Tous les espaces vectoriels de ce chapitre, souvent notés E, sont des R-espaces vectoriels.

n PRODUIT SCALAIRE ET NORME EUCLIDIENNE

n Définition d’un produit scalaire

Définition 1 : Produit scalaire

Soit E un R-espace vectoriel.
On appelle produit scalaire sur E toute forme bilinéaire symétrique définie-
positive.
C’est-a-dire toute application (|-): E x E— R telle que
Linéarité a gauche
VyeE,|I'application x — (x|y)
L est linéaire sur E
(i) Bilinéarité <
Linéarité a droite
Vx e E,|'application y — (x|y)

est linéaire sur E

(i) Symétrie V (x,y) € E2, (xly) = (ylx).
Positivité
S we o | VXEE, (x]x)20;
(i) Définie-positivité
Caractére défini (ou non dégénéré)

VxeE, (x|x)=0=x=0.

Remarque
R1- Ne pas oublier de commencer par vérifier que le produit scalaire est bien défini (pas
au sens défini-positif!) lorsque cela n’est pas évident.

R2 - Dans la pratique on commence par montrer la symétrie, et alors la linéarité & droite
découle de la linéarité & gauche et vice versa : il suffit de ne montrer que I'une ou
I"autre.

R3 — La définie-positivité se résume par V¥ x #0, (x|x) >0
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Espaces préhilbertiens réels (MP2l)

Définition 2 : Espace préhilbertien réel, espace euclidien

Si E est un R-espace vectoriel, et si (-|) un produit scalaire sur E, on dit que
(E, (-|) est un espace préhilbertien réel.

Si E est un R-espace vectoriel de dimension finie, et si (-|-) un produit scalaire
sur E, on dit que (E, (-|-)) est un espace euclidien.

Remarque
R4 — Un espace euclidien est donc un espace préhilbertien réel de dimension finie.
R5— On notfe en général (x|y) ou (x|y) OU (x,y) OU x-y...

+00

Exercice 1: Montrer que (P|Q) :f e~ 'P(1)Q(t) dr définit un produit scalaire sur R[X] en
0

I confondant polynéme et fonction polynomiale associée.

E Exemples

n Sur R"
Définition 3 : Produit scalaire canonique sur R

Pour des vecteurs x et y de R, avec x = (x1,...,x5) €t y=(y1,..., yn), On définit
(xly) =

(-|) fait de R™ un espace euclidien : c’est le produit scalaire canonique sur R”.

Remarque

R6 — Important : Si X et Y désignent les matrices colonnes des composantes de x et de y
dans la base canonique, on remarque que (x|y) = XT x Y.

R7 - Dans R?, (x|y) = x131 + X2¥2.
Dans R3, (xy) = x1y1 + X2y2 + X3 3.

Remarque

R8 — On peut toujours fabriquer sur le modéle de R un produit scalaire « canonique » sur
E de dimension finie rendant une base canonique (s'il y en a une) orthonormale. Et
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méme, plus généralement, un produit scalaire rendant une base donnée orthonor-
male.

Par exemple, sur R[X], (P|Q) =

n Sur 4, (R)

Définition 4 : Produit scalaire canonique sur .#,, (IR)

Pour des vecteurs A et B de .,,(IR), on définit
(A|B) =

(-|-) fait de .4, (R) un espace euclidien : c’est le produit scalaire canonique sur
Mn(R).

Remarque

. f . PP Ul q q . 2
R9 — Il s’agit en fait de I"écriture matricielle du produit scalaire canonique sur R,

Sur €(la,b],R)

Définition 5 : Produit scalaire canonique pour fonctions continues

Pour des fonctions f et g de € (la, b],R) OU a < b, on définit

(flg) =

() fait de € (la,b],R) un espace préhiloertien réel : c’est le produit scalaire
canonique sur € ([a, b], R)

Remarque

R10 — Aftention, avec des fonctions continues par morceaux seulement, on a presque un
produit scalaire : c’est une forme bilinéaires symétrique positive, il manque seulement
(fle)=0= f=0.
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Exercice 2 : HP mais Classique

Si I est un intervalle, on note £2(1) est 'ensemble des fonctions continues sur I telles
que f2 est intégrable.

A partir de Iinégalité classique |fg| < %(f2+ g%), montrer la bonne définition de

(flg) = f fg, que £%(I) est un R-espace vectoriel, et que (-|-) est un produit scalaire sur
I
L2(D).

Exercice 3 : HP mais Classique

Montrer que I'on définit de la méme maniére un produit scalaire sur 'espace ¢2(R)
des suites réelles de carré sommable, c’est-a- dire des suites u,v € RN telle que Y 2

ety v? convergente, en prouvant que Y unvy est absolument convergente et en posant

+00
(wlv)=Y upvp.
n=0

Norme euclidienne

n Définition

Définition 6 : Norme euclidienne

Soit (E,| ) un espace préhilbertien réel.

Pour tout vecteur x de E, on pose | x| = v(x[x).

L'application ||-|| est appelée norme euclidienne sur E associée au produit sca-
laire ().

Remarque

R11 — La positivité du produit scalaire rend cette définition licite.

Exemple

n
E1- Sur R” muni de son produit scalaire canonique, lix| = /Y. xl?. En particulier, sur R,
i=1
llxll = lxl.
E2— Sur .4, (IR) muni de son produit scalaire canonique, [ All = Vir(AT x A).
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[ b
E3— Sur €([a, b],R) muni de son produit scalaire canonique, || f| = f JRIOL
a

H Identités remarquables et polarisation

Propriété 1 : Identités remarquables

Soit E un espace préeéhilbertien réel et |.| la norme associée au produit scalaire.
Pour tous vecteurs x et y de E,

O Jx+y)*=
() -yl =

(i Identité du parallélogramme (HP)

T ERST e

Propriété 2 : Identités de polarisation

Soit (E,(-|)) un espace prehilbertien réeel et ||-| la norme associée au produit
scalaire.
Pour tous vecteurs x et y de E,

N (xly) = i( )

(i) ) =5 )

Inégalité de Cauchy-Schwarz

Théoréme 1 : Inégalité de Cauchy-Schwarz

Soit (E, (-])) un espace préhilbertien réel. Alors
Vx,yeE, (y*<@ngly e || < Il |y,

avec égalité si et seulement si x et y sontliés (ie. y=00ou3ILeR, x=21y)

VERSION DU 2 FEVRIER 2026

Remarque

R12 - L'inégalité est encore valable pour une forme bilinéaire symétrique seulement posi-
tive, mais le cas d’égalité n’est plus valable. C’est le cas par exemple de la cova-

riance.
Exemple
n 2 n 5 n 5
Ea— SUrR™, | Y xyi| <) x5 v
k=1 k=1 k=1

b 2 b b
Es—Sur%([a,b],lR),(f fg) < fzf g

Exercice 4: CCINP 76, 79

H Inégalité triangulaire, norme

Corollaire 1 : Inégalité de Minkowski
Soit (E,| ) un espace préhilbertien réel, de norme euclidienne associée |-||. Alors
VxyeE, [x+y]<ixi+]y]
avec égalité si et seulement si x et y sont positivement liés (ie y = 0 ou

JeRY, x=1y)

De plus,
° vxyel, [iei= ]| <lx+ vl <iai+ ]
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Définition 7 : Norme

On appelle norme sur un K-espace vectoriel E toute application N: E— R™*
vérifiant
Séparation

Homogénéité

Inégalité triangulaire (ou sous-additivité)

Propriété 3 : Toute norme euclidienne est une norme

La norme euclidienne associée & un produit scalaire est une norme sur E.

H Distance

Définition 8 : Distance euclidienne et écart angulaire

Etant donné des vecteurs x et y d’un espace préhilbertien réel E, on définit :
m la distance euclidienne d(x, y) par d(x, y) =

m si x et y sont non nuls, I'écart angulaire 0 est le réel défini par

0 €[0,m] et cosf =

Remarque

R13 — La bonne définition provient de I'inégalité de Cauchy-Schwarz.
R14— Autrement dit, (x[y) = llx| | y| cos®.

Définition 9 : Distance & une partie non vide

Si A est une partie non vide de E préhilbertien réel, et x € E, on définit la distance
de x & A par

d(x, A) =

ST
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Remarque

R15— Laborne inférieure existe foujours car &, = { lx=y|;ye A} est non vide (car A l'est) et
minoré (par 0).

m ORTHOGONALITE

n Vecteurs orthogonaux

Définition 10 : Vecteurs orthogonaux

Soit (E, (-])) un espace préhilbertien réel, x et y des vecteurs de E.
x et y sont dit orthogonaux si et seulement si (x|y) =0. On écrit parfois x L y.

Remarque

R16 — 0 est orthogonal & fout vecteur.
R17 — La notion d’orthogonalité ne prend de sens qu’en dimension au moins 2.

E Famille orthonormale

Définition 11 : Familles orthogonale et orthonormale

Soit E un espace préhilbertien réel, (v1,...,vp) € EP.
(v1,..., vp) est une famille orthogonale de E si et seulement si

Vi, je[l,p]l.aveci#j, (vilvj)=0 (e v;Lv).
(v1,..., vp) est une famille orthonormale de E si ef seulement si

Vi, jellpl, wilv))=90;;

Propriété 4 : orthogonale + non nuls = libre

Toute famille orthogonale de vecteurs non nuls (en particulier toute famille or-
thonormale) d’un espace préhilbertien réel est libre.
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Remarque Exemple

R18 — C’est un moyen pratique et usuel pour montrer qu’une famille est libre ! E6— Parties de R? orthogonales d’intersection vide : A=R(0,0,1) et B = (0,1,0) + R(1,0,0).

Corollaire 2 : Nombre maximal de vecteurs orthogonaux

Si E est un espace euclidien de dimension n, il n’existe pas de famille orthogo- n Orthogonal d’un sous-espace
nale de plus de n vecteurs non nuls.

Définition 13 : Orthogonal d’un sous-espace

Soient (E, (-]-)) un espace préhilbertien réel, et F un sous-espace vectoriel de E.

Théoréme 2 : de Pythagore On définit I’'orthogonal de F comme I'ensemble des vecteurs orthogonaux & tout
vecteurde F :
Soit, dans un espace prehilbertien réel E, une famille orthogonale W ie[1,p]- Ft={xeE|VyeF (x|y)=0}
Ona p 2 p xeFlmeretVyeF, (xly)=0
2
; vil = Z lvil (Il est parfois noté F°). Il s’agit de la plus grande partie de E (pour I'inclusion) ortho-
=l =1 gonale & F.

La réciproque est vraie pour deux vecteurs mais fausse en général si p > 3.

Propriété 6 : Lorthogonal est un sous-espace

Ensembles orthogonaux

Soient (E, (-)) préhilbertien réel, et F un sous-espace vectorielde E.
FL est un sous-espace vectoriel de E.

Définition 12 : Parties orthogonales

Soient (E, (-|-)) un espace préhilbertien réel et A, B des parties non vides de E.
On dit que A est orthogonale & B si et seulement si V (a,b) € Ax B, (alb)=0. On
note AL B. Propriété 7 : Il suffit d’étre orthogonal a une famille génératrice

Soit F un sous-espace de E préhilbertien réel.

. . . Si F =VectA (A engendre F) et si x est un vecteur de E,
Propriété 5 : Intersection de parties orthogonales

. xEFJ‘<:>Va€A, (xla)=0
Si A, B e 2 (E)\ {2} sont orthogonales, alors AnB =@ ou AnB ={0g}.

Remarque

Remarque - 1 q n, A
a R20 — En particulier, connaissant une base de F, il suffit d’étre orthogonal aux vecteurs de

R19 — Si F et G sont des sous-espaces vectoriels de E orthogonaux, alors Fn G = {0g} : leur la base pour étre orthogonal & F.
somme est directe.
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Propriété 8 : de I'orthogonall Exemple

, L. , . , £7- Dans R3 muni de sa structure euclidienne canonique, on considére e; = (0,1,1),
Soit E un espace prehilbertien reel, F et G des sous-espaces vectoriels de E. = (1,0,1), e3 = (1,1,0).
0 EL= {0} et {o}l =E. Il est facile de voir que (e;, ez, e3) est une base de R3 (en calculant le déterminant
n dans la base canonique, par exemple).
(i Fe (Fl) . On va d’abord transformer la famille en une famille orthogonale, puis orthonormale

(i La somme est directe : F+F- =FeFL =F® FL, eliEiclnsielan ol

. P , , n n m Onpose e1=¢e; =(0,1,1).
(iv) Décroissance : Si F < G, alors G+ < F~, .
m Puis on cherche

V) F+GLt=FtnGt et FnGLoFL+Gt R
. 1 11
Remarque avec Atelque (eqlez) =0ie (e1]e2) +A(e1]e1) = 1+2A=0donC A = =2 etey = (1, = 5).
R21 — Le seul vecteur orthogonal & tous les autres est le vecteur nul. Cela peut étre trés ® En cherchant
ufile! £3 = €3+ [E] +VED
. . P 1 1. 22 2
R22 - Pour Fc (Fi)L et FnG)L > FL+GL, on verra que les inclusions sont des égalités si on tel que (e1le3) =0 et (ea]e3) =0, on trouve u= -5 etv= -3 Soit e3 = (5’ 5,—5).

ajoute une hypothése de dimension finie sur E.
On peut donner comme contre-exemples, dans E =€([0,1],IR), F le sous-espace vec-
toriel des fonctions polynomiales. C’est un exercice frés classique de montrer que

11 2 1 1 11 1
FL = (0} & I'aide du théoréme de Weierstrass, donc (FL1)* = E et :(0,—,—], ’:(—,——,—) e ’:(—,—,——).
o (F5) R NV A, ) L W VA R WV AV, S

On a obtenu frois vecteurs non nuls orthogonaux deux & deux en dimension 3 : il

s’agit d’une base orthogonale de R3. Reste & normaliser pour obtenir une b.o.n.
1

Fe(FY) =E.

ELEDENS, G B ROEND3 PR, CleRE S Cl nE= Eel Définition 14 : Orthonormalisation de Gram-Schmidt
E=(FnGt2Ft+Gct=qo.

Etant donné (&, (-]-)) un espace euclidien, et (ey,...,ep) Une base de E :

Exercice 5: CCINP 39 1. On pose €] = e;.
2. Parrécurrence, pour j > 2, on cherche des réels 1, tels que le vecteur
j-1
Ej = ej s Z /lkgk
ESPACES OU SOUS-ESPACES EUCLIDIENS k=1
Rappel : Un espace euclidien est un R-espace vectoriel de dimension finie muni d’un produit soit orthogonal & tous les &; pour i e [1,j 1] :

scalaire.
Vi<j, (eilej)=0.

Il Base orthonormale

q & ol
3. On normallise les vecteurs : (—1 L )
llenll llenll
Théoréeme 3 : Existence de base orthonormale
Tout espace euclidien non réduit & 0g admet une base orthonormale (abrégée
Remarque

enb.o.n.).
R23 — |l est aussi possible de normaliser les vecteurs au fur et & mesure.

On a méme un algorithme permettant de transformer une base en base orthonormale.
Redécouvrons-le sur un exemple avant de le formaliser :
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Propriété 9 : de la base orthonormalisée

On obtient ainsi que (e1,...,e,) €st une famille orthogonale de vecteurs non nuls

fels que pour tout j, Vect(ey, ..., e;) = Vect(ey, ..., £;) €t la composante sur e; de e vaut
1.

& &
On a alors (ﬁ ”—"”) est une base orthonormale de E.
€1 En

Remarque

R24 — Matrice de passage de la base (ey,...,ep) O la base (e,...,e,) (Qui est seulement or-
thogonale) :

A la base de la décomposition QR (exercice classique, cf TD).

Corollaire 3 : Existence de base orthonormale

Tout sous-espace vectoriel non nul d’un espace euclidien admet une base
orthonormale.

Corollaire 4 : Théoreme de la base orthonormale incompléte

Tout famille orthonormale d’un espace euclidien peut éfre complétée en une
b.o.n. de cet espace.

E Coordonnées, produit scalaire et norme en base orthonormale

Propriété 10 : Expression en base orthonormale

Soit (E, (-|-)) un espace euclidien et B = (ey,...,e,) une base orthonormale de E :
n n
x=) xjej, y=) yie;, X= (:x ) ety= (:yl ) Alors
i=1 i=1

1
Xn Yn

Vie[l,n], x;=(e;lx

n
lxl=,| Y x?=vVXTxX
i=1

n
Iy =) xyi=XTxY
i=1

n
doy) = | Y (g —y)?
\ i=1

Propriété 11: Changement de base orthonormale

Soit E euclidien, 2 et 28’ des bases orthonormales.
i p_ pB p-1_
() SiP=Py , P =

(i Siue £L(E), la formule de changement de bases orthonormales s’écrit
Matgg (u) =

(i) detgg B' = +1 : 1 si elles ont méme orientation, -1 sinon.

Remarque

R25 — A La réciproque est fausse, il ne suffit pas que ce déterminant vale +1 pour que
les bases soient orthonormales.

R26 — Faciles, les changements de bases orthonormales !!!
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Isomorphisme avec le dual (MPI)

Théoréme 4 : de représentation de Riesz

Soit a € E euclidien et ®,: x € E— (alx). Alors

est un isomorphisme.
Ainsi, pour fout forme linéaire ¢ € £(E,R), il existe un unique élément a € E fel

que ¢ = (al").

n Produit mixte

Soit E un espace euclidien orienté de dimension n.

Propriété 12 : Indépendance du déterminant en base orthonormale directe

Si % est une base orthonormale directe de E, detgz he dépend pas de 4.

Définition 15 : Produit mixte

On appelle produit mixte sur E le déterminant de n vecteurs dans n‘importe
quelle base orthonormale directe.
On le note [vy,...,vul, POUr vy,..., v, € E.

Propriété 13 : du produit mixte

N (v1,...,vp)— [v1,..., v,] €ST UNE forme n-linéaire alfernée sur E.

(i Si (ey,...,en) est une bond, ley,...,en] = 1 ef si (ey,...,en) €St une boni,
le1,...,en] = —1 (réciproque fausse).

(ziiiy [vy,...,vp) =0 si et seulement si (vy,...,v,) estliée.
(iv) Siue L(E), (u(vy),...,u(vy)] =detux [vy,..., vyl

ST
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Remarque

R27 — Comme, si E est de dimension 3 et x,y € E, [x,y,] € Z(E,R), avec l'isomorphisme
de la partie précédente, il existe une unique vecteur a € E tel que pour fout z € E,
[x,7, 2] = (alz). Ce vecteur a est appelé produit vectoriel de x et y, noté xa y.

On a dlors [x,y,z] = (x A ylz) d’oU I'appellation produit mixte.

Propriété 14 : Interprétation géométrique du déterminant

Soit E euclidien orienté.
() SidimE =2, [&, U] représente |’aire orientée du parallélogramme construit sur
u et v.
(i SidimE =3, [&, U, ] représente le volume orienté du parallélépipéde construit
sur i, v et w.

Démonstration

C’est évident si &, v (respectivement i, 7, i) sont li€s. Sinon :

(i) Si dimE =2, soit (e, e2) base orthonormale obtenu par orthonormalisation de Gram-
Schmidt de (ii, 7). Alors ii = ce; et U = de; + hes, OU h hauteur et ¢ codté, donc
[ii, U] = chley, e2] = £ch aire orientée du parallélogramme.

(i) Si dimE = 3, soit (ey,e2,e3) base orthonormale obtenu par orthonormalisation de
Schmidt de (&, 7, ). Alors @i = ce1, U =de; + hey €t i = xe; + yep + Hes, OU H hauteur et
ch aire de la base. [i, 7, ] = chHley, e2,e3] = +chH volume orienté du parallélépipede
construit sur @, v et @.

|

H Propriétés de F+

Théoréme 5 : Supplémentarité de I'orthogonal d’un sevdf

Si F est un sev de dimension finie de E prehilbertien réel, alors
E=FeF-=FOF!

Le sev FL est alors appelé supplémentaire orthogonal de F, il est unique.
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Corollaire 5 : Propriété de I'orthogonal en dimension finie

Soit E un espace euclidien, F et G des sous-espaces vectoriels de E.

(i F+@Lt=FtnGt
(iv) FnG)t=Ft+ct

() dimF+ =dimE-dimF
(i) (FY)"=F

Remarque

R28 — On refiendra qu’en dimension finie, il Ny a plus trop de probleme.

Exercice 6: CCINP 77, 92

n Projections et symétries orthogonales

n Projections orthogonales

Définition 16 : Projection orthogonale

Soit E un espace préhilbertien réel, et F un sous-espace de E de dimension
finie.

On appelle projecteur orthogonal sur F la projection pg sur F parallelement &
FL,

Remarque

R29 — Cette définition est justifiée par le fait que E=Fe FL.

Propriété 15 : des projections orthogonales

(i) preZ(E) (iv) FLX=Kerpg
(i) p%=pr

(iii) F=Impg=Ker(pr—idg) (v) Impg © Kerpp=E

(vi) VxeE, pr(x)eFetx—pp(x)€ Ft.

VERSION DU 2 FEVRIER 2026

Remarque

R30 - Le projeté orthogonal de x € E est le seul vecteur y € E tel que y e F et x—y e FL.
Pratique pour le frouver!

Exercice 7 : CCINP 80

Propriété 16 : Expression en base orthonormale

‘
A

Soit F un sous-espace vectoriel de dimension finie de E prehilbertien réel,
(e1,...,ep) Une base orthonormale de F. Alors

Remarque

R31 — On peut voir le procédé d’orthogonalisation de Gram-Schmidt en terme de projec-
j-1
tion : nous cherchions un vecteure; =ej+ ) Areg i.e.
k=1

ej=¢gj— Z/lkfk M

Donc, sil'on note F = Vect(ey, ..., 1), (1) est la décomposition de e; dans FleF.Donc
j-1
Ej =PpL (ej) et —kX_:l/lkEk = pp(ej).

De plus, ici (e1,...,£j-1) est une base orthogonale de F, donc ( el H N ) en est
- - |

une b.o.n. ef prle;)) = Z ( ’ ]) Z (exlej) 5 €k, d'oU I'expression des A que
el ™) el iz e

I’'on avait frouveé.

A savoir retrouver plutét que de connaitre par coeur :

= Projection orthogonale sur une droite : D =Ra, ol a # 0g. Alors (ﬁu] est une base ortho-

[al
normée de D et

(Attention & ne pas oublier le [al?...)
m Projection orthogonale sur un hyperplan : H = (Ra)t, ol a#0g.
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Exemple

£8 — Soit E=R?3, P le plan d’équation cartésienne x—z=0.
On note % = (e}, e2, e3) la base canonique de R?3.
Quelle est la matrice dans % de pp ?

Remarque

R32— Si 2 (qui peut étre choisie orthonormale) est une base adaptée & la décomposition
E=F®F+,
1

- (0)
Matgg (pF) = o
© g
0
ou les p premiers vecteurs de 2 forment une base de F =Im(pg) et nous donnent les p
premieres colonnes avec des 1 sur la diagonale, et les n— p autres forment une base

de F1 =Kerpr et nous donnent les n - p derniéres colonnes nulles.

Propriété 17 : Inégalité de Bessel

Soit E un espace préhilbertien, F un sous-espace vectoriel de E de dimension
finie, pr la projection orthogonale sur F. Alors

n Symétries orthogonales (MPI)

Définition 17 : Symétrie orthogonale

Soit E un espace préhilbertien, F un sous-espace vectoriel de E de dimension
finie.

On appelle symétrie orthogonales par rapport a F, notée sg, la symétrie par
rapport & F, paraliélement & FL.

Si F est un hyperplan, on parle de réflexion.

Si F est une droite vectorielle, on parle de retournement.

e

HTTPS: //MPI .LECONTEDELISLE.RE H E:! hE
&
fil 2

Propriété 18 : des symétries orthogonales

() speLE) (iv) Ker(sp+idp) = F*
(V) sp=2pp—idg.

(V) sp=pFr—ppL

(i) sposp=idg
(iify Ker(sp—idg) =F

Exemple

E9 — Symétrie orthogonale par rapport au plan P de I'exemple précédent.

Remarque

R33 — Si % (qui peut étre choisie orthonormale) est une base adaptée & la décomposition
E=FQFL, .

g ©
Matg (sp) = 1 Y

() :

=l

ou les p premiers vecteurs de 2 forment une base de F = Ker (sg — id) et nous donnent
les p premiéres colonnes avec des 1 sur la diagonale, et les n— p autres forment une
base de FL =Ker (sg + id) et nous donnent les n— p derniéres colonnes avec des -1 sur
la diagonale.

A savoir retrouver :

m Soient H est un hyperplan d’un espace euclidien E et a un vecteur non nul de H+.
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Distance & un sous-espace

On a vu que si F est un sous-espace vectoriel d’un espace préhilbertien réel E, alors, pour
tout xe E,

d(x, F) :yugg d(x,y) :ylg x=y]-

Propriété 19 : Expression de la distance a un sevdf

Soit F est un sous-espace vectoriel de dimension finie d’un espace prehilber-
tien E, et xe E.

Alors la distance de x & F est atteinte en le projeté orthogonal pr(x) de x sur F,
ef seulement en ce vecteur :

d(x, F) =d(x, pp(x)) = | x - pp ()|
etsid(x,F) = ||x—y| avec yeF, alors y = pp(x).

De plus, si (e, ...,ep) est une base orthonormale de F,

dx,F)% =

Si, enfin, F+ est aussi de dimension finie et (ep+1,-..,en) UNe base orthonormale
de Ft,

d(x, F)? =

@ Méthode 1 : Détermination pratique de pr(x)

Plutdét que de calculer une b.o.n. de F (orthonormalisation de Gram-Schmidt), il peut
étre plus économique d’écrire que pr(x) est le seul vecteur de ye F tel que x—y € F+.

Connaissant une base quelconque de F, on décompose y dans cette base et on tra-
duit I'orthogonalité de x-y & chaque vecteur de la base : autant d’équation que d’incon-
nues.

On résout et on frouve y = pr(x).

VERSION DU 2 FEVRIER 2026

Remarque

R34 — Si F n'est pas de dimension finie, cette distance n’est pas nécessairement atteinte.
Ainsi, par exemple, si E = €([0,1],1R) muni du produit scalaire canonique et si F est le
sous-espace vectoriel des fonctions polynomiales, alors d(exp, F) n’est pas atteinte car

L s
on peut montrer que d(exp,x»—» k;) i
dire qu’elle serait atteinte serait dire que exp € F ce qui est faux (frop de dérivées non
nulles?).
On peut d’ailleurs montrer plus généralement, que si d(x, F) est atteintfe pourun y e F,
alors x—y e FL et on peut montrer que si F est le sous-espace vectoriel des fonctions
polynomiales, F- = {0}.

— 0 donc cette distance est nulle. Ainsi,
n—+oo

Exercice 8: CCINP 81, 82

Corollaire 6 : Distance a un hyperplan

Soit E un espace euclidien, H un hyperplan de E de vecteur normal a :
H=(Ra)"’.
Alors, pour fout x€ E,

d(x, H) =

Siayx1+---+anx, =0 est une équation de H dans une base orthonormale % de
E et si (x1,...,xp) SONt les coordonnées de x dans cette base, alors

d(x, H) =
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