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Tous les espaces vectoriels de ce chapitre, souvent notés E, sont des R-espaces vectoriels.

n PRODUIT SCALAIRE ET NORME EUCLIDIENNE

Il Définition d’un produit scalaire

Définition 1 : Produit scalaire

Soit E un R-espace vectoriel.
On appelle produit scalaire sur E toute forme bilinéaire symétrique définie-positive.
C’est-a-dire toute application (-|): Ex E— R telle que

Linéarité a gauche

Pour tout y € E, I'application x— (x|y) est linéaire :
e o | VL x, ) €EY, VAER, (x1+Ax2ly) = (x1ly) + Alxzly).
() Bilinearité <
Linéarité a droite

Pour tout x € E, I'application y — (x|y) est linéaire :

Y (x,y1,)2) € E3, YAER, (xlyr+Ay2) = (xly1) + Axly).

(i) Symétrie V (x,y) € E?, (x]y) = (y|x).
Positivité
g e ae | YXEE, (x]x) 20;
(i) Définie-positivité <
Caractére défini (ou non dégénéré)

VxeE, (x|x)=0=x=0.

Remarque

R1- Ne pas oublier de commencer par vérifier que le produit scalaire est bien défini (pas au sens
défini-positif!) lorsque cela n’est pas évident.

R2 — Dans la pratiqgue on commence par montrer la symétrie, et alors la linéarité & droite découle de
la linéarité & gauche et vice versa : il suffit de ne montrer que I'une ou I'autre.

R3 — La définie-positivité se résume par vV x #0, (x|x) >0

Définition 2 : Espace préhilbertien réel, espace euclidien

Si E est un R-espace vectoriel, et si (-|-) un produit scalaire sur E, on dit que (E,(-|-)) est un
espace préhilbertien réel.

Si E est un R-espace vectoriel de dimension finie, et si (-|-) un produit scalaire sur E, on dit que
(E, (-|)) est un espace euclidien.

Remarque
R4 — Un espace euclidien est donc un espace préhilbertien réel de dimension finie.
R5 — On note en général (x|y) ou (x|y) OU (x,y) OU x- y...
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+o0o
Exercice 1: Montrer que (P|Q) = / e "P(1)Q(r) dr définit un produit scalaire sur R[X] en confondant
0
polynéme et fonction polynomiale associée.

E Exemples
n Sur R"

Définition 3 : Produit scalaire canonique sur R”

Pour des vecteurs x et y de R”, avec x = (xj,...,x,) €t y=(31,-.., yn). ON définit
n
xly) = xiyi.
i=1

(-|) fait de R™ un espace euclidien : c’est le produit scalaire canonique sur R”.

Remarque

Ré6 — Important : Si X et Y désignent les matrices colonnes des composantes de x et de y dans la base
canonique, on remarque que (x|y) = XTx Y,

R7 — Dans R?, (x]y) = x1y1 + X2 2.
Dans R3, (xy) = x1y1 + X2 2 + X3 3.

Démonstration

@) () est symétrique par commutativité du produit sur RR.
(i) Linéarité d gauche: Vx,x',yeR", VAER,

n
x+AX 1Y) =) (x+Ax");y;
i=1
n
=) (X +Ax)y;i
i=1
n n
inJ’i+/12 XY

i=1 i=1

= (x1y) + A(X"]y).

La linéarité & droite en découle par symétrie.
(i) Définie-positivité
n
m VxeR", (xlx)=) x>0
i=1

n
n (xlx)zOc»Zx?:O@Vi, X; =0 x=0pn
i=1

Remarque

R8 — On peut foujours fabriquer sur le modéele de R un produit scalaire « canonique » sur E de dimen-
sion finie rendant une base canonique (s’ily en a une) orthonormale. Et méme, plus généralement,
un produit scalaire rendant une base donnée orthonormale.
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Par exemple, sur R[X], (PIQ) = ) piqr avec des notations évidentes.
kelN

ﬂ Sur .#,(R)

Définition 4 : Produit scalaire canonique sur .#,(R)

Pour des vecteurs A et B de .#,(R), on définit
(A|B) = tr(AT x B).

(-|) fait de 4, (R) un espace euclidien : c’est le produit scalaire canonique sur .4, (R).

Remarque

R9 — Il s’agit en fait de I'écriture matricielle du produit scalaire canonique sur R,

Démonstration

n n n
tr(AT x B) = Z (ATxB);; = Z Z ai,jbi,j = Z ai,jbij. .
i=1 i=1j=1 (i,/)e[1,n]?

Sur €([a,b],R)

Définition 5 : Produit scalaire canonique pour fonctions continues

Pour des fonctions f et g de € ([a,bl,R) OU a < b, on définit

b
(f18) =f f(Hg(r)yde

(-|) fait de € ([a, b],R) un espace préhilbertien réel : c’est le produit scalaire canonique sur
€ (la,b],R)

Remarque

R10 — Attention, avec des fonctions continues par morceaux seulement, on a presque un produit sco-
laire : c’est une forme bilinéaires symétrique positive, il manque seulement (flg) =0= f=0.

Démonstration

@) () est symétrique par commutativité du produit sur R.
(i) Linéarité & gauche : vV f, f,ge € (la,bl,R), VAR,

~ b ~.
(f+Af|g)=fa (f+Af)g
b
=fa (fg+Afg)

b b

=f fg+,1f fg (par linéarité de I'intégrale)
a a

= (f1g) + A(f1g).
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La linéarité & droite en découle par symétrie.
(i) Définie-positivité

b
m Vfeé€(abl,R), (fIf) =f fz(x) dx > 0 (par positivité de I'intégrale et comme a < b)
a

b
. (f1NH=0 @f f2(x)dx=0
a

— f2 = 0 (car f? est une fonction continue et positive)

<~ f=0 u

Exercice 2: HP mais Classique

Si I est un intervalle, on note #?(I) est 'ensemble des fonctions continues sur I telles que f? est
intégrable.

A partir de I'inégalité classique |fg| < %( f?+g?), montrer la bonne définition de (flg) = f fg, que
1
£?%(I) est un R-espace vectoriel, et que (-|-) est un produit scalaire sur £2(I).

Exercice 3 : HP mais Classique

Montrer que I'on définit de la méme maniére un produit scalaire sur I'espace ¢?(RR) des suites réelles
de carré sommable, c’est-a- dire des suites u,v € RN telle que ) u% et ) v2 convergente, en prouvant

+00
que Z u, v, est absolument convergente et en posant (u|v) = Z UpUp-
n=0

Norme euclidienne

ﬂ Définition

Définition 6 : Norme euclidienne

Soit (E,| ) un espace préhilbertien réel.
Pour tout vecteur x de E, on pose [ x|l = v/(x]x).
L'application |-|| est appelée norme euclidienne sur E associée au produit scalaire (-|-).

Remarque
R11 - La positivité du produit scalaire rend cette définition licite.

Exemple

i=1

n
E1- Sur R muni de son produit scalaire canonique, x| = /Zx?. En particulier, sur R, [lx] = |x|.

E2 — Sur.#,(R) muni de son produit scalaire canonique, || All = Vir(AT x A).

b
E3 - Sur €(la, b}, R) muni de son produit scalaire canonique, | f|| = \/f A
a
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u Identités remarquables et polarisation

Propriété 1 : Identités remarquables

Soit E un espace préhilbertien réel et ||.|| la norme associée au produit scalaire.
Pour fous vecteurs x et y de E,

@) [lx+y* = 1x1?+20xly) + || y||” @iy lx=y|*=1x12 = 2cxly) + | y|)?

(iiy Identité du parallélogramme (HP)

e+ 307+ =y ] = 2 (10 + |y [?)

Propriété 2 : Identités de polarisation

Soit (E, (-])) un espace prehilbertien réel et ||-|| la norme associée au produit scalaire.
Pour tous vecteurs x et y de E,

(x+ ¥ = 2= )?)

1 . 1
() Gy =g (lx+y1° = Ix- ) (i) =5

Démonstration

Provient directement de |'identité remarquable (i) et de (i) - (i1).

Inégalité de Cauchy-Schwarz

Théoreme 1 : Inégalité de Cauchy-Schwarz

Soit (E, (-|)) un espace préhilbertien réel. Alors
Vx,yeE, (xly)?<@l0yly) e |xlp)| < Nl ||y ]|

avec egalité si et seulement si x et y sont liés (i.e. y=0ou3ILeR, x=Ay)

Remarque

R12 - L'inégalité est encore valable pour une forme bilinéaire symétrique seulement positive, mais le
cas d’égalité nest plus valable. C’est le cas par exemple de la covariance.

Démonstration

Soit A un nombre réel. On pose P(A) = (x+Aylx+Ay) : on a que P(A) >0 par positivité.
Or

P(A) = (x1x) + Alx]y) + Ay1x) + A2 (y1y)
= (x]x) + 2A(xly) + A% (y1y)
C’est un polyndme de degré au plus 2 & coefficients réels.

Cas 1:Si (yly) =0, alors on doit avoir, pour tout A € R, (x|x)+2A(x|y) > 0, ce quin’est possible que si (x|y) =0
et I'inégalité est vraie.

Cas 2 : Sinon, le polyndme en A est de degré 2 de signe constant donc son discriminant réduit est
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négatif
A= (x]y)* - (x0) (¥1y) <0
et on obtient I'inégalité recherchée.

Cas d’égalité :

Siy=o0,ilyaégalité.

Si y#0, il y a égalité si et seulement si P(1) admet une racine (double) si et seulement si
JAeR, (x+Aylx+Ay)=0,ce quiéquivaut d3AeR, x+Ay=0eftdonc x et ysont liés.

Exemple

n 2 n n b 2 b b
E4— Sur R", (Z xiyi) < Y x3Y yi Sur €(la, bl R), U fg) <f fzf g
k=1 a a a

k=1 k=1

Exercice 4 : CCINP 76, 79

n Inégalité triangulaire, norme

Corollaire 1: Inégalité de Minkowski

Soit (E,| ) un espace préhilbertien réel, de norme euclidienne associée |-||. Alors
Vx,yeE, |x+y|<lxl+]|y]

ovgc élgalh‘é si et seulement si x et y sont positivement liés (ie y=0 ou 3L e R*, x=A1y)
e plus,
vy, |Ixl= |yl |<x+yl <zl

Démonstration

Soient x et y des vecteurs de E.
Il est plus pratique de travailler avec le carré des normes :

||x+y||2 =(x+ylx+y)
= (x]x) +2(x[y) + (¥1y)
= llxl? + || y||* +2(xly)
llx)1? + ”y“2 +2xll ||y|| d’aprés I'inégalité de Cauchy-Schwarz
(el + 1 ])°
Cas d’égalité : Il y a égalité ssi (x[y) = |(xly)| = lxl |||

Donc si et seulement si soit y =0, soit il existe 1€ R tel que x = Ay (cas d’'égalité de Cauchy-Schwarz)
et (xly) =|(xly)|. ce qui devient, si x = 1y, A(x|x) = A (x|x) donc A=[A] et 1 >0.

<
<

Pour I'autre inégalité, on écrit que |(x+y)-y|| < |x+y| +|-y| donc |x+y| = lxll - |y|. puis on
échange les réles de x et y.

Définition 7 : Norme

On appelle norme sur un K-espace vectoriel E toute application N: E— R* Vérifiant
Séparation Pour tout x€ E, N(x) =0gr = x =0p.
Homogénéité Pour tout x € E et pour tout 1€ K, N(Ax) = |A| N(x).
Inégalité triangulaire (ou sous-additivité) Pour tout x,ye E, N(x+y) < N(x) + N().
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Propriété 3 : Toute norme euclidienne est une norme

La norme euclidienne associée & un produit scalaire est une norme sur E.

Démonstration

Soient xe Eet 1eR.
Bonne définition | x| est un réel positif bien défini.
Séparation ||x|| =0 < ||x]|? =0 <> (x|x) =0 < x =0g
Homogénéité [|Ax|l =+/(Ax|Ax) = /A2(x|x) = |A| | x|
Inégalité triangulaire c’est I'inégalité de Minkowski démontrée ci-dessus. [ |

ﬂ Distance

Définition 8 : Distance euclidienne et écart angulaire

Etant donné des vecteurs x et y d'un espace préhilbertien réel E, on définit :
= la distance euclidienne d(x, y) par d(x,y) = |x-y|,
= si x et y sont non nuls, I'écart angulaire 6 est le réel défini par

(x1y)

0€0,m] et cosf = ————.
xl |||

Remarque
R13 — La bonne définition provient de I'inégalité de Cauchy-Schwarz.
R14 — Autrement dit, (xly) = x|l ||| cos®.

Définition 9 : Distance & une partie non vide

Si A est une partie non vide de E préhilbertien réel, et x € E, on définit la distance de x & A par

dx,4) = infd(x,) = inf v~ ]

Remarque

R15 — La borne inférieure existe toujours car &, = { [x=y|l; ye A} est non vide (car A 'est) et minoré (par
0).
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m ORTHOGONALITE

Il Vecteurs orthogonaux

Définition 10 : Vecteurs orthogonaux

Soit (E, (-]1)) un espace préhilbertien réel, x et y des vecteurs de E.
x et y sont dit orthogonaux si et seulement si (x|y) =0. On écrit parfois x L y.

Remarque

R16 — 0y est orthogonal & tout vecteur.
R17 — La notion d’orthogonalité ne prend de sens qu’en dimension au moins 2.

E Famille orthonormale

Définition 11 : Familles orthogonale et orthonormale

Soit E un espace préhilbertien réel, (vy,...,v),) € EP.
(v1,...,vp) est une famille orthogonale de E si et seulement si

Vi,je[l,p].aveci#j, (vilv))=0 (e v;Lv)).
(v1,...,vp) est une famille orthonormale de E si et seulement si

Vi, je[l,p], wilv))=6;;

Propriété 4 : orthogonale + non nuls = libre

Toute famille orthogonale de vecteurs non nuls (en particulier tfoute famille orthonormale)
d’un espace préhilbertien réel est libre.

Remarque
R18 — C’est un moyen pratique et usuel pour montrer qu’une famille est libre |

Démonstration

Saoit (vy,...,vp) une famille orthogonale de vecteurs non nuls d’un espace préhilbertien E.
But : (v1,...,v)p) est libre.
Soient Ay,...,Ap,eRtels que Avy +---+A,v, =0.

(0plvi) =0R
Alors, siie[1,p], Aivy+--+A,v,|v;) = n . Orv; #0g, donc A; =0. [ |
[Lp]. pep 3 Ajwilv) = Aq lvill2 e :
j=1
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Corollaire 2 : Nombre maximal de vecteurs orthogonaux

Si E est un espace euclidien de dimension n, il n’existe pas de famille orthogonale de plus
de n vecteurs non nuls.

Théoréeme 2 : de Pythagore
Soit, dans un espace préhilbertien réel E, une famille orthogonale (vi) e[, On

2 p

2
=) lvill
i=1

p
2 Vi
i=1

La réciproque est vraie pour deux vecteurs mais fausse en genéral si p > 3.

Démonstration
I+ y|% = 1l + || y||* +2Cx1y)
Puis récurrence sur p.

Contre-exemple : la famille {(}),(9),(%)} n’est pas orthogonale (et pour cause, il y 3 vecteurs non
nuls en dimension 2!) et vérifie pourtant la propriété de Pythagore. [

Ensembles orthogonaux

Définition 12 : Parties orthogonales

Soient (E, (-])) un espace préhilbertien réel et A, B des parties non vides de E.
On dit que A est orthogonale 4 B si et seulement si V (a,b) € Ax B, (alb)=0. On note A L B.

Propriété 5 : Intersection de parties orthogonales

Si A, B € 2(E) \ {&} sont orthogonales, alors AnB =@ ou An B = {0g}.

Démonstration

Si AnB # @, soit xe AnB. Alors (x|x) =0, donc x=0. [ |

Remarque

R19 - Si F et G sont des sous-espaces vectoriels de E orthogonaux, alors Fn G = {0g} : leur somme est
directe.

Exemple

E5 — Parties de R? orthogonales d’intersection vide : A=1R(0,0,1) et B=(0,1,0) + R(1,0,0).

ﬂ Orthogonal d’un sous-espace
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Définition 13 : Orthogonal d’un sous-espace
Soient (E, (-|)) un espace préhilbertien réel, et F un sous-espace vectoriel de E. On définit
I’orthogonal de F comme I'ensemble des vecteurs orthogonaux & tout vecteur de F :

Fl={xeE|VyeFE (x|y)=0}

xeFL@eretVyeF, (xly)=0
(Il est parfois noté F°). Il s’agit de la plus grande partie de E (pour I'inclusion) orthogonale a F.

Propriété 6 : Lorthogonal est un sous-espace

Soient (E, (-]1)) préhilbertien réel, et F un sous-espace vectorielde E.
F* est un sous-espace vectoriel de E.

Démonstration

] OEEAJ',
B Vx,xeAt, VAeR, Ax+x' e A, carvye A, (Ax+x'|y)=Alx]y)+(x'|y) =0.

Donc Al est un sev de A.
Comme de plus A c Vect A, (Vect A)* c At et &tre orthogonal & fout élément de A implique étre orthogo-

nal & toute combinaison linéaire d’éléments de A par bilinéarité du produit scalaire, donc A+ c (Vect A)*.
|

Propriété 7 : Il suffit d’étre orthogonal & une famille génératrice

Soit F un sous-espace de E préhilbertien réel.
Si F =Vect A (A engendre F) et si x est un vecteur de E,

xeFr<VYaecA (xla)=0

Démonstration

FL=at,

Remarque
R20 — En particulier, connaissant une base de F, il suffit d’étre orthogonal aux vecteurs de la base pour

étre orthogonal a F.
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Propriété 8 : de I'orthogonal

Soit E un espace préhilbertien réel, F et G des sous-espaces vectoriels de E.
() E+=1{0} et{0}*=E.

(i Fe(FH)*

(i La somme est directe : F+ FL =FeFL=F @ F*,

(iv) Décroissance : Si F c G, alors G+ c F*,

(V) (F+G)t=FtnG*t et FNGLo>FL+G*h.

Démonstration

m 0eE+, etsixe EY, (x|x)=0donc |lx =0 et x=0.

Si x e F, pour vecteur y de F*, (x|y) =0, d’ou le résultat.

= Comme les ensembles F et F+ sont orthogonaux, Fn F+ =@ ou Fn F+ = {0}, mais 0 € Fn F*.
= Soit xe G*. Pour fout vecteur y de F, ye G, et donc (x|y) =0. Ainsi x € F*.

Remarque
R21 — Le seul vecteur orthogonal & fous les autres est le vecteur nul. Cela peut étre trés utile !

R22 — Pour F < (F4)" et (FnG)* > FL + G+, on verra que les inclusions sont des égalités si on gjoute une
hypothése de dimension finie sur E.
On peut donner comme contre-exemples, dans E = €([0,1],R), F le sous-espace vectoriel des fonc-
tions polynomiales. C’est un exercice trés classique de montrer que F+ = {0} d I’'aide du théoréme

de Weierstrass, donc (FL)* = E et
Fg(FY)' =E.

Si, de plus, G = {t— P(t)sin(¢) ; P€ F}, alors Gt = {0} et FnG = {0} d’ou

E=FnGrp2Ft+Gt={0.

Exercice 5: CCINP 39

m ESPACES OU SOUS-ESPACES EUCLIDIENS

Rappel : Un espace euclidien est un R-espace vectoriel de dimension finie muni d’un produit scalaire.

I'.l Base orthonormale

Théoréme 3 : Existence de base orthonormale

Tout espace euclidien non réeduit & 0 admet une base orthonormale (abrégé en b.o.n.).

On a méme un algorithme permettant de fransformer une base en base orthonormale. Redécouvrons-
le sur un exemple avant de le formaliser :
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Exemple

E6— Dans R® muni de sa structure euclidienne canonique, on considére e; = (0,1,1), e, = (1,0,1),
e3=(1,1,0).
Il est facile de voir que (e, ez, e3) est une base de R? (en calculant le déterminant dans la base
canonique, par exemple).
On va d’abord transformer la famille en une famille orthogonale, puis orthonormale qui sera donc
bien une base.
m Onpose 1 =e; =(0,1,1).
= Puis on cherche
Er=e€r+ AEl
. 1 11
avec A tel que (e1]e2) =0 ie (e1]ex) + Alerler) =1+2A4 =0 donc A = = ete, = 1,—5, 5/
= En cherchant
€3 =e3+ UE] +VEL
22 2)
58 &)
On a obtenu trois vecteurs non nuls orthogonaux deux & deux en dimension 3 : il s'agit d'une base

tel que (e1le3) =0 ef (e2]e3) =0, on trouve p = —% etv= —%. Soit g3 = (

N : 1 1 1 2 1 1
orthogonale de R*. Reste & normaliser pour obtenir une b.o.n. ¢} = (0, 7 ) €)= ( )

o ge 7 R v
5V

e’reg:(

Définition 14 : Orthonormalisation de Gram-Schmidt

Etant donné (E, (--)) un espace euclidien, et (e,...,e,) Une base de E :

1. On pose ¢; = ey.
2. Parrécurrence, pour j > 2, on cherche des réels A, tels que le vecteur

j-1
Ej=ej+ Z Akgk
k=1

soit orthogonal & fous les ¢; pourie[1,j-1] :

Vi<j, (gilej)=0.

. & E
3. On normalise les vecteurs : (—1 L )
el lenll

Remarque
R23 — Il est aussi possible de normaliser les vecteurs au fur et & mesure.

Propriété 9 : de la base orthonormalisée

On obtient ainsi que (¢4,...,&,) €st une famille orthogonale de vecteurs non nuls tels que pour
fout j, Vect(ey, ..., ej) = Vect(ey,..., ;) €f la composante sur ej de e; vaut I.

& &
=L —") est une base orthonormale de E.

Onaa/ors(
el llenll
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Démonstration

= 1" étape : Orthogonalisation.

* On pose (Et alors &1 #0g.)
+ On cherche ¢, € Vect(ey, e,) tel que (¢;]e2) = 0.
On cherche donc un réel A tel que €3 = e> + ey €t (e1]e2) = 0.

. (€1]e2)
Donc Alle; 12 + (e1]e2) = 0, puis A = — ”1| ”22 .
€1
. (e1]e2)
Finalement, | e, = e, — ”1|”22 £].
€1

De plus, e, #0 car (e, ex) est une famille libre, et Vect(ey, e,) = Vect(e,es). (L'inclusion < est im-
médiate, I'inclusion > vient du fait qu’on puisse exprimer facilement e, comme combinaison

linéaire de &) et e, : ey =&, + E& ¢
1 2 2 2 le ”2 1
1

* Supposons, par récurrence, que |'on ait construit ey,...,¢;-1 tels que
o (e1,...,€j-1) est une famille orthogonale de vecteurs non nuls,
o pour tout enfier i € [2, j — 1], Vect(e,...,&;) = Vect(ey,...,e;)
o pour tout enfier i € [2, j— 1], la composante de ¢; sur e; est 1.

Jj-1
On cherche des réels A, tels que le vecteur e = e+ Y Arex soit orthogonal & tous les &; pour
k=1
i€ Hl,j— lﬂ ' (gilej) =0.
Jj-1
Donc, siie[1,j-1]. (eile)+ Y. Ak(eiler) =0.
k=1

(eilej)

D’ou (silej) +A; ||€i||2 =0,puis 1; =— TE .
i

i (exle))
= el

La récurrence est alors établie avec |e; =e; - E.

En effet :
o (e1,...,€j est une famille orthogonale de vecteurs non nuls,
o Vect(ey,...,gj)) = Vect(ey,...,ej).

En effet, Vect(ey,...,e;-1) = Vect(ey,...,e;_1), donc I'inclusion c est immediate et I'inclusion

> vient du fait que I'on puisse exprimer facilement e; comme combinaison linéaire des

i (exle))

gi,pouriefl,jl:ej=€j+). Jzek.
=1 ekl

o La composante de ¢; sur e; est 1.

On obtient n vecteurs non nuls orthogonaux en dimension n : (¢1,...,€,) €St une base orthogonale
de E.

= 2° étape : Normalisation.
On obtient alors trés facilement un b.o.n. de E :

T ey .
llexll lenl
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Remarque
R24 — Matrice de passage de la base (ey,...,e,) O labase (ey,...,&,) (Qui est seulement orthogonale) :

1 .. ... ... *
0. 5

L
[ I 01

A la base de la décomposition QR (exercice classique, cf TD).

Corollaire 3 : Existence de base orthonormale

Tout sous-espace vectoriel non nul d’un espace euclidien admet une base orthonormale.

Démonstration

C’est en effet encore un espace euclidien, muni du produit scalaire restreint & ce sous-espace.

Corollaire 4 : Théoréme de la base orthonormale incompléte

Tout famille orthonormale d’un espace euclidien peut éfre complétée en une b.o.n. de cet
espace.

Démonstration

Il suffit d”appliquer I’'orthonormalisation de Schmidt & cette famille libre complétée en une base : les
vecteurs de la famille orthonormale seront inchangés.

E Coordonnées, produit scalaire et norme en base orthonormale

Propriété 10 : Expression en base orthonormale

n
Soit (E,(:|)) un espace euclidien et % = (ey,...,e,;) une base orthonormale de E : x = Z x;e;,
i=1

y= iéy,-e,-, X= ():) ety = (?) Alors

n
Vie[Ln], xi=/(elx) @y =) xiyi=XTxY
=l

n n
lxll =4/ > %7 = VXTx X Ao y) =4/ = yi)?
i=1 i=1
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Démonstration
n n
«Siie[Ln], ~(xly)=(szei Zyje;)
i=1 j=1
n n
n = x~(e- y~e-)
(eilx)=(ei ijej) t:zl l ljzzl ™
j=1 n o n
i = x;yjleile))
=) xjleilej) i:zijzl AR
Jj=1 n
n — X'y‘d‘,‘
:Zx](sl] l;l Lyj¥Lj
j:l n
= X; :inyl

Il
—

n
o IxI? = (xIx) = )_ x?, d’aprés ce qui précéde.
i=1

Propriété 11: Changement de base orthonormale

Soit E euclidien, % et ' des bases orthonormales.
() Sip=p%, pl=pT,
(i Siue £(E), la formule de changement de bases orthonormales s’écrit

Matg (1) = PT Matg(u) P

(i) detg %' = +1 : 1 si elles ont méme orientation, -1 sinon.

Remarque

R25 — A La réciproque est fausse, il ne suffit pas que ce déterminant vale +1 pour que les bases soient
orthonormales.

R26 — Faciles, les changements de bases orthonormales !!!
Démonstration

() P;j= (ei|e}) (coordonnée de e;. selon e;.)

(P_l)i,j = (e;.‘ej) = (ej|e;.) =Pj;= (PT)i,j.
(i) Immédiat.
(iiiy detgz %' =detP or PPT = I, donc (detP)? =1.

Isomorphisme avec le dual (MPI)

Théoréme 4 : de représentation de Riesz

Soit a € E euclidien et ®,: x € E~ (a|x). Alors

E — Z(ER)
V.
a — Qg4

est un isomorphisme.
Ainsi, pour fout forme linéaire ¢ € £ (E,R), il existe un unique élément a€ E tel que ¢ = (al-).
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Démonstration

C’est une application linéaire entre deux espaces de méme dimension finie et elle est injective : si
pour tout x € E, (alx) = (b|x) alors (a—bla—b) =0 donc a = b.
C’est donc un isomorphisme.

ﬂ Produit mixte

Soit E un espace euclidien orienté de dimension n.

Propriété 12 : Indépendance du déterminant en base orthonormale directe

Si % est une base orthonormale directe de E, dety nhe dépend pas de 2.

Démonstration

detg = detyg %’ detg = detg .

Définition 15 : Produit mixte

On appelle produit mixte sur E le déterminant de n vecteurs dans n‘importe quelle base
orthonormale directe.
On le note [vy,...,v,], pOUr vy,...,v, € E.

Propriété 13 : du produit mixte

() (v1,...,vy) — [11,...,v,) €SF une forme n-linéaire alternée sur E.

(ih Si(ey,...,ey) €stune bond, [ey,...,ey] =1 €t Si(ey,...,e,) €St une boni, [ey,...,e,] = —1 (récCiproque
fausse).

(iiiy [vy,...,vy] =0 8i et seulement si (vy,...,v,) estliée.
(iv) Siue £L(E), (u(vy),...,u(vy) =detu x [vy,..., vyl

Remarque

R27 - Comme, si E est de dimension 3 et x,y € E, [x,y,-] € Z(E,R), avec |'isomorphisme de la partie pré-
cédente, il existe une unique vecteur a € E tel que pour tout z€ E, [x, y,z] = (alz). Ce vecteur a est
appelé produit vectoriel de x et y, noté xay.

On a alors [x,y,z] = (x A ylz) d'ou I"'appellation produit mixte.

Propriété 14 : Interprétation géométrique du déterminant

Soit E euclidien orienté.
() SidimE =2, [u, U] représente I’qire orientée du parallélogramme construit sur o et v.
(i SidimE =3, [u, v, w] représente le volume orienté du parallélépipéde construit sur i, v et .

Démonstration

C’est évident si i, v (respectivement &, v, w) sont li€s. Sinon :

@) Si dimE = 2, soit (e1,ez) base orthonormale obtenu par orthonormalisation de Gram-Schmidt de
(i1, D). Alors i = ce; et ¥ =dej + hey, OU h hauteur et ¢ cdté, donc [i, U] = chley, e2] = +ch aire orientée
du parallélogramme.
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(i) Si dimE = 3, soif (e, ere3) base orthonormale obtenu par orthonormalisation de
Schmidt de (i, 7, w). Alors i = ce;, U = de; + he, €t i = xe; + yeo + Hes, OU H hauteur et ch aire
de la base. (i, U, w] = chHlei, e2, €3] = +chH volume orienté du parallélépipéde construit sur @, v et
w.

H Propriétés de F+

Théoréme 5 : Supplémentarité de I'orthogonal d’un sevdf

Si F est un sev de dimension finie de E préhilbertien réel, alors
E=FeF'=FOF*

Le sev F est alors appelé supplémentaire orthogonal de F, il est unique.

Démonstration

m Si F={0g}, on a vu que F! =E et alors le résultat est immédiat.
» De méme, si F=E, on a vu que F! ={0g} et alors le résultat est immédiat.

® Sinon, on a déja que Fn F* = {0g}.

p

De plus, si (e1, ..., ep) est une base orthonormée de F, et y =Y (ejlx)e; € F, x = y+(x—y) avec x—y € F*
i=1

car pour tout i, (x—yle;) =0.

D’ou le résultat,
Unicité : Si E=F @ G, alors F et G sont orthogonaux, donc, si E est de dimension finie, G c FL et
dimG = dimE —dim F = dim F+, donc G = F*.

Si E n‘est pas de dimension finie? si x€ F+, x = xp+ xg €f xp=x—xg € FNF+ = {05} donc x=xg € G et
G=F'

Corollaire 5 : Propriété de I'orthogonal en dimension finie

Soit E un espace euclidien, F et G des sous-espaces vectoriels de E.

() dimF*=dimE-dimF iy (F+G)*=FtnG*t
(i (FX)"=F (V) (FNG*=F++Gt
Remarque

R28 — On retiendra qu’en dimension finie, il Ny a plus trop de probleme.

Démonstration

(@) : Vu dans la précédente démonstration.
(i) : Une inclusion connue et dimensions.
(iii) et (iv) : FX @ F = E : unicité du supplémentaire orthogonal de F*,
FLn Gt c(F+G)*t est direct.
Donc (F+G)* = FtnG*. (Vrai méme s'ils ne sont pas de dimension finie.)

1
PUis (FN G = (F7nGH) " = (B + G = FL+ G
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Exercice 6 : CCINP 77, 92

H Projections et symétries orthogonales

ﬂ Projections orthogonales

Définition 16 : Projection orthogonale

Soit E un espace préhilbertien réel, et F un sous-espace de E de dimension finie.
On appelle projecteur orthogonal sur F la projection pr sur F parallélement & F-.

Remarque

R29 — Cette définition est justifiée par le fait que E=Fe F*.

Propriété 15 : des projections orthogonales

(i) pre Z(E) (iv) F+=Kerpr

(ii) Pfs:pp (v) Impr © Kerpr=E

(iii) F=Impg=XKer(pr-idg) (vi) Vx€E, pr(x)€Fetx—pr(x)eFt.

Remarque

R30 - Le projeté orthogonal de x € E est le seul vecteur y e E tel que ye F et x— y e F+. Pratique pour le
frouver!

Exercice 7 : CCINP 80

Propriété 16 : Expression en base orthonormale

Soit F un sous-espace vectoriel de dimension finie de E préhilbertien réel, (e, ..., ep) une base
orthonormale de F. Alors

p
VX€E, pr(x)=)_(eilx)e;
i=1

Démonstration
D’apres la démonstration du supplémentaire orthogonal.
Remarque

R31 - On peut voir le procédé d’orthogonalisation de Gram-Schmidt en terme de projection : nous
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j-1
cherchions un vecteurej=ej+ ) Axe i.e.
k=1

]
ejZEj—kz_:l/lkEk. (])

Donc 5| I'on note F = Vect(ey,...,j-1). (1) est la décomposition de e; dans F- e F. Donc ¢; = pp.(e;)

et - Z Acer = pr(ej).

De plus, iCi (e1,...,£-1) est une base orthogonale de F, donc (” i HEJ—”) en est une b.o.n. et
&1 €j-1

j-l -

€ (exlej) S , , . .

prlej)=)_ (—k ) Z e, d'ou I'expression des A que I'on avait trouve.
=1 ekl ekl = llell

A savoir retrouver plutét que de connaitre par coeur :

= Projection orthogonale sur une droite : D = Ra, oU a # 0g. Alors (” i ) est une base orthonormée de D
et

pD:XH(m“M(ﬁ“):%

(Attention & ne pas oublier le |al?...)
= Projection orthogonale sur un hyperplan : H = (Ra)*, ol a # 0.

(alx)

—a
lall*

PH:X— X—

Démonstration

Pour la projection sur un hyperplan, sion nomme D la droite Ra= H-,onaque E=H @ D et

(al- )

idg=pH+pp= pH+” 4

Exemple

E7 — Soit E=1R3, P le plan d’équation cartésienne x—z=0.
On note % = (e}, e», e3) la base canonique de R3.
Quelle est la matrice dans % de pp? Vecteur normal @ P : (1,0,—-1). Donc pour tout x e R3,

(1)0)_1) : (xyyyz)

1 1
2 (1,0,_1): E(x"’-z))y)é(x"rz)

pr((x,y,2) = (x,y,2) —

Donc pplel) = 3(e1 +e3), pp(e2) = e €t pp(e3) = 1(e; +e3), et

1 0 1
1
Matgg(PP)=§ 0 2 0f

1 0 1
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Remarque
R32 - Si % (qui peut étre choisie orthonormale) est une base adaptée & la décomposition E=F @ FL,

1

()
Mat% (PF) = L 0
(0) -

0

ou les p premiers vecteurs de 2 forment une base de F =Im(pr) €t nous donnent les p premiéres
colonnes avec des 1 sur la diagonale, et les n— p autres forment une base de F = Ker pr et nous
donnent les n— p dernieres colonnes nulles.

Propriété 17 : Inégalité de Bessel

Soit E un espace préhilbertien, F un sous-espace vectoriel de E de dimension finie, pr la
projection orthogonale sur F. Alors

Vx€eE, ||pr)| <lxl
Démonstration

C’est le théoréme de Pythagore : pr(x) L (x - pr(x)) donc

12l = | pe@| + | x - pr@ | = | pr) |

u Symétries orthogonales (MPI)

Définition 17 : Symétrie orthogonale

Soit E un espace préhilbertien, F un sous-espace vectoriel de E de dimension finie.

On appelle symétrie orthogonales par rapport a F, notée s, la symétrie par rapport & F,
parallélement & FL,

Si F est un hyperplan, on parle de réflexion.

Si F est une droite vectorielle, on parle de retournement.

Propriété 18 : des symétries orthogonales

() spe L(E) (iv) Ker(sp+idg) = F*
(II') sposp=1idg (V) szzpp—idE.
(iif) Ker (sp—idg) = F (Vi) sp=pr—pp:

Exemple

E8 — Symétrie orthogonale par rapport au plan P de I'exemple précédent.
Comme sp =2pp —idps, ON obtient I'expression générale

sp((x,1,2) = (2, y,x)

ESPACES PREHILBERTIENS REELS (MP2I) - PAGE 22 SUR 24



J. Larochette VERSION DU 2 FEVRIER 2026

Et alors Matg(sp) = 2Matg(pp) — I3, donc

0 0 1
Matg(sp)=|0 1 0.
1 0 O

Remarque

R33 — Si % (Qui peut étre choisie orthonormale) est une base adaptée & la décomposition E=F © F+,

1

" (0)

Mat.@ (SF) = -1
0) -
=l

ou les p premiers vecteurs de % forment une base de F =Ker(sg — id) et nous donnent les p pre-
miéres colonnes avec des 1 sur la diagonale, et les n—p autres forment une base de F- = Ker (s + id)
et nous donnent les n— p derniéres colonnes avec des -1 sur la diagonale.

A savoir retrouver :
m Soient H est un hyperplan d’un espace euclidien E et a un vecteur non nul de H*.

(xla)
VxeE, sgx) :x—ZWa.
a

Démonstration

SHX) =2ppg(X) —x=2(x—pyL (X)) —x=x-2pgL(X)

Distance & un sous-espace

On a vu que si F est un sous-espace vectoriel d’'un espace préhilbertien réel E, alors, pour tout xe E,

A0, ) = inf dex,p) = inf [lx-y].

Propriété 19 : Expression de la distance & un sevdf

Soit F est un sous-espace vectoriel de dimension finie d’un espace préhilbertien E, ef x € E.
Alors la distance de x 4 F est atteinte en le projeté orthogonal pr(x) de x sur F, et seulement
en ce vecteur :
d(x, F) = d(x, pr(x0) = || x — pr(0)

etsid(x,F)=|x-y| avec yeF, alors y = pp(x).

De plus, si (e, ...,ep) est une base orthonormale de F,
2 2 u 2
dx, B)* = [1xl” =) (exlx)*.
k=1
Si, enfin, FL est aussi de dimension finie et (ep+1,--.,€,) UNE base orthonormale de Ft,

A, P2 = ||pp@= Y (exln?.
k=p+1
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Démonstration

Par théoreme de Pythagore, si ye F,
|x=preo+pet) - y|* = |2 = pe@|* + | pe(0) - ¥

Donc ||pr(x) - y| < ||x—y|| avec égalité si et seulement si || pr(x) - y| = 0 c’est-a-dire y = pp(x).
De plus,

n n
dx, P2 = |x-pro|P = Y (exlx-pr)?= Y (exln)?
k=p+1 k=p+1

car (exlpr(x))=0pour k> p+1. Et
14
d(x, F)? = || x = pr@)||” = 1x1% = | pr@) | * = 1212 = Y (exlx)?
k=1

par théoreme de Pythagore.

N

Méthode 1 : Détermination pratique de pr(x)

Plutét que de calculer une b.o.n. de F (orthonormalisation de Gram-Schmidt), il peut étre plus éco-
nomique d’écrire que pr(x) est le seul vecteur de ye F fel que x—y e F*.

Connaissant une base quelconque de F, on décompose y dans cette base et on fraduit I'orthogo-
nalité de x -y & chaque vecteur de la base : autant d’éguation que d’inconnues.

On résout et on frouve y = pr(x).

Remarque

R34 — Si F nest pas de dimension finie, cette distance n’est pas nécessairement atteinte. Ainsi, par
exemple, si E = €([0,1],IR) muni du produit scalaire canonique et si F est le sous-espace vec-
toriel des fonctions polynomiales, alors d(exp,F) n‘est pas atteinte car on peut montrer que

n k
d(exp,x»—» > %) — 0 donc ceftte distance est nulle. Ainsi, dire qu’elle serait atteinte serait dire

que exp € F ce qui est faux (trop de dérivées non nulles ?).

On peut d’ailleurs montrer plus généralement, que si d(x, F) est afteinte pour un y € F, alors x—y € F+
et on peut montrer que si F est le sous-espace vectoriel des fonctions polynomiales, F- = {0}.

Exercice 8 : CCINP 81, 82

Corollaire 6 : Distance & un hyperplan

Soit E un espace euclidien, H un hyperplan de E de vecteur normal a : H = (Ra)*.

Alors, pour tout x € E,
[(alx)|

lall
Si ayx,+---+a,x, =0 est une équation de H dans une base orthonormale % de E et i (x1,...,x,)
sont les coordonnées de x dans cette base, alors

d(x, H) =

layx1+ -+ anxy|

d(x, H) =

2 2
a2+ +db
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