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Espaces préhilbertiens réels (MP2I)

Tous les espaces vectoriels de ce chapitre, souvent notés E , sont des R-espaces vectoriels.

I PRODUIT SCALAIRE ET NORME EUCLIDIENNE

1 Définition d’un produit scalaire

Définition 1 : Produit scalaire
Soit E un R-espace vectoriel.
On appelle produit scalaire sur E toute forme bilinéaire symétrique définie-

positive.
C’est-à-dire toute application (·|·) : E ×E −→R telle que

(i) Bilinéarité



Linéarité à gauche
∀y ∈ E , l’application x 7→ (x|y)

est linéaire sur E

Linéarité à droite
∀x ∈ E , l’application y 7→ (x|y)

est linéaire sur E

(ii) Symétrie ∀ (x, y) ∈ E 2, (x|y) = (y |x).

(iii) Définie-positivité



Positivité
∀x ∈ E , (x|x)⩾ 0 ;
Caractère défini (ou non dégénéré)
∀x ∈ E , (x|x) = 0 ⇒ x = 0.

Remarque

R 1 – Ne pas oublier de commencer par vérifier que le produit scalaire est bien défini (pas
au sens défini-positif !) lorsque cela n’est pas évident.

R 2 – Dans la pratique on commence par montrer la symétrie, et alors la linéarité à droite
découle de la linéarité à gauche et vice versa : il suffit de ne montrer que l’une ou
l’autre.

R 3 – La définie-positivité se résume par ∀x 6= 0, (x|x) > 0

Définition 2 : Espace préhilbertien réel, espace euclidien

Si E est un R-espace vectoriel, et si (·|·) un produit scalaire sur E , on dit que
(E , (·|·)) est un espace préhilbertien réel.

Si E est un R-espace vectoriel de dimension finie, et si (·|·) un produit scalaire
sur E , on dit que (E , (·|·)) est un espace euclidien.

Remarque

R 4 – Un espace euclidien est donc un espace préhilbertien réel de dimension finie.
R 5 – On note en général (x|y) ou 〈x|y〉 ou 〈x, y〉 ou x · y ...

Exercice 1 : Montrer que (P |Q) =
∫+∞

0
e−t P (t )Q(t )dt définit un produit scalaire sur R[X ] en

confondant polynôme et fonction polynomiale associée.

2 Exemples

a Sur Rn

Définition 3 : Produit scalaire canonique sur Rn

Pour des vecteurs x et y de Rn , avec x = (x1, . . . , xn ) et y = (y1, . . . , yn ), on définit

(x|y) =

(·|·) fait de Rn un espace euclidien : c’est le produit scalaire canonique sur Rn .

Remarque

R 6 – Important : Si X et Y désignent les matrices colonnes des composantes de x et de y
dans la base canonique, on remarque que (x|y) = X⊺×Y .

R 7 – Dans R2, (x|y) = x1 y1 +x2 y2.
Dans R3, (x|y) = x1 y1 +x2 y2 +x3 y3.

Remarque

R 8 – On peut toujours fabriquer sur le modèle de Rn un produit scalaire « canonique » sur
E de dimension finie rendant une base canonique (s’il y en a une) orthonormale. Et
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même, plus généralement, un produit scalaire rendant une base donnée orthonor-
male.
Par exemple, sur R[X ], (P |Q) =

b Sur Mn (R)

Définition 4 : Produit scalaire canonique sur Mn (R)

Pour des vecteurs A et B de Mn (R), on définit

(A|B) =

(·|·) fait de Mn (R) un espace euclidien : c’est le produit scalaire canonique sur
Mn (R).

Remarque

R 9 – Il s’agit en fait de l’écriture matricielle du produit scalaire canonique sur Rn2 .

c Sur C ([a,b],R)

Définition 5 : Produit scalaire canonique pour fonctions continues

Pour des fonctions f et g de C ([a,b],R) où a < b, on définit

( f |g ) =

(·|·) fait de C ([a,b],R) un espace préhilbertien réel : c’est le produit scalaire
canonique sur C ([a,b],R)

Remarque

R 10 – Attention, avec des fonctions continues par morceaux seulement, on a presque un
produit scalaire : c’est une forme bilinéaires symétrique positive, il manque seulement
( f |g ) = 0 =⇒ f = 0.

Exercice 2 : HP mais Classique
Si I est un intervalle, on note L 2(I ) est l’ensemble des fonctions continues sur I telles

que f 2 est intégrable.
À partir de l’inégalité classique

∣∣ f g
∣∣ ⩽ 1

2

(
f 2 + g 2)

, montrer la bonne définition de(
f |g ) = ∫

I
f g , que L 2(I ) est un R-espace vectoriel, et que (·|·) est un produit scalaire sur

L 2(I ).

Exercice 3 : HP mais Classique
Montrer que l’on définit de la même manière un produit scalaire sur l’espace ℓ2(R)

des suites réelles de carré sommable, c’est-à- dire des suites u, v ∈ RN telle que
∑

u2
n

et
∑

v2
n convergente, en prouvant que

∑
un vn est absolument convergente et en posant

(u|v) =
+∞∑
n=0

un vn .

3 Norme euclidienne

a Définition

Définition 6 : Norme euclidienne
Soit (E , | ) un espace préhilbertien réel.
Pour tout vecteur x de E , on pose ‖x‖ =p

(x|x).
L’application ‖·‖ est appelée norme euclidienne sur E associée au produit sca-

laire (·|·).

Remarque

R 11 – La positivité du produit scalaire rend cette définition licite.

Exemple

E 1 – Sur Rn muni de son produit scalaire canonique, ‖x‖ =
√

n∑
i=1

x2
i . En particulier, sur R,

‖x‖ = |x|.
E 2 – Sur Mn (R) muni de son produit scalaire canonique, ‖A‖ =p

tr(A⊺× A).
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E 3 – Sur C ([a,b],R) muni de son produit scalaire canonique,
∥∥ f

∥∥=
√∫b

a
f 2(t )dt .

b Identités remarquables et polarisation

Propriété 1 : Identités remarquables

Soit E un espace préhilbertien réel et ‖.‖ la norme associée au produit scalaire.
Pour tous vecteurs x et y de E ,

(i)
∥∥x + y

∥∥2 =
(ii)

∥∥x − y
∥∥2 =

(iii) Identité du parallélogramme (HP)∥∥x + y
∥∥2 +∥∥x − y

∥∥2 =

Propriété 2 : Identités de polarisation

Soit (E , (·|·)) un espace préhilbertien réel et ‖·‖ la norme associée au produit
scalaire.

Pour tous vecteurs x et y de E ,

(i) (x|y) = 1

4

( )
(ii) (x|y) = 1

2

( )

c Inégalité de Cauchy-Schwarz

Théorème 1 : Inégalité de Cauchy-Schwarz

Soit (E , (·|·)) un espace préhilbertien réel. Alors

∀x, y ∈ E , (x|y)2 ⩽ (x|x)(y |y) ie
∣∣(x|y)

∣∣⩽ ‖x‖∥∥y
∥∥ ,

avec égalité si et seulement si x et y sont liés (i.e. y = 0 ou ∃λ ∈R, x =λy)

Remarque

R 12 – L’inégalité est encore valable pour une forme bilinéaire symétrique seulement posi-
tive, mais le cas d’égalité n’est plus valable. C’est le cas par exemple de la cova-
riance.

Exemple

E 4 – Sur Rn ,
(

n∑
k=1

xi yi

)2

⩽
n∑

k=1
x2

i

n∑
k=1

y2
i .

E 5 – Sur C ([a,b],R),
(∫b

a
f g

)2

⩽
∫b

a
f 2

∫b

a
g 2.

Exercice 4 : CCINP 76, 79

d Inégalité triangulaire, norme

Corollaire 1 : Inégalité de Minkowski

Soit (E , | ) un espace préhilbertien réel, de norme euclidienne associée ‖·‖. Alors

∀x, y ∈ E ,
∥∥x + y

∥∥⩽ ‖x‖+∥∥y
∥∥

avec égalité si et seulement si x et y sont positivement liés (ie y = 0 ou
∃λ ∈R+, x =λy)

De plus, ∀x, y ∈ E ,
∣∣∣‖x‖−∥∥y

∥∥∣∣∣⩽ ∥∥x + y
∥∥⩽ ‖x‖+∥∥y

∥∥
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Définition 7 : Norme
On appelle norme sur un K-espace vectoriel E toute application N : E −→R+

vérifiant
Séparation

Homogénéité

Inégalité triangulaire (ou sous-additivité)

Propriété 3 : Toute norme euclidienne est une norme

La norme euclidienne associée à un produit scalaire est une norme sur E .

e Distance

Définition 8 : Distance euclidienne et écart angulaire

Étant donné des vecteurs x et y d’un espace préhilbertien réel E , on définit :
■ la distance euclidienne d(x, y) par d(x, y) =
■ si x et y sont non nuls, l’écart angulaire θ est le réel défini par

θ ∈ [0,π] et cosθ =

Remarque

R 13 – La bonne définition provient de l’inégalité de Cauchy-Schwarz.
R 14 – Autrement dit, (x|y) = ‖x‖∥∥y

∥∥cosθ.

Définition 9 : Distance à une partie non vide

Si A est une partie non vide de E préhilbertien réel, et x ∈ E , on définit la distance
de x à A par

d(x, A) =

Remarque

R 15 – La borne inférieure existe toujours car Ex =
{∥∥x − y

∥∥ ; y ∈ A
}
est non vide (car A l’est) et

minoré (par 0).

II ORTHOGONALITÉ

1 Vecteurs orthogonaux

Définition 10 : Vecteurs orthogonaux

Soit (E , (·|·)) un espace préhilbertien réel, x et y des vecteurs de E .
x et y sont dit orthogonaux si et seulement si (x|y) = 0. On écrit parfois x ⊥ y .

Remarque

R 16 – 0E est orthogonal à tout vecteur.
R 17 – La notion d’orthogonalité ne prend de sens qu’en dimension au moins 2.

2 Famille orthonormale

Définition 11 : Familles orthogonale et orthonormale

Soit E un espace préhilbertien réel, (v1, . . . , vp ) ∈ E p .
(v1, . . . , vp ) est une famille orthogonale de E si et seulement si

∀ i , j ∈ J1, pK, avec i 6= j , (vi |v j ) = 0 (ie vi ⊥ v j ).

(v1, . . . , vp ) est une famille orthonormale de E si et seulement si

∀ i , j ∈ J1, pK, (vi |v j ) = δi , j

Propriété 4 : orthogonale + non nuls ⇒ libre

Toute famille orthogonale de vecteurs non nuls (en particulier toute famille or-
thonormale) d’un espace préhilbertien réel est libre.
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Remarque

R 18 – C’est un moyen pratique et usuel pour montrer qu’une famille est libre !

Corollaire 2 : Nombre maximal de vecteurs orthogonaux

Si E est un espace euclidien de dimension n, il n’existe pas de famille orthogo-
nale de plus de n vecteurs non nuls.

Théorème 2 : de Pythagore

Soit, dans un espace préhilbertien réel E , une famille orthogonale (vi )i∈J1,pK.
On a ∥∥∥∥∥ p∑

i=1
vi

∥∥∥∥∥
2

=
p∑

i=1

∥∥vi
∥∥2

La réciproque est vraie pour deux vecteurs mais fausse en général si p ⩾ 3.

3 Ensembles orthogonaux

Définition 12 : Parties orthogonales

Soient (E , (·|·)) un espace préhilbertien réel et A,B des parties non vides de E .
On dit que A est orthogonale à B si et seulement si ∀ (a,b) ∈ A ×B , (a|b) = 0. On

note A ⊥ B .

Propriété 5 : Intersection de parties orthogonales

Si A,B ∈P (E) \ {∅} sont orthogonales, alors A∩B =∅ ou A∩B = {0E }.

Remarque

R 19 – Si F et G sont des sous-espaces vectoriels de E orthogonaux, alors F ∩G = {0E } : leur
somme est directe.

Exemple

E 6 – Parties de R3 orthogonales d’intersection vide : A =R(0,0,1) et B = (0,1,0)+R(1,0,0).

4 Orthogonal d’un sous-espace

Définition 13 : Orthogonal d’un sous-espace

Soient (E , (·|·)) un espace préhilbertien réel, et F un sous-espace vectoriel de E .
On définit l’orthogonal de F comme l’ensemble des vecteurs orthogonaux à tout
vecteur de F :

F⊥ = {x ∈ E | ∀ y ∈ F, (x|y) = 0}

x ∈ F⊥ ⇐⇒ x ∈ E et ∀ y ∈ F, (x|y) = 0

(Il est parfois noté F ◦). Il s’agit de la plus grande partie de E (pour l’inclusion) ortho-
gonale à F .

Propriété 6 : L’orthogonal est un sous-espace

Soient (E , (·|·)) préhilbertien réel, et F un sous-espace vectorielde E .
F⊥ est un sous-espace vectoriel de E .

Propriété 7 : Il suffit d’être orthogonal à une famille génératrice

Soit F un sous-espace de E préhilbertien réel.
Si F = Vect A (A engendre F ) et si x est un vecteur de E ,

x ∈ F⊥ ⇐⇒∀a ∈ A, (x|a) = 0

Remarque

R 20 – En particulier, connaissant une base de F , il suffit d’être orthogonal aux vecteurs de
la base pour être orthogonal à F .
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Propriété 8 : de l’orthogonal

Soit E un espace préhilbertien réel, F et G des sous-espaces vectoriels de E .
(i) E⊥ = {0} et {0}⊥ = E .

(ii) F ⊂ (
F⊥)⊥,

(iii) La somme est directe : F +F⊥ = F ⊕F⊥ = F ⊥⊥⊥ F⊥,
(iv) Décroissance : Si F ⊂G, alors G⊥ ⊂ F⊥,
(v) (F +G)⊥ = F⊥∩G⊥ et (F ∩G)⊥ ⊃ F⊥+G⊥.

Remarque

R 21 – Le seul vecteur orthogonal à tous les autres est le vecteur nul. Cela peut être très
utile !

R 22 – Pour F ⊂ (
F⊥)⊥ et (F ∩G)⊥ ⊃ F⊥+G⊥, on verra que les inclusions sont des égalités si on

ajoute une hypothèse de dimension finie sur E .
On peut donner comme contre-exemples, dans E =C ([0,1],R), F le sous-espace vec-
toriel des fonctions polynomiales. C’est un exercice très classique de montrer que
F⊥ = {0} à l’aide du théorème de Weierstrass, donc

(
F⊥)⊥ = E et

F ⊊
(
F⊥)⊥ = E .

Si, de plus, G = {t 7→ P (t )sin(t ) ; P ∈ F }, alors G⊥ = {0} et F ∩G = {0} d’où

E = (F ∩G)⊥ ⊋ F⊥+G⊥ = {0}.

Exercice 5 : CCINP 39

III ESPACES OU SOUS-ESPACES EUCLIDIENS
Rappel : Un espace euclidien est unR-espace vectoriel de dimension finiemuni d’un produit

scalaire.

1 Base orthonormale

Théorème 3 : Existence de base orthonormale

Tout espace euclidien non réduit à 0E admet une base orthonormale (abrégé
en b.o.n.).

On a même un algorithme permettant de transformer une base en base orthonormale.
Redécouvrons-le sur un exemple avant de le formaliser :

Exemple

E 7 – Dans R3 muni de sa structure euclidienne canonique, on considère e1 = (0,1,1),
e2 = (1,0,1), e3 = (1,1,0).
Il est facile de voir que (e1,e2,e3) est une base de R3 (en calculant le déterminant
dans la base canonique, par exemple).
On va d’abord transformer la famille en une famille orthogonale, puis orthonormale
qui sera donc bien une base.

■ On pose ε1 = e1 = (0,1,1).

■ Puis on cherche
ε2 = e2 +λε1

avec λ tel que (ε1|ε2) = 0 ie (ε1|e2)+λ(ε1|ε1) = 1+2λ= 0 donc λ=− 1

2
et ε2 =

(
1,− 1

2
,

1

2

)
.

■ En cherchant
ε3 = e3 +µε1 +νε2

tel que (ε1|ε3) = 0 et (ε2|ε3) = 0, on trouve µ=− 1

2
et ν=− 1

3
. Soit ε3 =

(
2

3
,

2

3
,− 2

3

)
.

On a obtenu trois vecteurs non nuls orthogonaux deux à deux en dimension 3 : il
s’agit d’une base orthogonale de R3. Reste à normaliser pour obtenir une b.o.n.
ε′1 =

(
0,

1p
2

,
1p
2

)
, ε′2 =

(
2p
6

,− 1p
6

,
1p
6

)
et ε′3 =

(
1p
3

,
1p
3

,− 1p
3

)
.

Définition 14 : Orthonormalisation de Gram-Schmidt

Étant donné (E , (·|·)) un espace euclidien, et (e1, . . . ,en ) une base de E :

1. On pose ε1 = e1.
2. Par récurrence, pour j ⩾ 2, on cherche des réels λk tels que le vecteur

ε j = e j +
j−1∑
k=1

λkεk

soit orthogonal à tous les εi pour i ∈ J1, j −1K :
∀ i < j , (εi |ε j ) = 0.

3. On normalise les vecteurs :
(

ε1

‖ε1‖
, . . . ,

εn

‖εn‖
)

.

Remarque

R 23 – Il est aussi possible de normaliser les vecteurs au fur et à mesure.
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Propriété 9 : de la base orthonormalisée

Onobtient ainsi que (ε1, . . . ,εn ) est une famille orthogonale de vecteurs non nuls
tels que pour tout j , Vect(e1, . . . ,e j ) = Vect(ε1, . . . ,ε j ) et la composante sur e j de ε j vaut
1.

On a alors
(

ε1

‖ε1‖
, . . . ,

εn

‖εn‖
)
est une base orthonormale de E .

Remarque

R 24 – Matrice de passage de la base (e1, . . . ,en ) à la base (ε1, . . . ,εn ) (qui est seulement or-
thogonale) :

À la base de la décomposition QR (exercice classique, cf TD).

Corollaire 3 : Existence de base orthonormale

Tout sous-espace vectoriel non nul d’un espace euclidien admet une base
orthonormale.

Corollaire 4 : Théorème de la base orthonormale incomplète

Tout famille orthonormale d’un espace euclidien peut être complétée en une
b.o.n. de cet espace.

2 Coordonnées, produit scalaire et norme en base orthonormale

Propriété 10 : Expression en base orthonormale

Soit (E , (·|·)) un espace euclidien et B = (e1, . . . ,en ) une base orthonormale de E :
x =

n∑
i=1

xi ei , y =
n∑

i=1
yi ei , X =

( x1
...xn

)
et Y =

( y1
...yn

)
. Alors

∀ i ∈ J1,nK, xi = (ei |x) (x|y) =
n∑

i=1
xi yi = X⊺×Y

‖x‖ =
√√√√ n∑

i=1
x2

i =
p

X⊺×X d(x, y) =
√√√√ n∑

i=1
(xi − yi )2

Propriété 11 : Changement de base orthonormale

Soit E euclidien, B et B′ des bases orthonormales.
(i) Si P = PB′

B
, P−1 =

(ii) Si u ∈L (E), la formule de changement de bases orthonormales s’écrit

MatB′ (u) =

(iii) detB B′ =±1 : 1 si elles ont même orientation, -1 sinon.

Remarque

R 25 – " La réciproque est fausse, il ne suffit pas que ce déterminant vale ±1 pour que
les bases soient orthonormales.

R 26 – Faciles, les changements de bases orthonormales !!!
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3 Isomorphisme avec le dual (MPI)

Théorème 4 : de représentation de Riesz

Soit a ∈ E euclidien et Φa : x ∈ E 7→ (a|x). Alors

Ψ :
E −→ L (E ,R)

a 7−→ Φa

est un isomorphisme.
Ainsi, pour tout forme linéaire φ ∈ L (E ,R), il existe un unique élément a ∈ E tel

que φ= (a|·).

4 Produit mixte
Soit E un espace euclidien orienté de dimension n.

Propriété 12 : Indépendance du déterminant en base orthonormale directe

Si B est une base orthonormale directe de E , detB ne dépend pas de B.

Définition 15 : Produit mixte
On appelle produit mixte sur E le déterminant de n vecteurs dans n’importe

quelle base orthonormale directe.
On le note [v1, . . . , vn ], pour v1, . . . , vn ∈ E .

Propriété 13 : du produit mixte

(i) (v1, . . . , vn ) 7→ [v1, . . . , vn ] est une forme n-linéaire alternée sur E .
(ii) Si (e1, . . . ,en ) est une bond, [e1, . . . ,en ] = 1 et si (e1, . . . ,en ) est une boni,

[e1, . . . ,en ] =−1 (réciproque fausse).
(iii) [v1, . . . , vn ] = 0 si et seulement si (v1, . . . , vn ) est liée.
(iv) Si u ∈L (E), [u(v1), . . . ,u(vn )] = detu × [v1, . . . , vn ].

Remarque

R 27 – Comme, si E est de dimension 3 et x, y ∈ E , [x, y, ·] ∈ L (E ,R), avec l’isomorphisme
de la partie précédente, il existe une unique vecteur a ∈ E tel que pour tout z ∈ E ,
[x, y, z] = (a|z). Ce vecteur a est appelé produit vectoriel de x et y , noté x ∧ y .
On a alors [x, y, z] = (x ∧ y |z) d’où l’appellation produit mixte.

Propriété 14 : Interprétation géométrique du déterminant

Soit E euclidien orienté.
(i) Si dimE = 2, [u⃗, v⃗] représente l’aire orientée du parallélogramme construit sur

u⃗ et v⃗ .
(ii) Si dimE = 3, [u⃗, v⃗ , w⃗] représente le volume orienté du parallélépipède construit

sur u⃗, v⃗ et w⃗ .

Démonstration

C’est évident si u⃗, v⃗ (respectivement u⃗, v⃗ , w⃗) sont liés. Sinon :
(i) Si dimE = 2, soit (e1,e2) base orthonormale obtenu par orthonormalisation de Gram-

Schmidt de (u⃗, v⃗). Alors u⃗ = ce1 et v⃗ = de1 + he2, où h hauteur et c côté, donc
[u⃗, v⃗] = ch[e1,e2] =±ch aire orientée du parallélogramme.

(ii) Si dimE = 3, soit (e1,e2,e3) base orthonormale obtenu par orthonormalisation de
Schmidt de (u⃗, v⃗ , w⃗). Alors u⃗ = ce1, v⃗ = de1 +he2 et w⃗ = xe1 + ye2 +He3, où H hauteur et
ch aire de la base. [u⃗, v⃗ , w⃗] = chH [e1,e2,e3] =±chH volume orienté du parallélépipède
construit sur u⃗, v⃗ et w⃗ .

■

5 Propriétés de F⊥

Théorème 5 : Supplémentarité de l’orthogonal d’un sevdf

Si F est un sev de dimension finie de E préhilbertien réel, alors

E = F ⊕F⊥ = F ⊥⊥⊥ F⊥

Le sev F⊥ est alors appelé supplémentaire orthogonal de F , il est unique.
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Corollaire 5 : Propriété de l’orthogonal en dimension finie

Soit E un espace euclidien, F et G des sous-espaces vectoriels de E .

(i) dimF⊥ = dimE −dimF

(ii)
(
F⊥)⊥ = F

(iii) (F +G)⊥ = F⊥∩G⊥

(iv) (F ∩G)⊥ = F⊥+G⊥

Remarque

R 28 – On retiendra qu’en dimension finie, il n’y a plus trop de problème.

Exercice 6 : CCINP 77, 92

6 Projections et symétries orthogonales

a Projections orthogonales

Définition 16 : Projection orthogonale

Soit E un espace préhilbertien réel, et F un sous-espace de E de dimension
finie.

On appelle projecteur orthogonal sur F la projection pF sur F parallèlement à
F⊥.

Remarque

R 29 – Cette définition est justifiée par le fait que E = F ⊕F⊥.

Propriété 15 : des projections orthogonales

(i ) pF ∈L (E)

(i i ) p2
F = pF

(i i i ) F = Im pF = Ker(pF − i dE )

(i v) F⊥ = Ker pF

(v) Im pF ⊥⊥⊥ Ker pF = E

(vi ) ∀x ∈ E , pF (x) ∈ F et x −pF (x) ∈ F⊥.

Remarque

R 30 – Le projeté orthogonal de x ∈ E est le seul vecteur y ∈ E tel que y ∈ F et x − y ∈ F⊥.
Pratique pour le trouver !

Exercice 7 : CCINP 80

Propriété 16 : Expression en base orthonormale

Soit F un sous-espace vectoriel de dimension finie de E préhilbertien réel,
(e1, . . . ,ep ) une base orthonormale de F . Alors

Remarque

R 31 – On peut voir le procédé d’orthogonalisation de Gram-Schmidt en terme de projec-

tion : nous cherchions un vecteur ε j = e j +
j−1∑
k=1

λkεk i.e.

e j = ε j −
j−1∑
k=1

λkεk . (1)

Donc, si l’on note F = Vect(ε1, . . . ,ε j−1), (1) est la décomposition de e j dans F⊥⊕F . Donc

ε j = pF⊥ (e j ) et −
j−1∑
k=1

λkεk = pF (e j ).

De plus, ici (ε1, . . . ,ε j−1) est une base orthogonale de F , donc

 ε1

‖ε1‖
, . . . ,

ε j−1∥∥∥ε j−1

∥∥∥
 en est

une b.o.n. et pF (e j ) =
j−1∑
k=1

(
εk∥∥εk

∥∥ ∣∣∣e j

)
εk∥∥εk

∥∥ =
j−1∑
k=1

(εk |e j )∥∥εk
∥∥2

εk , d’où l’expression des λk que

l’on avait trouvé.

À savoir retrouver plutôt que de connaître par cœur :
■ Projection orthogonale sur une droite : D =Ra, où a 6= 0E . Alors

(
1

‖a‖ a
)
est une base ortho-

normée de D et

(Attention à ne pas oublier le ‖a‖2...)
■ Projection orthogonale sur un hyperplan : H = (Ra)⊥, où a 6= 0E .
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Exemple

E 8 – Soit E =R3, P le plan d’équation cartésienne x − z = 0.
On note B = (e1,e2,e3) la base canonique de R3.
Quelle est la matrice dans B de pP ?

Remarque

R 32 – Si B (qui peut être choisie orthonormale) est une base adaptée à la décomposition
E = F ⊥⊥⊥ F⊥,

MatB (pF ) =


1

. . . (0)
1

0

(0)
. . .

0


où les p premiers vecteurs deB forment une base de F = Im(pF ) et nous donnent les p
premières colonnes avec des 1 sur la diagonale, et les n−p autres forment une base
de F⊥ = Ker pF et nous donnent les n −p dernières colonnes nulles.

Propriété 17 : Inégalité de Bessel

Soit E un espace préhilbertien, F un sous-espace vectoriel de E de dimension
finie, pF la projection orthogonale sur F . Alors

b Symétries orthogonales (MPI)

Définition 17 : Symétrie orthogonale

Soit E un espace préhilbertien, F un sous-espace vectoriel de E de dimension
finie.

On appelle symétrie orthogonales par rapport à F , notée sF , la symétrie par
rapport à F , parallèlement à F⊥.

Si F est un hyperplan, on parle de réflexion.
Si F est une droite vectorielle, on parle de retournement.

Propriété 18 : des symétries orthogonales

(i) sF ∈L (E)

(ii) sF ◦ sF = idE

(iii) Ker(sF − idE ) = F

(iv) Ker(sF + idE ) = F⊥

(v) sF = 2pF − idE .

(vi) sF = pF −pF⊥

Exemple

E 9 – Symétrie orthogonale par rapport au plan P de l’exemple précédent.

Remarque

R 33 – Si B (qui peut être choisie orthonormale) est une base adaptée à la décomposition
E = F ⊥⊥⊥ F⊥,

MatB (sF ) =


1

. . . (0)
1 −1

(0)
. . .

−1


où les p premiers vecteurs de B forment une base de F = Ker(sF − i d) et nous donnent
les p premières colonnes avec des 1 sur la diagonale, et les n −p autres forment une
base de F⊥ = Ker(sF + i d) et nous donnent les n−p dernières colonnes avec des −1 sur
la diagonale.

À savoir retrouver :

■ Soient H est un hyperplan d’un espace euclidien E et a un vecteur non nul de H⊥.
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7 Distance à un sous-espace
On a vu que si F est un sous-espace vectoriel d’un espace préhilbertien réel E , alors, pour

tout x ∈ E ,
d(x,F ) = inf

y∈F
d(x, y) = inf

y∈F

∥∥x − y
∥∥ .

Propriété 19 : Expression de la distance à un sevdf

Soit F est un sous-espace vectoriel de dimension finie d’un espace préhilber-
tien E , et x ∈ E .

Alors la distance de x à F est atteinte en le projeté orthogonal pF (x) de x sur F ,
et seulement en ce vecteur :

d(x,F ) = d(x, pF (x)) = ∥∥x −pF (x)
∥∥

et si d(x,F ) = ∥∥x − y
∥∥ avec y ∈ F , alors y = pF (x).

De plus, si (e1, . . . ,ep ) est une base orthonormale de F ,

d(x,F )2 =

Si, enfin, F⊥ est aussi de dimension finie et (ep+1, . . . ,en ) une base orthonormale
de F⊥,

d(x,F )2 =

Méthode 1 : Détermination pratique de pF (x)

Plutôt que de calculer une b.o.n. de F (orthonormalisation de Gram-Schmidt), il peut
être plus économique d’écrire que pF (x) est le seul vecteur de y ∈ F tel que x − y ∈ F⊥.

Connaissant une base quelconque de F , on décompose y dans cette base et on tra-
duit l’orthogonalité de x−y à chaque vecteur de la base : autant d’équation que d’incon-
nues.

On résout et on trouve y = pF (x).

Remarque

R 34 – Si F n’est pas de dimension finie, cette distance n’est pas nécessairement atteinte.
Ainsi, par exemple, si E = C ([0,1],R) muni du produit scalaire canonique et si F est le
sous-espace vectoriel des fonctions polynomiales, alors d(exp,F ) n’est pas atteinte car

on peut montrer que d

(
exp, x 7→

n∑
k=0

xk

k !

)
−−−−−−→
n→+∞ 0 donc cette distance est nulle. Ainsi,

dire qu’elle serait atteinte serait dire que exp ∈ F ce qui est faux (trop de dérivées non
nulles?).
On peut d’ailleurs montrer plus généralement, que si d(x,F ) est atteinte pour un y ∈ F ,
alors x − y ∈ F⊥ et on peut montrer que si F est le sous-espace vectoriel des fonctions
polynomiales, F⊥ = {0}.

Exercice 8 : CCINP 81, 82

Corollaire 6 : Distance à un hyperplan

Soit E un espace euclidien, H un hyperplan de E de vecteur normal a :
H = (Ra)⊥.

Alors, pour tout x ∈ E ,

d(x, H) =

Si a1x1+·· ·+an xn = 0 est une équation de H dans une base orthonormale B de
E et si (x1, . . . , xn ) sont les coordonnées de x dans cette base, alors

d(x, H) =
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