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Espaces Vectoriels Normés

Extrait du programme officiel :

Les notions d’espace métrique et, a fortiori, d’espace topologique, sont hors programme. Il en est de méme des notions de suite

de Cauchy et d’espace de Banach.

Dans foute cette section, K désigne R ou C.

CONTENUS

CAPACITES & COMMENTAIRES

a) Normes et espaces vectoriels normés

Norme sur un K-espace vectoriel. Structure d’espace vectoriel
norme.

Distance associée & une norme.

Boules fermées, boules ouvertes, sphéres. Convexité des boules.

Parties, suites, fonctions bornées.

Norme associée & un produit scalaire sur un espace préhilbertien
réel.

Normes [ ll1, Il 2. Il lloo SUr K.

Norme de la convergence uniforme sur I'espace des fonctions
bornées & valeurs dans K.

Normes de la convergence en moyenne et de la convergence
en moyenne quadratique sur I'espace des fonctions continues
sur un segment & valeurs réelles ou complexes.

Produit fini d’espaces vectoriels normés.

Vecteurs unitaires.

Inégalité triangulaire.

On intfroduit & cetfte occasion la notfion de partie convexe d’un
espace vectoriel réel.

Notation || leo-
Pour les applications pratiques, on peut utiliser sans justification
I’égalité sup(kA) = ksup(A) pour A partie non vide de R et ke R*.

Notations || [I; et | II2.

b) Suites d’éléments d’'un espace vectoriel normé

Suite convergente, divergente. Unicité de la limite. Caractere
borné d’une suite convergente. Opérations algébriques sur les
suites convergentes. Convergence d’une suite & valeurs dans un
produit fini d’espaces vectoriels normés.

Suites extraites, valeurs d’adhérence.

Une suite ayant au moins deux valeurs d’adhérence diverge.

c) Comparaison des normes

Normes équivalentes. Invariance du caractére borné, de la
convergence d’une suite.

Utilisation de suites pour établir que deux normes ne sont pas
équivalentes.

d) Topologie d’un espace normé

Ouvert d'un espace normé. Stabilité de I'ensemble des ouverts
par réunion quelconque, par intersection finie.

Voisinage d’un point.

Fermé d’un espace normé. Stabilité de I'ensemble des fermés
par infersection quelconque, par réunion finie.

Point intérieur, point adhérent.
Intérieur, adhérence, frontiére d’une partie.

Caractérisation séquentielle des points adhérents, des fermés.

Partie dense.

Invariance des notions topologiques par passage d une norme
équivalente.

Une boule ouverte est un ouvert. Un produit (fini) d’ouverts est un
ouvert.,

Une boule fermée, une sphére, sont fermées. Un produit (fini) de
fermés est fermé.
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CONTENUS

Si A est une partie d’un espace normé, ouvert et fermé relatifs
de A. Voisinage relatif.

CAPACITES & COMMENTAIRES

Par définition, une partie U de A est un ouvert relatif si U est voisi-
nage relatif de chacun de ses points.

Caractérisation comme intersection avec A d’un ouvert de E.
Les fermés relatifs sont par définition les complémentaires dans A
des ouverts relatifs. Caractérisation séquentielle. Caractérisation
comme intersection avec A d'un fermé de E.

j) Espaces vectoriels normés de dimension finie

Equivalence des normes en dimension finie.

Invariance des différentes notions topologiques par rapport au
choix d’une norme en dimension finie. Topologie naturelle d’un
espace normé de dimension finie.

La démonstration n’est pas exigible.

La convergence d’une suite (ou I'existence de la limite d’une
fonction) & valeurs dans un espace vectoriel normé de dimen-
sion finie équivaut & celle de chacune de ses coordonnées dans
une base.
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Dans fout le chapitre, K désigne R ou C.

n NORME SUR UN ESPACE VECTORIEL

Soit (E, +,-) un K-espace vectoriel,

Il Norme et distance

Définition 1: Norme, espace vectoriel normé

On appelle norme sur E toute application N: E— R* vérifiant

Séparation Pour fout xe E, N(x) =0r = x=0g.

Homogénéité Pour tout x € E et pour fout 1 € K, N(Ax) = |A| N(x).

Inégalité triangulaire (ou sous-additivité) Pour tout x,y € E, N(x+y) < N(x) + N(y).
On dit alors que le couple (E, N) est un espace vectoriel normé.

Remarque

R1- Souvent notée ||-| également.
R2 - Pas de cas d’égalité dans I'inégalité friangulaire.
R3 — La positivité est en fait automatique ! Par homogénéité et inégalité triangulaire, si x€ E,

2N(x)=N(x)+N(=x) > N(x—-x)=N(0g) =|0|N(0g) =0

Exemple

E1 - Valeur absolue sur R (y en o-t-il d’autres ?) et module sur C.

Propriété 1: d’'une norme

Soit (E, |I-I) un espace vectoriel normé, x,y € E.

() 10gl =0g @iy [ ={|yll| < flx =y < el + | v
@iy NI-xIl = x|

Démonstration
@) II'suffit de prendre A =0 dans I’homogénéité.
(i) C’est encore ’lhomogénéité.

(i) Onadéja |x+y| <llxll+|y| puis |x-y| < lIxl+]y| avec la propriété précédente, puis |x+y—y| < ||x+y| +]|¥|
donne |xll - || < [|x+y| puis par symétrie des rdles ||y| - Ixll < ||x+ y|| ce qui donne bien |[lixll - ||y|| < |x+¥|.
Enfin, on tire [llxll - | y[[| < [x- y| de la propriété précédente.

Définition 2 : Vecteur unitaire

Dans un espace vectoriel normé (E, [I-), un vecteur unitaire ou normé est un vecteur x € E tel que
ll x|l = 1.

Remarque

R4— Six#0g, ”17”xes’r le vecteur normé associé a x (de méme direction et de méme sens.)
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Définition 3 : Distance associée a une norme
Soit (E, |I-]) un espace vectoriel normé. On appelle distance associée a |-|| I'application

EF? — R*

xy — |x-y|

Propriété 2 : d’une distance

Soit (E, II-) un espace vectoriel normé, d distance associée, x,y,z € E.

() dx,y))=0=x=1y. (i Double inégailité triangulaire :

(i Symétrie : d(x,y) = d(y,x). |d(x,2) —d(z, y)| < d(x,y) < d(x,2) +d(z, y).

Démonstration

@) Facile.

(i) Facile.

(i) d(x,y) = ||x— z+z-— y|| <d(x,2) +d(z,y) d(x,2z) <d(x,y) +d(y,z) donc d(x, z) —d(z, y) < d(x,y) d’ou on tire par symétrie
|d(x, 2) —d(z, )| <d(x, ). u

Remarque
R5 — |l existe une notion plus générale (Hors Programme) de distance sur un ensemble E : c’est une application
de E% dans R* symétrique, telle que d(x, y) = 0 = x = y et vérifiant I'inégalité triangulaire d(x, z) < d(x, y) +d(y, 2).
On dit alors que (E, d) est un espace métrique.
C’est bien le cas de la distance associée d une norme.

Définition 4 : distance a une partie

Soit (E, |I-]) un espace vectoriel normé, A une partie non vide de E, x€ E.
On appelle distance de x a A le réel d(x, A) = in/f‘d(x, a) = in£ | x —all qui est bien défini.
ae ae

Démonstration

{lx—al, ae A} est une partie non vide de R (car A non vide) minorée par 0.

Propriété 3 : 1-lipschitzianité de la distance & une partie

est I-lipschitzienne sur E dans le sens ol

Vx,yeE, |dix,A)-dy,A)] < |x-y|.

C’est en particulier le cas de x— d(x,a) ol a€ E avec A= {aj}.

Démonstration

Si a € A, par inégalité triangulaire, d(x, A) < d(x,a) < d(x,y) +d(y,a) donc pour tout a € A, d(y,a) > d(x, A) —d(x,y)
qui ne dépend pas de a donc qui est un minorant de {d(y,a), a € A}, donc par définition de la borne inférieure,
d(y, A) > d(x, A) —d(x,y), ce qui donne d(x, A) —d(y, A) < d(x,y), par symétrie on a aussi d(y, A) —d(x, A) < d(x, y) et donc

|d(x, A) - d(y, A)| < d(x, ). [ |
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E Norme associée a un produit scalaire

Définition 5 : Norme euclidienne

Soit (E, (-|)) un espace préhilbertien réel. Pour tout vecteur x de E, on pose

Ixll =/ (x]x).

L'application [|-| est appelée norme euclidienne sur E associée au produit scalaire (-|-).

Propriété 4 : Toute norme euclidienne est une norme

La norme euclidienne associée & un produit scalaire est une norme sur E.

Démonstration

Soient xe Eet 1€ R.

B xl=vxlx) >0

B xl=0=[x]?=0= (x|x) =0=>x=0f
m [ Axl = v (AxIAx) = VA2 (x]x) = Al x|

m Inégalité triangulaire : Soient x et y des vecteurs de E. Il est plus pratique de travailler avec le carré des
normes :

||x+y||2 =(x+ylx+y)
= (x]x) +2(x|y) + (¥1y)
= 1xl? + || y[|* +2Cxly)

<xl? + ||y||2 +2 x|l ||y|| d’aprés I'inégalité de Cauchy-Schwarz
<121+ {y])*

Normes usuelles

n Sur K"

Définition 6 : Normes usuelles sur K"

On définit, pour x = (x4, ..., x,) € K",

n

lxly = Y Ixl

k=1

7 , i , 1/2
Ixlo =1/ X 1kl = | Y Ixl
k=1 k=1

[ xlloo = max_|xg|.
ke[[1,n]

Remarque
R6 — On rappelle que ||-|» sur R"™ est la norme euclidienne associée au produit scalaire canonique
n

&Iy = ) %Yk
k=1
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Rappelons I'inégalité de Cauchy-Schwarz : si x,y e R", | (x|y)| < llxll2 || |, soit encore

n

> XkVi| <

k=1

M=

ks

Y

L2
> Xk
k=1

k

1

avec égalité si et seulement si (x, y) liée.
Aftention : pas de produit scalaire ni d‘inégalité de Cauchy-Schwarz pour K = C dans notre programme.

Propriété 5 : Ce sont des normes

Il s’agit de normes sur K",

Démonstration
Casde |-

n
Séparation Sixe K" etsi|xl; =) |xk| =0, pour fout ke [1,n], | x| =0 car on somme des termes positifs, donc
k=1
X = O]Kn.
Homogénéité Pas de difficulté.
n

n
—kz |k + yie| <kz (lxk| + |yel) = Nxliy + || ¥l
=1 =il

Cas de |-/l
Séparation Si xe K" et si [ x|lo = n[fax]] |xx| =0, pour tout k € [1,n], |x;| =0 car on prend le maximum de termes
ke(l,n

positifs, donc x = 0n.
Homogénéité Si xe K" et A e K, [[Axlloo = knﬁaxﬂ (10 |xe|) = 1A n[fax |xk| = 1Al xlloo car 1Al = 0.
1 1

Inégalité triangulaire Si x,y € K", pour tout k € [1,n], |x + yi| < |xk| + [yk| < Ixlloo + ||¥] ., dONC en particulier

[+ ¥ll oo < 1¥loo + | ¥l oo-

Cas de ||z
Cas K=1R: lls’agit de la norme euclidienne associée au produit scalaire canonique.
Cas K =C : Pas de produit scalaire au programme pour K = C.
n
Bonne définition Si xe C", ) |x|* € R* donc lixll, est bien défini (et positif)/
k=1
n
Séparation Si x e C" et si lxlla = /Y [x|* = 0. pour tout k € [1,n], |x¢|* = 0 car on somme des termes
k=1
positifs, donc x = 0kn.

Homogénéité Pas de difficulté.

Inégailité triangulaire Pas d’inégalité de Cauchy-Schwarz dans le cas complexe au programme. On se
rameéne au cas réel.

n n n
|x+yl5 = Z i+ el = X b+ ) () = Z(ka|2+|yk|2+x—kyk+xm):nxn§+||y||§+2kZ Re (T yx)
1 k=1 =1

Or, pour tout k€ [1,n], Re (Xryx) < |*kvi| = |xk| |yx| donc

n n n 2 n 2
> Re(Fryi) < Z el [yl <y 2 12l X vel™ = xl2 ||yl
k=1 k=1 k=1 k=1

en appliquant I'inégalité de Couchy Schwarz aux vecteurs réels (Ixi1,...,|1xnl) et (|y1],

1)

Finalement, ||x+y||2 (Ixliz+ [ x],) donc||x+y||2 lxliz + |y,
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Remarque

R7 — On peut montrer que plus généralement, si p > 1,

. 1/p
Il :(z |xk|P)
k=1

est une norme sur K" et méme que |xl Ixlleo (cf TD) d’ou la notation.

p—+oo
R8 — Plus généralement, sur un KK-espace vectoriel de dimension n, de base % = (ey,...,en), ON décompose un
n

vecteur x= ) xpey ef on pose
k=1

n
lxlly =Y |xkl,
k=1

lxll2 = I§1|xk|2:(§l|xk|z)”2

et
Ixlloo = max_|xi
°° ke[[l,n]]l |

qui définissent des normes sur E.

Exemple
n n n 2
E2- Sur K,[X], on peut définir des normes, pour P= Y ap X5, 1Pl = Y |ag|. 1Pl =/ Y |ak|* et 1Pl = n[fax]1 |ag|.
k=0 k=1 k=1 kell,n

ai,j)'

2
E3 — Sur .4, (K), on peut définir des normes ||All; = Y a,-,j‘, IAll2 = Y a,-,j‘ NAllo = max
G, )e[Ln]? G, )e[Ln]? G.peL,n]?

H Sur B(X,K) = L*(X,K)

Propriété 6 : K-espace vectoriel %(X,K)

Si X est un ensemble non vide, I'ensemble %(X,K), encore noté L*(X,IK) (notations hors-programme)
des fonctions bornées définies sur X & valeurs dans K est un KK-espace vectoriel,

Remarque

R9 — C’est méme une K-algebre.

Démonstration

C'est une sous-espace vectoriel de KX car une partie de cet espace, non vide (contient toute fonc-
tion constante) et si f,g € B(X,K), My, Mg € R* tel que |f| < My et |g| < Mg, A € K, alors pour tout x € X,
|f(x) + Ag(x)| < My +|AI Mg donc f+ g € BX,K). [ |

Définition 7 : Norme infini

On définit, pour f e E=2(X,K),
[ leo = Neo() = sup| 0]
X

Remarque

R10 - Bien défini que Im f = {|f(x)|, x € X} est une partie non vide majorée de R.
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Propriété 7 : Rappel
SiAreR* et A une partie non vide majorée de R, alors

sup(1A) = Asup A

Propriété 8 : La norme infini en est une

N, est une norme sur 8(X,K).

Démonstration

Bonne définition Soit f e (X, K). N (f) est bien défini (et positif).
Séparation Soit f e B(X,K). Si Noo(f) =0, pour fout x€ X, 0 < |f(x)| < Noo(f) =0 dONC f =0 x.
Homogénéité C’est la formule rappelée ci-dessus.

Inégalité triangulaire Si f,ge B(X,K) et xe X, |f(x)+gx)| < |f(x)]+|g(0)| € Noo(f) + Noo(g) qui ne dépend pas de x,
doNC Neo(f +8) < Noo(f) + Neo(g). [ |

Sur €([a, b, K)

Définition 8 : Normes usuelles sur € ([a, b], K)
On définit, pour fe E=%(la,b],K),

b
7= M= |17l ax

“f”z =No(f) = W: (Lb |f(x)|2 dx)l/z

£l = Neol) = st |£].

Remarque

R11 - Pour fe%é(la,b],K), on d Méme Neo(f) II[TIEL)](|f|.
a,

R12— On rappelle que N, sur €(la, b],R) est la norme associée au produit scalaire canonique

b
(f1g) =f fHgmde.
a

Rappelons I'inégalité de Cauchy-Schwarz : si f, g e € (la, b], K),

[(f18)] < No(f)N2(8)

Uabf(t)g(t)dt' < ¢fab ()2 dtfab (g0) dt

avec égalité si et seulement si (f, g) lige.
Aftention : pas de produit scalaire ni d'inégalité de Cauchy-Schwarz pour K = C dans notre programme.

soit encore

Propriété 9 : Ce sont des normes

Il s’agit de normes sur € (la, b], IK).
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Démonstration
Soit E=%([a, b], K).
Casde Ny

b
Bonne définition Si feE, |f| € E et Ni(f) =f |f()] dr est bien défini (et positif).
a

b

Séparation Si feE etsi Ni(f) =f |f(n] dr=0, comme |f| est continue et positive, par positivité améliorée, | f|
donc f est la fonction nullél sur [a, bl.

Homogénéité Pas de difficulté, par linéarité de I'intégrale.

b b b
Inégalité triangulaire Si f,ge E, Ni(f+g) :f |f()+g@)] dtgf |f] dt+f |g(n] dr =Ny (f)+N:1 (g) par inégalité
friangulaire dans K et linéarité de I’in?égrole. ¢ ¢

Cas de N, Se déduit directement de ce qui a été vu sur %((a, b], K) car E < B((a, b],IK). Notons qu’ici la preuve est
un peu plus simple car le sup est atteint : ¢c’est un max.

Casde N,

b
Bonne définition Si fe E, f |f(t)|2 dre R donc Ny (f) est bien défini (et positif).
a

[ b
Séparation Si f e E et si No(f) = f |£(0]* dr =0, comme | f|* est continue et positive, par positivité améliorée,
a
|f|? donc f est la fonction nulle sur [a, bl.
Homogénéité Pas de difficulté.
Inégalité triangulaire (Appelée inégalité de Minkowski dans ce cas.) Soient f,g € E.
Cas K=R

b b b b
Na(f+g)% = f (f(0)+g(n)?* dr = f [f(t))zdt+f (g(0)? dr+2 f (g0 de < No(f)2+Na(g)2+2Na(f) N2 (8) = (N2 (f) + Na(g))*
a a a a

par inégalité de Cauchy-Schwarz appliquée au produit scalaire canonique de € ([a, b], R).
Comme tout est positif, on a bien Na(f + g) < Na(f) + Na(g).

Cas K =C Pas d’'inégalité de Cauchy-Schwarz dans le cas complexe au programme. On se raméne
au cas réel.

Mt [\ = [ (rea) ()= [ 157+ 18+ T+ re]
= Nz(f)2+N2(g)2+2LhiRe(7g)
< Nz(f)2+N2(g)2+2fah el

b
<Nz(f)2+Nz(g>2+2f £l
a

< N2 () + Na(2)? +2Na (f)Na(g) par inégalité de Cauchy-Schwarz (réelle), avec|f|,|g| € €(la, bl,R)
< (N2 () + Mo (@)

Finalement, Na(f + g) < Na(f) + N2 (g).

ﬂ Boules et sphéres

On fixe (E, |II) un espace vectoriel normé.

Définition 9 : Boule et sphéres

Soientae E et reR*.
Boule ouverte de centre a et derayon r : B(a,r)={x€E, |x—al <r}.
Boule fermée de centre a et de rayon r : B(a,r) = B'(a,r) =Bf(a,r) = B(a,r) = {x€E, |x—all <r}.
Sphére de centre s et derayon r : S(a,r) ={x€E, |x—al =r}.
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Exemple

E4— CasoUr=0: B(a,0) =2 et B(a,0) = S(a,0) = {a}.
E5— Casde (R, ) : Bla,r)=la—-r,a+rl, Bla,r)=la—r,a+rl, Sa,r)={a—r,a+r}.
E6 — Boule unité fermée dans R2 pour les trois normes usuelles.

Définition 10 : Partie convexe

Une partie A de E est dite convexe lorsque pour tout x, y € E et pour tout t€[0,1], tx+ (1 - t)y € A.

Remarque

R13— {tx+(1-10)y, t€[0,1]} représente le segment formé par les extrémités des vecteurs x et y.

Propriété 10 : Convexité des boules

Les boules sont convexes.

Démonstration

Six,yeB(a,r), t€]l0,1[, z=(1-0x+ty, lz—al = ||(1— Hx—a)+ t(y—a)" <A-Dlx-al+ t||y—a|| <r.
Le cas de B(a, r) est similaire. [ ]

E Parties, suites et fonctions bornées

Définition 11 : Partie bornée

A€ 2 (E) est bornée s'il existe M e R™ tel que pour tout xe A, [x]| < M.

Propriété 11 : Les boules sont bornées

Toute boule (ouverte ou fermée) de E est bornée.

Démonstration

SizeB(a,r)UB(a, 1), |zl =llz—a+al <r+lall. [ ]

Remarque

R14 — Une partie est bornée si et seulement si elle est incluse dans une boule (par exemple fermée).

Définition 12 : Fonction bornée

Soit X un ensemble non vide, f e EX.

On dit que f est bornée s’il existe M € R* tel que pour tout x € X, || f(x)|| < M (ie si f(A) est une partie
bornée de E.)

On note L*®(X, E) = B(X,E) '’ensemble des fonctions de EX bornées (notations hors-programme).
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Propriété 12 : Norme infini

On pose, pour f € B(X,E), || f|., =sup||fx)], bien défini.
xeX
Alors (B(X, E), |Ils) €St un espace vectoriel normé.

Démonstration

Démonstration similaire & 8(X, K) en remplagant |-| par |-]| (ce qui est bien licite). [ |

On obtient en particulier, pour X =N :

Définition 13 : Suite bornée

Soit ue EN. On dit que u est bornée s'il existe M e R* tel que pour tout ne N, |u,ll < M (i€ si {1, nelN}
est une partie bornée de E.)
On note ¢*(E) = B(IN, E) I'ensemble des suites bornées & valeurs dans E (notation hors-programme).

Remarque

R15— On peut aussi définir une norme infini sur I'ensemble ¢°°(E) des suites bornées :

lulloo = sup llunll
nelN

H Produit fini d’espaces vectoriels normés

Propriété 13

Si (E1,N1),...,(Ep, Np) sont des K-espaces vectoriels normes.
On pose, pour x = (x1,...,Xp) € Ey x---x Ej,

N(x) = max Ni(xp).
1<k<n

Alors N est une norme sur E; x --- x E, appelée norme produit.

Remarque

R16 — En prenant || sur KK, la norme produit sur K" est ||“[loo-

m SUITE D’ELEMENTS D’UN ESPACE VECTORIEL NORME

On fixe (E, |I-]) un K-espace vectoriel normé non nul.

Il Convergence d’une suite

Définition 14 : Suite convergente, divergente

Soit ue EN et ¢€E.
On dit que u converge vers ¢ lorsque pour tout € >0, il y a un rang & partir duquel u, est & distance au
plus e de ¢.
Autrement dit,
Ve>0, ANeN, Vun>N, |u,—-?| <e.

Dans ce cas, on dit que u est convergente et que ¢ est sa limite. On note u,, — ¢ ou u, o

Lorsque u n’est pas convergente, elle est dite divergente.
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Remarque
R17 — uy — ¢ si et seulement si la suite réelle (|uy, - ¢II), converge vers 0.
R18 — u, — ¢ si et seulement si
Ve>0, ANeIN, Vn>N, uuc€B(,e¢).

R19 — La convergence dépend a priori de la norme.

Définition 15 : Modes de convergences d’une suite de fonctions

Si E=€(la,b),K), (f,) e EN, f€eE.
q N
Si f, — f.on parle de convergence en moyenne.
Sil/ L f.on parle de convergence en moyenne quadratique.
Si f i) f.on parle de convergence uniforme (convergence graphique).

Propriété 14 : Unicité de la limite

SoitueEN, ¢,/ E. Siu,— ¢ et u,— ¢, alors ¢ =1¢'.

Démonstration

Démonstration similaire & celle des suites numérique en remplagant les valeurs absolues/modules par des
normes. [

Propriété 15 : Caractére borné d’une suite convergente

Toute suite convergente est bornée.

Démonstration

Il suffit par exemple de prendre £ =1 dans la définition. [ |

Propriété 16 : Convergence de la norme des termes

SoitueEN, ¢ € E. Si u,, — ¢, alors | u,| — 112

Démonstration

Par inégalité triangulaire, [llunll = 1211 < llun = 21 [ |

Propriété 17 : Convergence par majoration

Siue EN, a e RN, ¢ € E tel qu’a partir d’un certain rang llu, - ¢\ < a, et a, — 0, alors u,, — ¢.

Démonstration

Par propriété sur les suites réelles, on a |lu, — £|l — 0 ce qui signifie u, — ¢. [ |

Définition 16 : Valeur d’adhérence

On appelle valeur d’adhérence de u e EN toute limite (dans (E, ||-1)) de suite extraite de u.
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Propriété 18 : Cas des suites convergentes

Une suite convergente a une unique valeur d’adhérence : sa limite.

Démonstration

En effet, si u, — ¢, toute suite extraite converge vers ¢ car |lu, - ¢ — 0 implique que pour tout extractrice ¢,
4oy — €| — 0 d’apres la propriété connue sur les suites réelles.

Remarque

R20 — Réciproque fausse en général. On verra bien un contexte dans lequel elle est vrai (spoiler : il suffit qu’elle soit
& valeur dans un compact.)

Corollaire 1: Contraposée

Si une suite a plusieurs valeurs d’adhérence, elle diverge.

E Opérations algébriques

Propriété 19 : Espace vectoriel des suites convergentes

Soit u,veEN, ¢,¢' € E,Ac K. Si u,, — ¢ et v, — ¢', alors u+ Av est convergente et u, + Av, — €+ Al'.

Démonstration

| (n+Avp) = (€ + 28D < llup - €l +1Al vy — €'|| — 0.

Propriété 20 : Produit externe de suites convergentes

Si (uy) € EXN et (a,) e KN tel que u, — ¢ € E et a, — a € K, alors a,u, — af.

Démonstration

lanun—alll=l(an—a)up+a(uy -0l <lap—alluyl +lallu, - €1 — 0

car u est bornée car convergente.

Suite a valeurs dans un produit

Propriété 21 : Convergence de suite dans un produit d’evn

Si (Ey,N1),...,(Ep,Np) sont des K-espaces vectoriels normés, N la norme produit sur Ej x --- x E,,
u=(u®,...,uP) e (B x---x Ep)N, 0= (0y,...,0,) € Ey x --- x E,. Alors

u Y. ¢ si et seulement si pour tout ke [1, p], u® 2% 4.
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Démonstration
Conséguence immédiate de la définition de la norme produit

—0)= (k) _
N(upn [)—I?ax Nk(u (k)- |

n
<k<n

m COMPARAISON DE NORMES

Soit (E, +, x) un K-espace vectoriel et Ny et N» deux normes sur E. On note By (a, ) (respectivement B, (a, r)) une boule
ouverte pour N (respectivement N).

Il Domination

Définition 17 : Domination

On dit que N; est dominée par N, lorsqu’il existe a >0 tel que Ny < alNs.

Remarque
R21 — Traduction avec les boules : By(a,r/a) < By (a,r).

R22 — Siune partie ou une fonction ou une suite est bornée pour N, elle I'est automatiquement pour N; aussi.

Propriété 22 : Implication de convergences

Soit N; dominée par N, et ue EN et ¢ € E. Si u,, 22, ¢, alors Up My,

Remarque

R23 — Si N} n'est pas dominée par Ny, on fabrique une suite qui tend vers 0 pour N; et diverge pour N : pour tout
) 1
nelN,on A x;, € E tel que Ny (x,) > nNa(xp). |l suffit alors de poser z,, =

—Xpn..
VN2 (xp) "

T\

Méthode 1 : Montrer que N, n’est pas dominée par N,
On peut chercher une suite (uy,) telle que

m (N2 (up)) borné mais pas (N (uy))
m ou adlors felle que Ny (uy,) — 0 et non Ny (uy)

Ny (up)

m Ou encore fel que —
Ny (up)

(0. o8

H Equivalence
n Définition

Définition 18 : Normes équivalentes

N, et N, sont équivalentes si et seulement si elles se dominent mutuellement, si et seulement s’il existe
af,ﬁ € IRI tel que alN, < Np < ﬁNg.
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Remarque

R24 — C’est une relation d’équivalence.

Propriété 23 : Equivalence de convergence

, P 0 N; q g N;
Si N, et N, sont équivalentes, u,, — ¢ si et seulement si u,, — ¢.

Démonstration

Par la définition de I'équivalence des normes, Nj(u, —¢) — 0 < Ny (uy, —¥¢) — 0.

n Cas de K”
Propriété 24 : Equivalence des normes

Les trois normes usuelles sont équivalentes sur K",

Démonstration

Visualiser avec des boules.

m |- < nl-lew cas d’égalité : vecteur constant.

B |loo < Il cas d’égalité : tous nuls sauf 1.

m |l <vnl-l2 CS - cas d'égalité : celui de CS = tous égaux.
m |-z <II-ll; cas d’égalité : tous nuls sauf 1.

B |-l < Vrlllle cas d’ égalité : tous égaux.

B |loo < II-ll2 cas d’égalité : tous nuls sauf 1.

Cas de 4 (la, b],K)

Ay
|

Propriété 25 : Domination des normes

Sur € (la, b),K),
m N < (b-a)Ny €f Ny, n‘est pas dominée par Nj.

B N, <Vb-aNy el Ny N'est pas dominée par N-.
m N; <Vvb-aN, et N, n‘est pas dominée par Nj.

Démonstration

N < (b-a)Ny : plus facile de converger en moyenne qu’uniformément. Egalité pour une fonction constante.
N> < Vb-aNs : €galité pour f consTgnTe.
N1 < Vb-aN, par Cauchy-Schwarz. Egalité pour f constante.

Noo N'est pas dominée par N : sur [0,1], f, telle que Neo(fn) = n et Ny(fn) = % : friangle entre (0, n) et (%,0).
n
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2
=

3

Avec la méme suite de fonctions (sur [0, % X)) =n- %x) et un changement de variable simple, Na(f,) = g :
n

N, n’est pas dominée par Nj.
Et donc Ny, n'est pas dominée par N, non plus.

N 1 .
On peut aussi utiliser g, : t— ™ sur [0,1] AveC Neo(gn) = 1. N1(gn) = 1 0 et No(gp) = — 0 qui permet de

1
v2n+1

N , "
N2(gn) — +00, Np N‘est pas dominée non plus par Nj.

montrer que Ny, N'est dominée ni par Ny ni par N,, et comme Ni(an)
18n

0.5

0.5 1

n Cas de la dimension finie

Théoreme 1: Equivalence des normes en dimension finie

Toutes les normes sont équivalentes en dimension finie.

Démonstration

Non exigible, admis provisoirement.

Propriété 26 : Convergence coordonnée a coordonnée

Dans un espace de dimension finie, une suite converge vers une limite si et seulement si chaque
coordonnée dans une base tend vers la coordonnée correspondante de la limite.

Démonstration

II suffit d”utiliser I'équivalence avec la norme infini pour cette base.
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m TOPOLOGIE DES ESPACES VECTORIELS NORMES

On se donne (E, |I-I) un K-espace vectoriel normé fixé, avec K =R ou C, d la distance associée.

Il Voisinages, ouverts, fermés

n Voisinage

Définition 19 : Voisinage

Soient a € E et V une partie de E.
On dit que V est un voisinage de a s'il existe r >0 tel que B(a,r) c V, c’est-a-dire qu’il existe une boule
ouverte centrée en a contenue dans V.

Remarque

R25 — Cela revient & dire qu’on a une distance de sécurité autour de a qui permet de s’en approcher dans tfoutes
les directions en restant dans V.

En particulier, ae V.

Propriété 27 : des voisinages

() Siv voisinage de a et V< W, alors W est un voisinage de a.
(in Une réunion non vide quelconque de voisinages de a est un voisinage de a.
(i Une intersection finie de voisinages de a est un voisinage de a.

Démonstration

(i) Facile.
(i) Si (V))jer est une famille de voisinages de a, pour n'importe quel je I, V; < [ J V; donc, d’aprés la propriété (i),
iel
Uies Vi est un voisinage de a.
(iiiy Si v1,...,V, sont des voisinages de a, pour tout i € [1,n], on a r; >0 tel que B(a,r;) c V;. Soit r = min r;. Alors

1<i<n
B(a,r) < (] V; qui est un voisinage de a. [
iel
Remarque
R26 — A Ce n’est pas valable pour des intersections infinies.
Par exemple, dans R, les V; = ]—% H sont des voisinages de 0, mais (] V; = {0} n’est pas un voisinage de 0.

ieIN*

Propriété 28 : Voisinages et domination de norme

Si Ny est une norme dominée par N,, alors les voisinages pour Nysont des voisinages pour N;.
Si les normes sont équivalentes, les voisinages pour I’'une sont exactement les voisinages pour I’autre.
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Démonstration

Onaa>0telque Ny <alNo.

Si vV est un voisinage de a pour Ny, onaun r>0telque Nj(x—a)<r=xeV.

Alors Ny (x—a) < é = xeV.

Donc V est un voisinage de a pour N». [

H Parties ouvertes

Définition 20 : Ouvert

Une partie @ de E est dite ouverte ou un ouvert de E lorsque ¢ est voisinage de tous ses points, autre-
ment dit Vae®@, 3r>0, Bla,r)c0O.
Par convention, @ est ouvert.

Remarque

R27 — Infuitivement, cela signifie qu’il Ny a pas de point « au bord ».

Exemple
E7 — Lesintervalles]o,1[, 10,1], [0,1] sont-ils des ouverts de (R, |]) ?
E8 — Le quart de plan A={(x,y) e R?, x> 0ety >0} est-il un ouvert de (R?, ||-l2) ?

E9— Sia beR tels que a<b, alors ]a, bl est un ouvert de R.

Propriété 29 : Cas des boules ouvertes

Toute boule ouverte est ouverfe (/)

Démonstration

SixeE, r>0,0=B(x,r).
Soit ae ©. Alors B(a,r —d(x,a)) c©. En effet, si d(a,b) < r —d(a,x), alors d(x,b) <d(x,a) +d(a,b) <r. [ |

Propriété 30 : des ouverts

() @, E sont ouverts.
(in Une reunion quelconque d’ouverts est ouverte.
(i Une intersection finie d’ouverts est ouverte.
(iv) Un produit fini d’ouverts est ouvert (pour la norme produit).

Remarque
R28 — A Ce n’est pas valable pour des intersections infinies, avec le méme contre-exemple que pour les voisi-
nages.

Dans R, les V; = ]—% %[ sonf ouverts, mais (] V; = {0} ne I'est pas.
ieIN*
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Démonstration

(i) Facile.
(i) Siles @; pourieIsontouverts, etsiac | 6;, dlorsil existe jeitel que ae 0 qui est ouvert, 0; est un voisinage
iel
de a et donc ¢ < | 6, voisinage de a.
iel
n
(iiiy Si a€ [ @;, alors pour fout i, a € 0; donc les @; sont tous voisinages de a, donc leur intersection (finie) I'est
i=1
encore.
(iv) On traite le cas du produit de deux ouverts. Le cas général se traite de fagon similaire.

Si 0, est un ouvert de (E1, Np) et 0, est un ouvert de (E», N»), montrons que 07 x 0, est un ouvert de (E; x Ea, N)
ou N est la norme produit.

Soit (ay,ap) € 61 x 2. Alors on a r; >0 et ry >0 tels que By (ay,r1) =O; et By(az, rp) < 0».
On vérifie alors que By (a1, az), min(ry, r2)) €Oy x Os.

[
Propriété 31 : Ouverts et domination de normes

Si Ny est une norme dominée par N,, alors les ouverts pour Nysont des ouverts pour Ns.
Si les normes sont équivalentes, les ouverts pour I'une sont exactement les ouverts pour I’autre.

Démonstration

Les voisinages pour N sont des voisinages pour No. [

Remarque

R29 — On appelle topologie de (E, ||-I) I'ensemble de ses ouverts.

Si N; est dominée par N, la tfopologie pour N», possede plus d’ouverts que celle pour N;. On dit que la
fopologie pour N, est plus fine que celle pour Nj.

R30 — En partficulier, en dimension finie, foutes les normes sont équivalentes. Les notfions de voisinages et donc d’ou-
verts ne dépendant pas du choix de la norme. Ce sera aussi le cas de toutes les notions définies ci-apres :
fermé, adhérence, intérieur, densité.

Exercice 1: CCINP 37

ﬂ Parties fermées

Définition 21 : Fermé

Une partie F de E est dite fermée lorsque son complémentaire F¢ est ouvert.

Remarque
R31 - Infuitivement : bord compris.

R32 - A Fermé n’est pas le contraire d’ouvert. On peut étre les deux & la fois. Le plus souvent, on n“est ni I'un ni
I"autre...

Propriété 32: Cas des boules fermées

Toute boule fermée est fermée (1)
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Démonstration

Soit F=B(a,r). F¢={x€E, d(x,a) >r}.
Soit be F¢, On montre que B(b,d(b,a) —r) € FC,
En effet, si xe B(b,d(b,a) — 1), d(a,x) > d(a,b) —d(x,b) > d(a,b) - (d(a,b)—r) = r doncC x € F¢.

Remarque

R33 — Les singletons sont des fermés.

Propriété 33 : des fermés

() @, E sont fermés.
(in Une intersection quelconque de fermés est fermée.
(i Une réunion finie de fermés est fermée.
(iv) Un produit fini de fermés est fermé (pour la norme produit).

Remarque
R34 — C’éfait I'inverse pour les ouverts.
R35- /\ Ce n’est pas valable pour des réunions infinies.
Dans R, les F; = [-1+1,1- 1| sont fermés, mais | J F; =1-1,1[ne |'est pas.
ieIN*
R36 — Une partie finie est fermée.

Démonstration

Il suffit de passer au complémentaire et d’utiliser les propriétés des ouverts.
Pour le produit, remarquer que
¢ n (i1 n
= U E; x Fl.c X H E;
] 1

i=1\j= j=itl

n
[1Fi
i=1

qui est une réunion finie de produits finis d’ouverts.

Exemple
E10 — Les intervalles 10,11, 10,1], [0,1] sont-ils des fermés de (R, |-]) ?
E11 - Sig beRR tels que a< b, alors | —oo, b, [a, +ool, [a, b] sont des fermés de RR.

Propriété 34 : Cas des sphéres

Toute sphére de E est fermée.

Démonstration

S(a,r) = B(a,r) N (B(a, )¢ est une intersection de fermés.

Propriété 35 : Caractérisation séquentielle

Une partie F de E est fermée si et seulement si foute suite convergente d’éléments de F a sa limite
dans F.
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Démonstration

(=) Si F estfermée, et (xp) e Une suite d’éléments de F, ¢ € E sa limite, on suppose, par I’absurde que ¢ € F¢, qui
est ouvert.

On adonc r >0 tel que B(¢,r) c F.
Or on a un rang & partir duquel x, € B(¢,r) ce qui est contradictoire.

(<) Parcontraposée, si F n’est pas fermée, F¢ n’est pas ouverte, donc on a ¢ € F¢ tel que pour tout r >0, B(4,r) ¢ F°¢
ie B(¢,r)NF# 2.

Soit neN. Avec r=-1;, ona xneB(f,ﬁ)nF donc tel que d(xy,0) < 717

Alors (x,) ey € FN et x,, — ¢ ¢ F. ]

Exemple

E12- F={(x,5) e R? x?<y<x} estunfermé de R?.

E Adhérence, densité, intérieur

n Points adhérents, adhérence

Remarque

R37 — Infuitivement, un point adhérent est un point dans A ou « au bord » de A.

Définition 22 : Point adhérent

Soit A une partie de E et xe E. On dit que x est adhérent & A lorsque Vr >0, B(x,r)NA#d.

Propriété 36 : Caractérisation séquentielle

x est adhérent & A si et seulement s’il existe une suite (ay) ,ew d’€léments de A qui converge vers x.

Démonstration

(=) On suppose que x est adhérent  A.

. 1 1 1
Soit neIN. Avec r=——,0ona aneB(x,—)mA donc tel que d(an, x) < —.
n+1 n+1 n+1

Cela définit (an) ,en € AN telle que ay, — x.

(<) Si on a une suite (ap) e € AN felle que a, — x, alors pour tout r > 0, on a un rang & partir duquel
anp€Bla,r)NA#D. | |

Définition 23 : Adhérence

L'adnhérence A de A est I'ensemble des points adhérents & A.

Remarque

R38 — Aftention & la notation : ne pas confondre avec le complémentaire.
R39 — Infuitivement, « les points de A et les points des bords ».
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Exemple

E13 -
E ‘ A ‘ A
R Z Z
R Q R
R | 10,1 [0,1]

E | Bar) | Bla,r)

Pour la derniére, si x € B(a,r), on a une suite (x,), d'éléments de B(a,r) telle que x;, — a. Donc pouriou‘r n,
d(xn,a) <retalors d(x,a) <d(x,xn) +d(xp,a) <d(x,xp)+r. En passant & la limite, d(x,a) < r, donc B(a,r) c B(a,r).

Réciproquement, si x € B(a,r), SOit x, = a+ (1 - %) (x—a) — x et x, € B(a, r) donc, par caractérisation séquentielle,

x€B(a,r).
Finalement, B(a, r) = B(a, 1).

Propriété 37 : Croissance

Si Ac B, alors Ac B.

Démonstration

Caractérisation séquentielle.

Propriété 38 : Caractérisation

A est le plus petit fermé contenant A.

Démonstration

A est un fermé de E contenant A : Par définition, on a bien A< A. Puis on montre que A° est ouvert.
Six¢g A,onar>0telque Bx,r)nA=2.Si ye B(x,r), B(y,r—d(x,y)nA=@ donc y ¢ A.

Il est plus petit que les autres : Si F est un fermé contenant A, et si (x,) e €5t une suite d’éléments de A < F conver-
gente, alors sa limite est dans F donc Ac F.

Propriété 39 : Caractérisation des fermés

F est un fermé de E si et seulement si F = F.

Démonstration
Si F=F, F est fermé d’aprés ce qui précéde.

Si F est fermé, on a déja Fc F.
Puis, si xe F, x est limite d’une suite d’éléments de F donc xe F.

Propriété 40 : Cas des sous-espaces et des convexes (HP)

Si A est un sous-espace vectoriel de E, alors A I’'est aussi.
Si A est un convexe de E, alors A l’'est aussi.

Démonstration

Conséqguence de la caractérisation séquentielle.
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Exercice 2: CCINP 34 Exercice 3 : CCINP 44 Exercice 4 : CCINP 45

u Densité

Définition 24 : Densité

D est dense dans E lorsque D = E, ¢’est-a-dire lorsque toute boule ouverte rencontre D.

Propriété 41 : Caractérisation séquentielle

D est dense dans E si et seulement si tout élément de E est limite d’une suite d’élément de D.

Exemple

E14- Q, R\Q, D sont denses dans R.

E15 — Théoreme de WeilerstraB : le sous-espace des fonctions polynomiales sur [a, b] est dense dans (€ ([a, b], R), Neo)
(donc a forfiori dans (€(la, bl,R), N7) et (€ ([a, b],R), N»).
Le sous-espace des fonctions en escalier sur [a,b] est dense dans (€ ([a, bl,KK), Noo) (donc a forfiori dans
(€m((a,b],KK),Ny) et (€m([a, b],IK), Ny).

Intérieur

Définition 25 : Point intérieur et intérieur d’'une partie

Soit A une partie de E, xe E.

x est un point intérieur & A lorsque A est un voisinage de x, c’est-a-dire qu’il existe une boule ouverte
centrée en x incluse dans A.

L'ensemble des points intérieurs & A est appelé intérieur de A, noté A.

Propriété 42 : Croissance

Si Ac B, alors Ac B.

Propriété 43 : Caractérisation

A est le plus grand ouvert inclus dans A.

Démonstration

A est un ouvert de E contenu dans A : Par définition, on a bien Ac A. Puis, si xe A, on a r >0 tel que B(x,r) < A. Mais
si y € B(x,r) qui est ouverte, alors B(x, r) est un voisinage de y donc A est un voisinage de y, donc B(x,r) c A.

Il est plus grand que les autres : Si @ est un ouvert contenu dans A, alors ¢ est voisinage de tous ses points donc
G c A. |

Propriété 44 : Caractérisation des ouverts

@ est ouvert si et seulement si6 =6.
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Démonstration

Si & =0, alors ¢ est ouvert d’aprés ce qui précéde.
Puis, d’aprés la caractérisation, © < @ et si ¢ est ouvert, 6 co. [

Exemple

E16- Q=2 Q ne contient pas d’intervalles ouverts non vides.

o o

E17 - B(a,r) = B(a,r): B(a,r) est un ouvert contenu dans B(a, r), donc B(a,r) < B(a, 1), €t B(a, r) < B(a, r), Mais si x € S(a, r),
B(a,r) n"est pas un voisinage de x, donc x ¢ B(a, r) donc B(a,r) < B(a, 1)

n Frontiere
Définition 26 : Frontiére

On appelle frontiére de A I'ensemble Fr(4) = A\ A.

Exemple

E18 — Fr(B(a,r)) = S(a,r).
E19 — Fr([0,1)) = {0, 1}.
E20 - Fr(Q) =RR.

Propriété 45 : Caractére fermé

Une frontiére est foujours fermée.

Démonstration

Fr(A) = An A¢ est une infersection de fermés donc est fermée. [ |

Ouverts, fermés, voisinages relatifs

On se fixe une partie A non vide de E.

n Voisinage relatif

Définition 27 : Voisinage relatif

Soit ae A. On appelle voisinage relatif de a dans A toute partie V/ de A s’écrivant V' = AnV ou V est
un voisinage de a, c’est-a-dire telle qu’il existe r >0 tel que B(a,r)nAc V',

Remarque

R40 — V' n’est pas nécessairement un voisinage de a dans E.
Par exemple [0, l[ est un voisinage de 0 dans [0, 1] mais pas dans R.

n Ouverts relatifs
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Définition 28 : Ouvert relatif

Une partie 6/ de A est un ouvert relatif de A (ou pour la topologie induite sur A) lorsqu’elle est un
voisinage relatif de chacun de ses points.

Remarque

R41 - 0’ ouvert relatif de A si et seulement si pour tout xe @', il existe r >0 tel que B(x,r)nAcd’.

Propriété 46 : Caractérisation

0’ de A est un ouvert relatif de A si et seulement s’il existe un ouvert ¢ tel que ¢’ =6 n A.

Exemple

E21 — [0, %[ est un ouvert de [0, 1].

Remarque

R42 — Si A est ouvert, les ouverts relatifs de A sont les ouverts.

Fermés relatifs

Définition 29 : Fermé relatif
Une partie F' de A est un fermé relatif de A si son complémentaire dans A est un ouvert relatif de A.

Propriété 47 : Caractérisation

F' est un fermé relatif de A si et seulement s’il existe un fermé F fel que F' = Fn A.

Remarque

R43 — Si A est fermé, les fermés relatifs de A sont les fermés.

Propriété 48 : Caractérisation séquentielle

Soit F' une partie de A.
F' fermé relatif de A si et seulement si F' est une partie de A telle que toute suite d’éléments de F'
convergeant dans A a sa limite dans F'.

Démonstration

Si F est un fermé relatif de A, alors F' = Fn A ol F est fermé. Si (x,) € F'N tel que x,, — ¢ € A, alors comme F est
fermé, e F donc (e F'. .
Si foute suite d’éléments de F' convergeant dans A a sa limite dans F’, soit F = F/, fermé de E. Montrons que
F'=FnA N
On a déjad F'cFn A. Puis, si xe Fn A= F'n A, on a une suite d’éléments de F' convergeant vers xe A donc xe F'.
|

n Densité
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Définition 30 : Densité dans une partie

Soit B partie de A. B est dense dans A si et seulement si A c B si et seulement si tout élément de A est
limite d"une suite d’éléments de B.
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