réunion quelconque d’ouverts est ouverte.
(iii) Une intersection finie d’ouverts est ouverte.
(iv) Un produit fini d’ouverts est ouvert (pour la norme produit).

Remarque

R 28 – " Ce n’est pas valable pour des intersections infinies, avec le même contre-exemple que pour les voisi-
nages.
Dans R, les Vi =

]
− 1

i , 1
i

[
sont ouverts, mais

⋂
i∈N∗

Vi = {0} ne l’est pas.
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Démonstration

(i) Facile.
(ii) Si les Oi pour i ∈ I sont ouverts, et si a ∈ ⋃

i∈I
Oi , alors il existe j ∈ i tel que a ∈O j qui est ouvert, O j est un voisinage

de a et donc O j ⊂
⋃
i∈I

Oi voisinage de a.

(iii) Si a ∈
n⋂

i=1
Oi , alors pour tout i , a ∈ Oi donc les Oi sont tous voisinages de a, donc leur intersection (finie) l’est

encore.
(iv) On traite le cas du produit de deux ouverts. Le cas général se traite de façon similaire.

Si O1 est un ouvert de (E1, N1) et O2 est un ouvert de (E2, N2), montrons que O1 ×O2 est un ouvert de (E1 ×E2, N )
où N est la norme produit.
Soit (a1, a2) ∈O1 ×O2. Alors on a r1 > 0 et r2 > 0 tels que B1(a1,r1) ⊂O1 et B2(a2,r2) ⊂O2.
On vérifie alors que BN ((a1, a2),mi n(r1,r2)) ⊂O1 ×O2.

■

Propriété 31 : Ouverts et domination de normes

Si N1 est une norme dominée par N2, alors les ouverts pour N1sont des ouverts pour N2.
Si les normes sont équivalentes, les ouverts pour l’une sont exactement les ouverts pour l’autre.

Démonstration

Les voisinages pour N1 sont des voisinages pour N2. ■

Remarque
R 29 – On appelle topologie de (E ,‖·‖) l’ensemble de ses ouverts.

Si N1 est dominée par N2, la topologie pour N2 possède plus d’ouverts que celle pour N1. On dit que la
topologie pour N2 est plus fine que celle pour N1.

R 30 – En particulier, en dimension finie, toutes les normes sont équivalentes. Les notions de voisinages et donc d’ou-
verts ne dépendant pas du choix de la norme. Ce sera aussi le cas de toutes les notions définies ci-après :
fermé, adhérence, intérieur, densité.

Exercice 1 : CCINP 37

c Parties fermées

Définition 21 : Fermé
Une partie F de E est dite fermée lorsque son complémentaire F c est ouvert.

Remarque
R 31 – Intuitivement : bord compris.
R 32 – " Fermé n’est pas le contraire d’ouvert. On peut être les deux à la fois. Le plus souvent, on n’est ni l’un ni

l’autre...

Propriété 32 : Cas des boules fermées

Toute boule fermée est fermée (!)
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Démonstration

Soit F = B(a,r ). F c = {x ∈ E , d(x, a) > r }.
Soit b ∈ F c . On montre que B(b,d(b, a)− r ) ⊂ F c .
En effet, si x ∈ B(b,d(b, a)− r ), d(a, x)⩾ d(a,b)−d(x,b)⩾ d(a,b)− (d(a,b)− r ) = r donc x ∈ F c . ■

Remarque

R 33 – Les singletons sont des fermés.

Propriété 33 : des fermés

(i) ∅, E sont fermés.
(ii) Une intersection quelconque de fermés est fermée.
(iii) Une réunion finie de fermés est fermée.
(iv) Un produit fini de fermés est fermé (pour la norme produit).

Remarque

R 34 – C’était l’inverse pour les ouverts.
R 35 – " Ce n’est pas valable pour des réunions infinies.

Dans R, les Fi =
[
−1+ 1

i ,1− 1
i

]
sont fermés, mais

⋃
i∈N∗

Fi =]−1,1[ ne l’est pas.

R 36 – Une partie finie est fermée.

Démonstration

Il suffit de passer au complémentaire et d’utiliser les propriétés des ouverts.
Pour le produit, remarquer que (

n∏
i=1

Fi

)c

=
n⋃

i=1

(
i−1∏
j=1

Ei ×F c
i ×

n∏
j=i+1

Ei

)
qui est une réunion finie de produits finis d’ouverts. ■

Exemple

E 10 – Les intervalles ]0,1[, ]0,1], [0,1] sont-ils des fermés de (R, |·|)?
E 11 – Si a,b ∈R tels que a < b, alors ]−∞,b], [a,+∞[, [a,b] sont des fermés de R.

Propriété 34 : Cas des sphères

Toute sphère de E est fermée.

Démonstration

S(a,r ) = B(a,r )∩ (B(a,r ))c est une intersection de fermés. ■

Propriété 35 : Caractérisation séquentielle

Une partie F de E est fermée si et seulement si toute suite convergente d’éléments de F a sa limite
dans F .
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Démonstration

(=⇒) Si F est fermée, et (xn )n∈N une suite d’éléments de F , ℓ ∈ E sa limite, on suppose, par l’absurde que ℓ ∈ F c , qui
est ouvert.
On a donc r > 0 tel que B(ℓ,r ) ⊂ F c .
Or on a un rang à partir duquel xn ∈ B(ℓ,r ) ce qui est contradictoire.

(⇐=) Par contraposée, si F n’est pas fermée, F c n’est pas ouverte, donc on a ℓ ∈ F c tel que pour tout r > 0, B(ℓ,r ) 6⊂ F c

ie B(ℓ,r )∩F 6=∅.
Soit n ∈N. Avec r = 1

n+1 , on a xn ∈ B
(
ℓ, 1

n+1

)
∩F donc tel que d(xn ,ℓ)⩽ 1

n+1 .
Alors (xn )n∈N ∈ FN et xn → ℓ ∉ F . ■

Exemple

E 12 – F = {
(x, y) ∈R2, x2 ⩽ y ⩽ x

}
est un fermé de R2.

2 Adhérence, densité, intérieur

a Points adhérents, adhérence

Remarque

R 37 – Intuitivement, un point adhérent est un point dans A ou « au bord » de A.

Définition 22 : Point adhérent
Soit A une partie de E et x ∈ E . On dit que x est adhérent à A lorsque ∀ r > 0, B(x,r )∩ A 6=∅.

Propriété 36 : Caractérisation séquentielle

x est adhérent à A si et seulement s’il existe une suite (an)n∈N d’éléments de A qui converge vers x.

Démonstration

(=⇒) On suppose que x est adhérent à A.

Soit n ∈N. Avec r = 1

n +1
, on a an ∈ B

(
x,

1

n +1

)
∩ A donc tel que d(an , x)⩽ 1

n +1
.

Cela définit (an )n∈N ∈ AN telle que an → x.
(⇐=) Si on a une suite (an )n∈N ∈ AN telle que an → x, alors pour tout r > 0, on a un rang à partir duquel

an ∈ B(a,r )∩ A 6=∅. ■

Définition 23 : Adhérence
L’adhérence A de A est l’ensemble des points adhérents à A.

Remarque

R 38 – Attention à la notation : ne pas confondre avec le complémentaire.
R 39 – Intuitivement, « les points de A et les points des bords ».
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Exemple
E 13 –

E A A

R Z Z

R Q R

R ]0,1] [0,1]

E B(a,r ) B(a,r )

Pour la dernière, si x ∈ B(a,r ), on a une suite (xn )n d’éléments de B(a,r ) telle que xn → a. Donc pour tout n,
d(xn , a) < r et alors d(x, a)⩽ d(x, xn )+d(xn , a) < d(x, xn )+ r . En passant à la limite, d(x, a)⩽ r , donc B(a,r ) ⊂ B(a,r ).
Réciproquement, si x ∈ B(a,r ), soit xn = a+

(
1− 1

n

)
(x−a) → x et xn ∈ B(a,r ) donc, par caractérisation séquentielle,

x ∈ B(a,r ).
Finalement, B(a,r ) = B(a,r ).

Propriété 37 : Croissance

Si A ⊂ B , alors A ⊂ B .

Démonstration

Caractérisation séquentielle. ■

Propriété 38 : Caractérisation

A est le plus petit fermé contenant A.

Démonstration

A est un fermé de E contenant A : Par définition, on a bien A ⊂ A. Puis on montre que A
c est ouvert.

Si x ∉ A, on a r > 0 tel que B(x,r )∩ A =∅. Si y ∈ B(x,r ), B(y,r −d(x, y))∩ A =∅ donc y ∉ A.
Il est plus petit que les autres : Si F est un fermé contenant A, et si (xn )n∈N est une suite d’éléments de A ⊂ F conver-

gente, alors sa limite est dans F donc A ⊂ F . ■

Propriété 39 : Caractérisation des fermés

F est un fermé de E si et seulement si F = F .

Démonstration

Si F = F , F est fermé d’après ce qui précède.
Si F est fermé, on a déjà F ⊂ F .
Puis, si x ∈ F , x est limite d’une suite d’éléments de F donc x ∈ F .

Propriété 40 : Cas des sous-espaces et des convexes (HP)

Si A est un sous-espace vectoriel de E , alors A l’est aussi.
Si A est un convexe de E , alors A l’est aussi.

Démonstration

Conséquence de la caractérisation séquentielle. ■
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Exercice 2 : CCINP 34 Exercice 3 : CCINP 44 Exercice 4 : CCINP 45

b Densité

Définition 24 : Densité
D est dense dans E lorsque D = E , c’est-à-dire lorsque toute boule ouverte rencontre D.

Propriété 41 : Caractérisation séquentielle

D est dense dans E si et seulement si tout élément de E est limite d’une suite d’élément de D.

Exemple
E 14 – Q, R\Q, D sont denses dans R.
E 15 – Théorème de Weierstraß : le sous-espace des fonctions polynomiales sur [a,b] est dense dans (C ([a,b],R), N∞)

(donc a fortiori dans (C ([a,b],R), N1) et (C ([a,b],R), N2).
Le sous-espace des fonctions en escalier sur [a,b] est dense dans (Cm ([a,b],K), N∞) (donc a fortiori dans
(Cm ([a,b],K), N1) et (Cm ([a,b],K), N2).

c Intérieur

Définition 25 : Point intérieur et intérieur d’une partie

Soit A une partie de E , x∈ E .
x est un point intérieur à A lorsque A est un voisinage de x, c’est-à-dire qu’il existe une boule ouverte

centrée en x incluse dans A.
L’ensemble des points intérieurs à A est appelé intérieur de A, noté Å.

Propriété 42 : Croissance

Si A ⊂ B , alors Å ⊂ B̊ .

Propriété 43 : Caractérisation

Å est le plus grand ouvert inclus dans A.

Démonstration

Å est un ouvert de E contenu dans A : Par définition, on a bien Å ⊂ A. Puis, si x ∈ Å, on a r > 0 tel que B(x,r ) ⊂ A. Mais
si y ∈ B(x,r ) qui est ouverte, alors B(x,r ) est un voisinage de y donc A est un voisinage de y , donc B(x,r ) ⊂ Å.

Il est plus grand que les autres : Si O est un ouvert contenu dans A, alors O est voisinage de tous ses points donc
O ⊂ Å. ■

Propriété 44 : Caractérisation des ouverts

O est ouvert si et seulement si O̊ =O .
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Démonstration

Si O̊ =O , alors O est ouvert d’après ce qui précède.
Puis, d’après la caractérisation, O̊ ⊂O et si O est ouvert, O ⊂ O̊ . ■

Exemple

E 16 – Q̊=∅ : Q ne contient pas d’intervalles ouverts non vides.

E 17 – �̊B(a,r ) = B(a,r ) : B(a,r ) est un ouvert contenu dans B(a,r ), donc B(a,r ) ⊂ �̊B(a,r ), et �̊B(a,r ) ⊂ B(a,r ), mais si x ∈ S(a,r ),
B(a,r ) n’est pas un voisinage de x, donc x ∉ �̊B(a,r ) donc �̊B(a,r ) ⊂ B(a,r )

d Frontière

Définition 26 : Frontière
On appelle frontière de A l’ensemble Fr(A) = A \ Å.

Exemple
E 18 – Fr(B(a,r )) = S(a,r ).
E 19 – Fr([0,1[) = {0,1}.
E 20 – Fr(Q) =R.

Propriété 45 : Caractère fermé

Une frontière est toujours fermée.

Démonstration

Fr(A) = A∩ Åc est une intersection de fermés donc est fermée. ■

3 Ouverts, fermés, voisinages relatifs
On se fixe une partie A non vide de E .

a Voisinage relatif

Définition 27 : Voisinage relatif

Soit a ∈ A. On appelle voisinage relatif de a dans A toute partie V ′ de A s’écrivant V ′ = A ∩V où V est
un voisinage de a, c’est-à-dire telle qu’il existe r > 0 tel que B(a,r )∩ A ⊂V ′.

Remarque

R 40 – V ′ n’est pas nécessairement un voisinage de a dans E .
Par exemple

[
0, 1

2

[
est un voisinage de 0 dans [0,1[ mais pas dans R.

b Ouverts relatifs
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Définition 28 : Ouvert relatif
Une partie O ′ de A est un ouvert relatif de A (ou pour la topologie induite sur A) lorsqu’elle est un

voisinage relatif de chacun de ses points.

Remarque

R 41 – O ′ ouvert relatif de A si et seulement si pour tout x ∈O ′, il existe r > 0 tel que B(x,r )∩ A ⊂O ′.

Propriété 46 : Caractérisation

O ′ de A est un ouvert relatif de A si et seulement s’il existe un ouvert O tel que O ′ =O ∩ A.

Exemple

E 21 –
[

0, 1
2

[
est un ouvert de [0,1].

Remarque
R 42 – Si A est ouvert, les ouverts relatifs de A sont les ouverts.

c Fermés relatifs

Définition 29 : Fermé relatif
Une partie F ′ de A est un fermé relatif de A si son complémentaire dans A est un ouvert relatif de A.

Propriété 47 : Caractérisation

F ′ est un fermé relatif de A si et seulement s’il existe un fermé F tel que F ′ = F ∩ A.

Remarque

R 43 – Si A est fermé, les fermés relatifs de A sont les fermés.

Propriété 48 : Caractérisation séquentielle

Soit F ′ une partie de A.
F ′ fermé relatif de A si et seulement si F ′ est une partie de A telle que toute suite d’éléments de F ′

convergeant dans A a sa limite dans F ′.

Démonstration

Si F ′ est un fermé relatif de A, alors F ′ = F ∩ A où F est fermé. Si (xn ) ∈ F ′N tel que xn → ℓ ∈ A, alors comme F est
fermé, ℓ ∈ F donc ℓ ∈ F ′.

Si toute suite d’éléments de F ′ convergeant dans A a sa limite dans F ′, soit F = F ′, fermé de E . Montrons que
F ′ = F ∩ A.

On a déjà F ′ ⊂ F ∩ A. Puis, si x ∈ F ∩ A = F ′∩ A, on a une suite d’éléments de F ′ convergeant vers x ∈ A donc x ∈ F ′.
■

d Densité
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Définition 30 : Densité dans une partie

Soit B partie de A. B est dense dans A si et seulement si A ⊂ B si et seulement si tout élément de A est
limite d’une suite d’éléments de B .
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