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Espaces préhilbertiens réels (MP2I)

Tous les espaces vectoriels de ce chapitre, souvent notés E ,
sont des R-espaces vectoriels.

I PRODUIT SCALAIRE ET NORME EUCLIDIENNE

1 Définition d’un produit scalaire

Définition 1 : Produit scalaire
Soit E un R-espace vectoriel.
On appelle produit scalaire sur E toute forme bili-

néaire symétrique définie-positive.
C’est-à-dire toute application (·|·) : E ×E −→R telle

que

(i) Bilinéarité



Linéarité à gauche
Pour tout y ∈ E , l’application
x 7→ (x|y) est linéaire sur E

Linéarité à droite
Pour tout x ∈ E , l’application
y 7→ (x|y) est linéaire sur E

(ii) Symétrie ∀ (x, y) ∈ E 2, (x|y) = (y |x).

(iii) Définie-positivité



Positivité
∀x ∈ E , (x|x)⩾ 0 ;
Caractère défini

(ou non dégénéré)
∀x ∈ E , (x|x) = 0 ⇒ x = 0.

Définition 2 : Espace préhilbertien réel, espace eucli-
dien

Si E est un R-espace vectoriel, et si (·|·) un produit
scalaire sur E , on dit que (E , (·|·)) est un espace préhil-
bertien réel.

Si E est un R-espace vectoriel de dimension finie,
et si (·|·) un produit scalaire sur E , on dit que (E , (·|·)) est
un espace euclidien.

2 Exemples

a Sur Rn

Définition 3 : Produit scalaire canonique sur Rn

Pour des vecteurs x et y de Rn , avec x = (x1, . . . , xn )
et y = (y1, . . . , yn ), on définit

(x|y) =
n∑

i=1
xi yi .

(·|·) fait deRn unespaceeuclidien : c’est leproduit
scalaire canonique sur Rn .

b Sur Mn (R)

Définition 4 : Produit scalaire canonique sur Mn (R)

Pour des vecteurs A et B de Mn (R), on définit

(A|B) = tr(A⊺×B).

(·|·) fait de Mn (R) un espace euclidien : c’est le
produit scalaire canonique sur Mn (R).

c Sur C ([a,b],R)

Définition 5 : Produit scalaire canonique pour fonc-
tions continues

Pour des fonctions f et g de C ([a,b],R) où a < b, on
définit

( f |g ) =
∫b

a
f (t )g (t )dt

(·|·) fait de C ([a,b],R) un espace préhilbertien réel :
c’est le produit scalaire canonique sur C ([a,b],R)

3 Norme euclidienne

a Définition

Définition 6 : Norme euclidienne
Soit (E , | ) un espace préhilbertien réel.
Pour tout vecteur x de E , on pose ‖x‖ =p

(x|x).
L’application ‖·‖ est appelée norme euclidienne

sur E associée au produit scalaire (·|·).

b Identités remarquables et polarisation

Propriété 1 : Identités remarquables

Soit E un espace préhilbertien réel et ‖.‖ la norme
associée au produit scalaire.

Pour tous vecteurs x et y de E ,
(i)

∥∥x + y
∥∥2 = ‖x‖2 +2(x|y)+∥∥y

∥∥2

(ii)
∥∥x − y

∥∥2 = ‖x‖2 −2(x|y)+∥∥y
∥∥2

(iii) Identité du parallélogramme (HP)∥∥x + y
∥∥2 +∥∥x − y

∥∥2 = 2
(
‖x‖2 +∥∥y

∥∥2
)
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Propriété 2 : Identités de polarisation

Soit (E , (·|·)) un espace préhilbertien réel et ‖·‖ la
norme associée au produit scalaire.

Pour tous vecteurs x et y de E ,

(i) (x|y) = 1

4

(∥∥x + y
∥∥2 −∥∥x − y

∥∥2
)

(ii) (x|y) = 1

2

(∥∥x + y
∥∥2 −‖x‖2 −∥∥y

∥∥2
)

c Inégalité de Cauchy-Schwarz

Théorème 1 : Inégalité de Cauchy-Schwarz

Soit (E , (·|·)) un espace préhilbertien réel. Alors

∀x, y ∈ E , (x|y)2 ⩽ (x|x)(y |y) ie
∣∣(x|y)

∣∣⩽ ‖x‖∥∥y
∥∥ ,

avec égalité si et seulement si x et y sont liés (i.e.
y = 0 ou ∃λ ∈R, x =λy)

d Inégalité triangulaire, norme

Corollaire 1 : Inégalité de Minkowski

Soit (E , | ) un espace préhilbertien réel, de norme
euclidienne associée ‖·‖. Alors

∀x, y ∈ E ,
∥∥x + y

∥∥⩽ ‖x‖+∥∥y
∥∥

avec égalité si et seulement si x et y sont positive-
ment liés (ie y = 0 ou ∃λ ∈R+, x =λy)

De plus,
∀x, y ∈ E ,

∣∣∣‖x‖−∥∥y
∥∥∣∣∣⩽ ∥∥x + y

∥∥⩽ ‖x‖+∥∥y
∥∥

Définition 7 : Norme
On appelle norme sur un K-espace vectoriel E

toute application N : E −→R+ vérifiant
Séparation Pour tout x ∈ E , N (x) = 0R =⇒ x = 0E .
Homogénéité Pour tout x ∈ E et pour tout λ ∈ K,

N (λx) = |λ|N (x).

Inégalité triangulaire (ou sous-additivité) Pour tout
x, y ∈ E , N (x + y)⩽ N (x)+N (y).

Propriété 3 : Toute norme euclidienne est une norme

La norme euclidienne associée à un produit sca-
laire est une norme sur E .

e Distance

Définition 8 : Distance euclidienne et écart angulaire

Étant donné des vecteurs x et y d’un espace pré-
hilbertien réel E , on définit :

■ la distance euclidienne d(x, y) par d(x, y) = ∥∥x − y
∥∥ ,

■ si x et y sont non nuls, l’écart angulaire θ est le réel
défini par

θ ∈ [0,π] et cosθ = (x|y)

‖x‖∥∥y
∥∥ .

Définition 9 : Distance à une partie non vide

Si A est une partie non vide de E préhilbertien réel,
et x ∈ E , on définit la distance de x à A par

d(x, A) = inf
y∈A

d(x, y) = inf
y∈A

∥∥x − y
∥∥ .

II ORTHOGONALITÉ

1 Vecteurs orthogonaux

Définition 10 : Vecteurs orthogonaux

Soit (E , (·|·)) un espace préhilbertien réel, x et y des
vecteurs de E .

x et y sont dit orthogonaux si et seulement si
(x|y) = 0. On écrit parfois x ⊥ y .

2 Famille orthonormale

Définition 11 : Familles orthogonale et orthonormale

Soit E un espace préhilbertien réel, (v1, . . . , vp ) ∈ E p .
(v1, . . . , vp ) est une famille orthogonale de E si et

seulement si

∀ i , j ∈ J1, pK, avec i 6= j , (vi |v j ) = 0 (ie vi ⊥ v j ).

(v1, . . . , vp ) est une famille orthonormale de E si et
seulement si

∀ i , j ∈ J1, pK, (vi |v j ) = δi , j

Propriété 4 : orthogonale + non nuls ⇒ libre

Toute famille orthogonale de vecteurs non nuls
(en particulier toute famille orthonormale) d’un es-
pace préhilbertien réel est libre.

Corollaire 2 : Nombre maximal de vecteurs orthogo-
naux

Si E est un espace euclidien de dimension n, il
n’existe pas de famille orthogonale de plus de n vec-
teurs non nuls.
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Théorème 2 : de Pythagore

Soit, dans un espace préhilbertien réel E , une fa-
mille orthogonale (vi )i∈J1,pK. On a∥∥∥∥∥ p∑

i=1
vi

∥∥∥∥∥
2

=
p∑

i=1

∥∥vi
∥∥2

La réciproque est vraie pour deux vecteurs mais
fausse en général si p ⩾ 3.

3 Ensembles orthogonaux

Définition 12 : Parties orthogonales

Soient (E , (·|·)) un espace préhilbertien réel et A,B
des parties non vides de E .

On dit que A est orthogonale à B si et seulement
si ∀ (a,b) ∈ A×B , (a|b) = 0. On note A ⊥ B .

Propriété 5 : Intersection de parties orthogonales

Si A,B ∈P (E)\{∅} sont orthogonales, alors A∩B =∅
ou A∩B = {0E }.

4 Orthogonal d’un sous-espace

Définition 13 : Orthogonal d’un sous-espace

Soient (E , (·|·)) un espace préhilbertien réel, et F un
sous-espace vectoriel de E . On définit l’orthogonal
de F comme l’ensemble des vecteurs orthogonaux
à tout vecteur de F :

F⊥ = {x ∈ E | ∀ y ∈ F, (x|y) = 0}

x ∈ F⊥ ⇐⇒ x ∈ E et ∀ y ∈ F, (x|y) = 0

(Il est parfois noté F ◦). Il s’agit de la plus grande partie
de E (pour l’inclusion) orthogonale à F .

Propriété 6 : L’orthogonal est un sous-espace

Soient (E , (·|·)) préhilbertien réel, et F un sous-
espace vectorielde E .

F⊥ est un sous-espace vectoriel de E .

Propriété 7 : Il suffit d’être orthogonal à une famille
génératrice

Soit F un sous-espace de E préhilbertien réel.
Si F = Vect A (A engendre F ) et si x est un vecteur

de E ,
x ∈ F⊥ ⇐⇒∀a ∈ A, (x|a) = 0

Propriété 8 : de l’orthogonal

Soit E un espace préhilbertien réel, F etG des sous-
espaces vectoriels de E .
(i) E⊥ = {0} et {0}⊥ = E .

(ii) F ⊂ (
F⊥)⊥,

(iii) La somme est directe : F +F⊥ = F ⊕F⊥ = F ⊥⊥⊥ F⊥,
(iv) Décroissance : Si F ⊂G, alors G⊥ ⊂ F⊥,
(v) (F +G)⊥ = F⊥∩G⊥ et (F ∩G)⊥ ⊃ F⊥+G⊥.

III ESPACES OU SOUS-ESPACES EUCLIDIENS
Rappel : Un espace euclidien est un R-espace vectoriel de

dimension finie muni d’un produit scalaire.

1 Base orthonormale

Théorème 3 : Existence de base orthonormale

Tout espace euclidien non réduit à 0E admet une
base orthonormale (abrégé en b.o.n.).

Définition 14 : Orthonormalisation de Gram-Schmidt

Étant donné (E , (·|·)) un espace euclidien, et
(e1, . . . ,en ) une base de E :

1. On pose ε1 = e1.
2. Par récurrence, pour j ⩾ 2, on cherche des réels

λk tels que le vecteur

ε j = e j +
j−1∑
k=1

λkεk

soit orthogonal à tous les εi pour i ∈ J1, j −1K :
∀ i < j , (εi |ε j ) = 0.

3. On normalise les vecteurs :
(

ε1

‖ε1‖
, . . . ,

εn

‖εn‖
)

.

Propriété 9 : de la base orthonormalisée

On obtient ainsi que (ε1, . . . ,εn ) est une famille or-
thogonale de vecteurs non nuls tels que pour tout j ,
Vect(e1, . . . ,e j ) = Vect(ε1, . . . ,ε j ) et la composante sur e j
de ε j vaut 1.

On a alors
(

ε1

‖ε1‖
, . . . ,

εn

‖εn‖
)
est une base orthonor-

male de E .

Corollaire 3 : Existence de base orthonormale

Tout sous-espace vectoriel non nul d’un espace
euclidien admet une base orthonormale.
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Corollaire 4 : Théorème de la base orthonormale in-
complète

Tout famille orthonormale d’un espace euclidien
peut être complétée en une b.o.n. de cet espace.

2 Coordonnées, produit scalaire et norme
en base orthonormale

Propriété 10 : Expression en base orthonormale

Soit (E , (·|·)) un espace euclidien et B = (e1, . . . ,en )

une base orthonormale de E : x =
n∑

i=1
xi ei , y =

n∑
i=1

yi ei ,

X =
( x1

...xn

)
et Y =

( y1
...yn

)
. Alors

∀ i ∈ J1,nK, xi = (ei |x) (x|y) =
n∑

i=1
xi yi = X⊺×Y

‖x‖ =
√√√√ n∑

i=1
x2

i =
p

X⊺×X d(x, y) =
√√√√ n∑

i=1
(xi − yi )2

Propriété 11 : Changement de base orthonormale

Soit E euclidien, B et B′ des bases orthonormales.
(i) Si P = PB′

B
, P−1 = P⊺.

(ii) Si u ∈L (E), la formule de changement de bases
orthonormales s’écrit

MatB′ (u) = P⊺ MatB (u) P

(iii) detB B′ = ±1 : 1 si elles ont même orientation, -1
sinon.

3 Isomorphisme avec le dual (MPI)

Théorème 4 : de représentation de Riesz

Soit a ∈ E euclidien et Φa : x ∈ E 7→ (a|x). Alors

Ψ :
E −→ L (E ,R)

a 7−→ Φa

est un isomorphisme.
Ainsi, pour tout forme linéaire φ ∈ L (E ,R), il existe

un unique élément a ∈ E tel que φ= (a|·).

4 Produit mixte
Soit E un espace euclidien orienté de dimension n.

Propriété 12 : Indépendance du déterminant en
base orthonormale directe

Si B est une base orthonormale directe de E , detB
ne dépend pas de B.

Définition 15 : Produit mixte
On appelle produit mixte sur E le déterminant de

n vecteurs dans n’importe quelle base orthonormale
directe.

On le note [v1, . . . , vn ], pour v1, . . . , vn ∈ E .

Propriété 13 : du produit mixte

(i) (v1, . . . , vn ) 7→ [v1, . . . , vn ] est une forme n-linéaire al-
ternée sur E .

(ii) Si (e1, . . . ,en ) est une bond, [e1, . . . ,en ] = 1 et si
(e1, . . . ,en ) est une boni, [e1, . . . ,en ] =−1 (réciproque
fausse).

(iii) [v1, . . . , vn ] = 0 si et seulement si (v1, . . . , vn ) est liée.
(iv) Si u ∈L (E), [u(v1), . . . ,u(vn )] = detu × [v1, . . . , vn ].

Propriété 14 : Interprétation géométrique du déter-
minant

Soit E euclidien orienté.
(i) Si dimE = 2, [u⃗, v⃗] représente l’aire orientée du pa-

rallélogramme construit sur u⃗ et v⃗ .
(ii) Si dimE = 3, [u⃗, v⃗ , w⃗] représente le volume orienté

du parallélépipède construit sur u⃗, v⃗ et w⃗ .

5 Propriétés de F⊥

Théorème 5 : Supplémentarité de l’orthogonal d’un
sevdf

Si F est un sev de dimension finie de E préhilber-
tien réel, alors

E = F ⊕F⊥ = F ⊥⊥⊥ F⊥

Le sev F⊥ est alors appelé supplémentaire ortho-
gonal de F , il est unique.

Corollaire 5 : Propriété de l’orthogonal en dimension
finie

Soit E un espace euclidien, F et G des sous-
espaces vectoriels de E .

(i) dimF⊥ = dimE−dimF

(ii)
(
F⊥)⊥ = F

(iii) (F +G)⊥ = F⊥∩G⊥

(iv) (F ∩G)⊥ = F⊥+G⊥

6 Projections et symétries orthogonales

a Projections orthogonales

Définition 16 : Projection orthogonale

Soit E un espace préhilbertien réel, et F un sous-
espace de E de dimension finie.

On appelle projecteur orthogonal sur F la projec-
tion pF sur F parallèlement à F⊥.
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Propriété 15 : des projections orthogonales

(i ) pF ∈L (E)

(i i ) p2
F = pF

(i i i ) F = Im pF = Ker(pF − i dE )

(i v) F⊥ = Ker pF

(v) Im pF ⊥⊥⊥ Ker pF = E

(vi ) ∀x ∈ E , pF (x) ∈ F et x −pF (x) ∈ F⊥.

Propriété 16 : Expression en base orthonormale

Soit F un sous-espace vectoriel de dimension finie
de E préhilbertien réel, (e1, . . . ,ep ) une base orthonor-
male de F . Alors

∀x ∈ E , pF (x) =
p∑

i=1
(ei |x)ei

À savoir retrouver plutôt que de connaître par cœur :
■ Projection orthogonale sur une droite : D = Ra, où a 6= 0E .

Alors
(

1
‖a‖ a

)
est une base orthonormée de D et

pD : x 7→
(

1
‖a‖ a|x

)(
1

‖a‖ a
)
= (a|x)

‖a‖2
a.

(Attention à ne pas oublier le ‖a‖2...)
■ Projection orthogonale sur un hyperplan : H = (Ra)⊥, où

a 6= 0E .
pH : x 7→ x − (a|x)

‖a‖2
a.

Propriété 17 : Inégalité de Bessel

Soit E un espace préhilbertien, F un sous-espace
vectoriel de E de dimension finie, pF la projection or-
thogonale sur F . Alors

∀x ∈ E ,
∥∥pF (x)

∥∥⩽ ‖x‖

b Symétries orthogonales (MPI)

Définition 17 : Symétrie orthogonale

Soit E un espace préhilbertien, F un sous-espace
vectoriel de E de dimension finie.

On appelle symétrie orthogonales par rapport à F ,
notée sF , la symétrie par rapport à F , parallèlement à
F⊥.

Si F est un hyperplan, on parle de réflexion.
Si F est une droite vectorielle, on parle de retour-

nement.

Propriété 18 : des symétries orthogonales

(i) sF ∈L (E)

(ii) sF ◦ sF = idE

(iii) Ker(sF − idE ) = F

(iv) Ker(sF + idE ) = F⊥

(v) sF = 2pF − idE .

(vi) sF = pF −pF⊥

À savoir retrouver :
■ Soient H est un hyperplan d’un espace euclidien E et a un

vecteur non nul de H⊥.

∀x ∈ E , sH (x) = x −2
(x|a)

‖a‖2
a.

7 Distance à un sous-espace
On a vu que si F est un sous-espace vectoriel d’un espace

préhilbertien réel E , alors, pour tout x ∈ E ,
d(x,F ) = inf

y∈F
d(x, y) = inf

y∈F

∥∥x − y
∥∥ .

Propriété 19 : Expression de la distance à un sevdf

Soit F est un sous-espace vectoriel de dimension
finie d’un espace préhilbertien E , et x ∈ E .

Alors la distance de x à F est atteinte en le pro-
jeté orthogonal pF (x) de x sur F , et seulement en ce
vecteur :

d(x,F ) = d(x, pF (x)) = ∥∥x −pF (x)
∥∥

et si d(x,F ) = ∥∥x − y
∥∥ avec y ∈ F , alors y = pF (x).

Deplus, si (e1, . . . ,ep ) est unebase orthonormale de
F ,

d(x,F )2 = ‖x‖2 −
p∑

k=1
(ek |x)2.

Si, enfin, F⊥ est aussi de dimension finie et
(ep+1, . . . ,en ) une base orthonormale de F⊥,

d(x,F )2 = ∥∥pF⊥ (x)
∥∥2 =

n∑
k=p+1

(ek |x)2.

Méthode 1 : Détermination pratique de pF (x)

Plutôt que de calculer une b.o.n. de F (orthonorma-
lisation de Gram-Schmidt), il peut être plus économique
d’écrire que pF (x) est le seul vecteur de y ∈ F tel que
x − y ∈ F⊥.

Connaissant une base quelconque de F , on décom-
pose y dans cette base et on traduit l’orthogonalité de
x − y à chaque vecteur de la base : autant d’équation
que d’inconnues.

On résout et on trouve y = pF (x).

Corollaire 6 : Distance à un hyperplan

Soit E un espace euclidien, H un hyperplan de E
de vecteur normal a : H = (Ra)⊥.

Alors, pour tout x ∈ E ,

d(x, H) = |(a|x)|
‖a‖ .

Si a1x1 +·· ·+an xn = 0 est une équation de H dans
une base orthonormale B de E et si (x1, . . . , xn ) sont les
coordonnées de x dans cette base, alors

d(x, H) = |a1x1 +·· ·+an xn |√
a2

1 +·· ·+a2
n

.
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