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Tous les espaces vectoriels de ce chapitre, souvent notés E , sont des R-espaces vectoriels.

I PRODUIT SCALAIRE ET NORME EUCLIDIENNE

1 Définition d’un produit scalaire

Définition 1 : Produit scalaire
Soit E un R-espace vectoriel.
On appelle produit scalaire sur E toute forme bilinéaire symétrique définie-positive.
C’est-à-dire toute application (·|·) : E ×E −→R telle que

(i) Bilinéarité



Linéarité à gauche

Pour tout y ∈ E , l’application x 7→ (x|y) est linéaire :

∀ (x1, x2, y) ∈ E 3, ∀λ ∈R, (x1 +λx2|y) = (x1|y)+λ(x2|y).

Linéarité à droite

Pour tout x ∈ E , l’application y 7→ (x|y) est linéaire :

∀ (x, y1, y2) ∈ E 3, ∀λ ∈R, (x|y1 +λy2) = (x|y1)+λ(x|y2).

(ii) Symétrie ∀ (x, y) ∈ E 2, (x|y) = (y |x).

(iii) Définie-positivité



Positivité

∀x ∈ E , (x|x)⩾ 0 ;

Caractère défini (ou non dégénéré)

∀x ∈ E , (x|x) = 0 ⇒ x = 0.

Remarque
R 1 – Ne pas oublier de commencer par vérifier que le produit scalaire est bien défini (pas au sens

défini-positif !) lorsque cela n’est pas évident.
R 2 – Dans la pratique on commence par montrer la symétrie, et alors la linéarité à droite découle de

la linéarité à gauche et vice versa : il suffit de ne montrer que l’une ou l’autre.
R 3 – La définie-positivité se résume par ∀x 6= 0, (x|x) > 0

Définition 2 : Espace préhilbertien réel, espace euclidien
Si E est un R-espace vectoriel, et si (·|·) un produit scalaire sur E , on dit que (E , (·|·)) est un

espace préhilbertien réel.
Si E est un R-espace vectoriel de dimension finie, et si (·|·) un produit scalaire sur E , on dit que

(E , (·|·)) est un espace euclidien.

Remarque
R 4 – Un espace euclidien est donc un espace préhilbertien réel de dimension finie.
R 5 – On note en général (x|y) ou 〈x|y〉 ou 〈x, y〉 ou x · y ...
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Exercice 1 : Montrer que (P |Q) =
∫+∞

0
e−t P (t )Q(t )dt définit un produit scalaire sur R[X ] en confondant

polynôme et fonction polynomiale associée.

2 Exemples

a Sur Rn

Définition 3 : Produit scalaire canonique sur Rn

Pour des vecteurs x et y de Rn , avec x = (x1, . . . , xn) et y = (y1, . . . , yn), on définit

(x|y) =
n∑

i=1
xi yi .

(·|·) fait de Rn un espace euclidien : c’est le produit scalaire canonique sur Rn .

Remarque
R 6 – Important : Si X et Y désignent les matrices colonnes des composantes de x et de y dans la base

canonique, on remarque que (x|y) = X⊺×Y .
R 7 – Dans R2, (x|y) = x1 y1 +x2 y2.

Dans R3, (x|y) = x1 y1 +x2 y2 +x3 y3.

Démonstration

(i) (·|·) est symétrique par commutativité du produit sur R.
(ii) Linéarité à gauche : ∀x, x ′, y ∈Rn , ∀λ ∈R,

(x +λx ′|y) =
n∑

i=1
(x +λx ′)i yi

=
n∑

i=1
(xi +λx ′

i )yi

=
n∑

i=1
xi yi +λ

n∑
i=1

x ′
i y ′

i

= (x|y)+λ(x ′|y).

La linéarité à droite en découle par symétrie.
(iii) Définie-positivité

■ ∀x ∈Rn , (x|x) =
n∑

i=1
x2

i ⩾ 0

■ (x|x) = 0 ⇐⇒
n∑

i=1
x2

i = 0 ⇐⇒∀ i , xi = 0 ⇐⇒ x = 0Rn

■

Remarque
R 8 – On peut toujours fabriquer sur le modèle de Rn un produit scalaire « canonique » sur E de dimen-

sion finie rendant unebase canonique (s’il y en a une) orthonormale. Etmême, plus généralement,
un produit scalaire rendant une base donnée orthonormale.
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Par exemple, sur R[X ], (P |Q) = ∑
k∈N

pk qk avec des notations évidentes.

b Sur Mn(R)

Définition 4 : Produit scalaire canonique sur Mn(R)

Pour des vecteurs A et B de Mn(R), on définit

(A|B) = tr(A⊺×B).

(·|·) fait de Mn(R) un espace euclidien : c’est le produit scalaire canonique sur Mn(R).

Remarque

R 9 – Il s’agit en fait de l’écriture matricielle du produit scalaire canonique sur Rn2 .

Démonstration

tr(A⊺×B) =
n∑

i=1
(A⊺×B)i ,i =

n∑
i=1

n∑
j=1

ai , j bi , j =
∑

(i , j )∈J1,nK2

ai , j bi , j . ■

c Sur C ([a,b],R)

Définition 5 : Produit scalaire canonique pour fonctions continues
Pour des fonctions f et g de C ([a,b],R) où a < b, on définit

( f |g ) =
∫b

a
f (t )g (t )dt

(·|·) fait de C ([a,b],R) un espace préhilbertien réel : c’est le produit scalaire canonique sur
C ([a,b],R)

Remarque
R 10 – Attention, avec des fonctions continues par morceaux seulement, on a presque un produit sca-

laire : c’est une forme bilinéaires symétrique positive, il manque seulement ( f |g ) = 0 =⇒ f = 0.

Démonstration

(i) (·|·) est symétrique par commutativité du produit sur R.
(ii) Linéarité à gauche : ∀ f , f̃ , g ∈C ([a,b],R) , ∀λ ∈R,

( f +λ f̃ |g ) =
∫b

a

(
f +λ f̃

)
g

=
∫b

a

(
f g +λ f̃ g

)
=

∫b

a
f g +λ

∫b

a
f̃ g (par linéarité de l’intégrale)

= ( f |g )+λ( f̃ |g ).
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La linéarité à droite en découle par symétrie.
(iii) Définie-positivité

■ ∀ f ∈C ([a,b],R) , ( f | f ) =
∫b

a
f 2(x)dx ⩾ 0 (par positivité de l’intégrale et comme a < b)

■ ( f | f ) = 0 ⇐⇒
∫b

a
f 2(x)dx = 0

⇐⇒ f 2 ≡ 0 (car f 2 est une fonction continue et positive)

⇐⇒ f ≡ 0 ■

Exercice 2 : HP mais Classique
Si I est un intervalle, on note L 2(I ) est l’ensemble des fonctions continues sur I telles que f 2 est

intégrable.
À partir de l’inégalité classique

∣∣ f g
∣∣ ⩽ 1

2

(
f 2 + g 2

)
, montrer la bonne définition de

(
f |g ) = ∫

I
f g , que

L 2(I ) est un R-espace vectoriel, et que (·|·) est un produit scalaire sur L 2(I ).

Exercice 3 : HP mais Classique
Montrer que l’on définit de la même manière un produit scalaire sur l’espace ℓ2(R) des suites réelles

de carré sommable, c’est-à- dire des suites u, v ∈RN telle que
∑

u2
n et

∑
v2

n convergente, en prouvant

que
∑

un vn est absolument convergente et en posant (u|v) =
+∞∑
n=0

un vn .

3 Norme euclidienne

a Définition

Définition 6 : Norme euclidienne
Soit (E , | ) un espace préhilbertien réel.
Pour tout vecteur x de E , on pose ‖x‖ =p

(x|x).
L’application ‖·‖ est appelée norme euclidienne sur E associée au produit scalaire (·|·).

Remarque
R 11 – La positivité du produit scalaire rend cette définition licite.

Exemple

E 1 – Sur Rn muni de son produit scalaire canonique, ‖x‖ =
√

n∑
i=1

x2
i . En particulier, sur R, ‖x‖ = |x|.

E 2 – Sur Mn(R) muni de son produit scalaire canonique, ‖A‖ =p
tr(A⊺× A).

E 3 – Sur C ([a,b],R) muni de son produit scalaire canonique,
∥∥ f

∥∥=
√∫b

a
f 2(t )dt .
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b Identités remarquables et polarisation

Propriété 1 : Identités remarquables

Soit E un espace préhilbertien réel et ‖.‖ la norme associée au produit scalaire.
Pour tous vecteurs x et y de E ,

(i)
∥∥x + y

∥∥2 = ‖x‖2 +2(x|y)+∥∥y
∥∥2 (ii)

∥∥x − y
∥∥2 = ‖x‖2 −2(x|y)+∥∥y

∥∥2

(iii) Identité du parallélogramme (HP)∥∥x + y
∥∥2 +∥∥x − y

∥∥2 = 2
(
‖x‖2 +∥∥y

∥∥2
)

Propriété 2 : Identités de polarisation

Soit (E , (·|·)) un espace préhilbertien réel et ‖·‖ la norme associée au produit scalaire.
Pour tous vecteurs x et y de E ,

(i) (x|y) = 1

4

(∥∥x + y
∥∥2 −∥∥x − y

∥∥2
)

(ii) (x|y) = 1

2

(∥∥x + y
∥∥2 −‖x‖2 −∥∥y

∥∥2
)

Démonstration

Provient directement de l’identité remarquable (i ) et de (i )− (i i ). ■

c Inégalité de Cauchy-Schwarz

Théorème 1 : Inégalité de Cauchy-Schwarz

Soit (E , (·|·)) un espace préhilbertien réel. Alors

∀x, y ∈ E , (x|y)2 ⩽ (x|x)(y |y) ie
∣∣(x|y)

∣∣⩽ ‖x‖∥∥y
∥∥ ,

avec égalité si et seulement si x et y sont liés (i.e. y = 0 ou ∃λ ∈R, x =λy)

Remarque
R 12 – L’inégalité est encore valable pour une forme bilinéaire symétrique seulement positive, mais le

cas d’égalité n’est plus valable. C’est le cas par exemple de la covariance.

Démonstration

Soit λ un nombre réel. On pose P (λ) = (
x +λy |x +λy

)
: on a que P (λ)⩾ 0 par positivité.

Or

P (λ) = (x|x)+λ(x|y)+λ(y |x)+λ2(y |y)

= (x|x)+2λ(x|y)+λ2(y |y)

C’est un polynôme de degré au plus 2 à coefficients réels.

Cas 1 : Si (y |y) = 0, alors on doit avoir, pour tout λ ∈R, (x|x)+2λ(x|y)⩾ 0, ce qui n’est possible que si (x|y) = 0
et l’inégalité est vraie.

Cas 2 : Sinon, le polynôme en λ est de degré 2 de signe constant donc son discriminant réduit est
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négatif
∆′ = (x|y)2 − (x|x)(y |y)⩽ 0

et on obtient l’inégalité recherchée.

Cas d’égalité :
Si y = 0, il y a égalité.
Si y 6= 0, il y a égalité si et seulement si P (λ) admet une racine (double) si et seulement si

∃λ ∈R,
(
x +λy |x +λy

)= 0, ce qui équivaut à ∃λ ∈R, x +λy = 0 et donc x et y sont liés. ■

Exemple

E 4 – Sur Rn ,
(

n∑
k=1

xi yi

)2

⩽
n∑

k=1
x2

i

n∑
k=1

y2
i . Sur C ([a,b],R),

(∫b

a
f g

)2

⩽
∫b

a
f 2

∫b

a
g 2.

Exercice 4 : CCINP 76, 79

d Inégalité triangulaire, norme

Corollaire 1 : Inégalité de Minkowski

Soit (E , | ) un espace préhilbertien réel, de norme euclidienne associée ‖·‖. Alors

∀x, y ∈ E ,
∥∥x + y

∥∥⩽ ‖x‖+∥∥y
∥∥

avec égalité si et seulement si x et y sont positivement liés (ie y = 0 ou ∃λ ∈R+, x =λy)
De plus,

∀x, y ∈ E ,
∣∣∣‖x‖−∥∥y

∥∥∣∣∣⩽ ∥∥x + y
∥∥⩽ ‖x‖+∥∥y

∥∥
Démonstration

Soient x et y des vecteurs de E .
Il est plus pratique de travailler avec le carré des normes :∥∥x + y

∥∥2 = (x + y |x + y)

= (x|x)+2(x|y)+ (y |y)

= ‖x‖2 +∥∥y
∥∥2 +2(x|y)

⩽ ‖x‖2 +∥∥y
∥∥2 +2‖x‖∥∥y

∥∥ d’après l’inégalité de Cauchy-Schwarz

⩽
(‖x‖+∥∥y

∥∥)2

Cas d’égalité : Il y a égalité ssi (x|y) = ∣∣(x|y)
∣∣= ‖x‖∥∥y

∥∥
Donc si et seulement si soit y = 0, soit il existe λ ∈R tel que x =λy (cas d’égalité de Cauchy-Schwarz)

et (x|y) = ∣∣(x|y)
∣∣, ce qui devient, si x =λy , λ(x|x) = |λ| (x|x) donc λ= |λ| et λ⩾ 0.

Pour l’autre inégalité, on écrit que
∥∥(x + y)− y

∥∥ ⩽
∥∥x + y

∥∥ + ∥∥−y
∥∥ donc

∥∥x + y
∥∥ ⩾ ‖x‖ − ∥∥y

∥∥, puis on
échange les rôles de x et y . ■

Définition 7 : Norme
On appelle norme sur un K-espace vectoriel E toute application N : E −→R+ vérifiant

Séparation Pour tout x ∈ E , N (x) = 0R =⇒ x = 0E .
Homogénéité Pour tout x ∈ E et pour tout λ ∈K, N (λx) = |λ|N (x).

Inégalité triangulaire (ou sous-additivité) Pour tout x, y ∈ E , N (x + y)⩽ N (x)+N (y).
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Propriété 3 : Toute norme euclidienne est une norme

La norme euclidienne associée à un produit scalaire est une norme sur E .

Démonstration

Soient x ∈ E et λ ∈R.
Bonne définition ‖x‖ est un réel positif bien défini.
Séparation ‖x‖ = 0 ⇐⇒‖x‖2 = 0 ⇐⇒ (x|x) = 0 ⇐⇒ x = 0E

Homogénéité ‖λx‖ =
√

(λx|λx) =
√
λ2(x|x) = |λ|‖x‖

Inégalité triangulaire c’est l’inégalité de Minkowski démontrée ci-dessus. ■

e Distance

Définition 8 : Distance euclidienne et écart angulaire

Étant donné des vecteurs x et y d’un espace préhilbertien réel E , on définit :
■ la distance euclidienne d(x, y) par d(x, y) = ∥∥x − y

∥∥ ,

■ si x et y sont non nuls, l’écart angulaire θ est le réel défini par

θ ∈ [0,π] et cosθ = (x|y)

‖x‖∥∥y
∥∥ .

Remarque
R 13 – La bonne définition provient de l’inégalité de Cauchy-Schwarz.
R 14 – Autrement dit, (x|y) = ‖x‖∥∥y

∥∥cosθ.

Définition 9 : Distance à une partie non vide
Si A est une partie non vide de E préhilbertien réel, et x ∈ E , on définit la distance de x à A par

d(x, A) = inf
y∈A

d(x, y) = inf
y∈A

∥∥x − y
∥∥ .

Remarque

R 15 – La borne inférieure existe toujours car Ex =
{∥∥x − y

∥∥ ; y ∈ A
}
est non vide (car A l’est) et minoré (par

0).
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II ORTHOGONALITÉ

1 Vecteurs orthogonaux

Définition 10 : Vecteurs orthogonaux
Soit (E , (·|·)) un espace préhilbertien réel, x et y des vecteurs de E .
x et y sont dit orthogonaux si et seulement si (x|y) = 0. On écrit parfois x ⊥ y .

Remarque
R 16 – 0E est orthogonal à tout vecteur.
R 17 – La notion d’orthogonalité ne prend de sens qu’en dimension au moins 2.

2 Famille orthonormale

Définition 11 : Familles orthogonale et orthonormale
Soit E un espace préhilbertien réel, (v1, . . . , vp ) ∈ E p .
(v1, . . . , vp ) est une famille orthogonale de E si et seulement si

∀ i , j ∈ J1, pK, avec i 6= j , (vi |v j ) = 0 (ie vi ⊥ v j ).

(v1, . . . , vp ) est une famille orthonormale de E si et seulement si

∀ i , j ∈ J1, pK, (vi |v j ) = δi , j

Propriété 4 : orthogonale + non nuls ⇒ libre

Toute famille orthogonale de vecteurs non nuls (en particulier toute famille orthonormale)
d’un espace préhilbertien réel est libre.

Remarque
R 18 – C’est un moyen pratique et usuel pour montrer qu’une famille est libre !

Démonstration

Soit (v1, . . . , vp ) une famille orthogonale de vecteurs non nuls d’un espace préhilbertien E .
But : (v1, . . . , vp ) est libre.
Soient λ1, . . . ,λp ∈R tels que λ1v1 +·· ·+λp vp = 0.

Alors, si i ∈ J1, pK, (λ1v1 +·· ·+λp vp |vi ) =


(0E |vi ) = 0R

n∑
j=1

λ j (v j |vi ) =λi ‖vi‖2 . Or vi 6= 0E , donc λi = 0. ■
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Corollaire 2 : Nombre maximal de vecteurs orthogonaux

Si E est un espace euclidien de dimension n, il n’existe pas de famille orthogonale de plus
de n vecteurs non nuls.

Théorème 2 : de Pythagore

Soit, dans un espace préhilbertien réel E , une famille orthogonale (vi )i∈J1,pK. On a∥∥∥∥∥ p∑
i=1

vi

∥∥∥∥∥
2

=
p∑

i=1
‖vi‖2

La réciproque est vraie pour deux vecteurs mais fausse en général si p ⩾ 3.

Démonstration∥∥x + y
∥∥2 = ‖x‖2 +∥∥y

∥∥2 +2(x|y)
Puis récurrence sur p.
Contre-exemple : la famille

{(
1
0

)
,
(

0
1

)
,
(

1−1

)}
n’est pas orthogonale (et pour cause, il y 3 vecteurs non

nuls en dimension 2 !) et vérifie pourtant la propriété de Pythagore. ■

3 Ensembles orthogonaux

Définition 12 : Parties orthogonales
Soient (E , (·|·)) un espace préhilbertien réel et A,B des parties non vides de E .
On dit que A est orthogonale à B si et seulement si ∀ (a,b) ∈ A×B , (a|b) = 0. On note A ⊥ B .

Propriété 5 : Intersection de parties orthogonales

Si A,B ∈P (E) \ {∅} sont orthogonales, alors A∩B =∅ ou A∩B = {0E }.

Démonstration

Si A∩B 6=∅, soit x ∈ A∩B . Alors (x|x) = 0, donc x = 0. ■

Remarque
R 19 – Si F et G sont des sous-espaces vectoriels de E orthogonaux, alors F ∩G = {0E } : leur somme est

directe.

Exemple
E 5 – Parties de R3 orthogonales d’intersection vide : A =R(0,0,1) et B = (0,1,0)+R(1,0,0).

4 Orthogonal d’un sous-espace
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Définition 13 : Orthogonal d’un sous-espace
Soient (E , (·|·)) un espace préhilbertien réel, et F un sous-espace vectoriel de E . On définit

l’orthogonal de F comme l’ensemble des vecteurs orthogonaux à tout vecteur de F :

F⊥ = {x ∈ E | ∀ y ∈ F, (x|y) = 0}

x ∈ F⊥ ⇐⇒ x ∈ E et ∀ y ∈ F, (x|y) = 0

(Il est parfois noté F ◦). Il s’agit de la plus grande partie de E (pour l’inclusion) orthogonale à F .

Propriété 6 : L’orthogonal est un sous-espace

Soient (E , (·|·)) préhilbertien réel, et F un sous-espace vectorielde E .
F⊥ est un sous-espace vectoriel de E .

Démonstration

■ 0E ∈ A⊥,
■ ∀x, x ′ ∈ A⊥, ∀λ ∈R, λx +x ′ ∈ A⊥, car ∀ y ∈ A, (λx +x ′|y) =λ(x|y)+ (x ′|y) = 0.

Donc A⊥ est un sev de A.
Commedeplus A ⊂ Vect A, (Vect A)⊥ ⊂ A⊥ et être orthogonal à tout élément de A implique être orthogo-

nal à toute combinaison linéaire d’éléments de A par bilinéarité du produit scalaire, donc A⊥ ⊂ (Vect A)⊥.
■

Propriété 7 : Il suffit d’être orthogonal à une famille génératrice

Soit F un sous-espace de E préhilbertien réel.
Si F = Vect A (A engendre F ) et si x est un vecteur de E ,

x ∈ F⊥ ⇐⇒∀a ∈ A, (x|a) = 0

Démonstration

F⊥ = A⊥. ■

Remarque
R 20 – En particulier, connaissant une base de F , il suffit d’être orthogonal aux vecteurs de la base pour

être orthogonal à F .
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Propriété 8 : de l’orthogonal

Soit E un espace préhilbertien réel, F et G des sous-espaces vectoriels de E .
(i) E⊥ = {0} et {0}⊥ = E .
(ii) F ⊂ (

F⊥)⊥,
(iii) La somme est directe : F +F⊥ = F ⊕F⊥ = F ⊥⊥⊥ F⊥,
(iv) Décroissance : Si F ⊂G, alors G⊥ ⊂ F⊥,
(v) (F +G)⊥ = F⊥∩G⊥ et (F ∩G)⊥ ⊃ F⊥+G⊥.

Démonstration

■ 0 ∈ E⊥, et si x ∈ E⊥, (x|x) = 0 donc ‖x‖ = 0 et x = 0.
■ Si x ∈ F , pour vecteur y de F⊥, (x|y) = 0, d’où le résultat.
■ Comme les ensembles F et F⊥ sont orthogonaux, F ∩F⊥ =∅ ou F ∩F⊥ = {0}, mais 0 ∈ F ∩F⊥.
■ Soit x ∈G⊥. Pour tout vecteur y de F , y ∈G, et donc (x|y) = 0. Ainsi x ∈ F⊥.
■

■

Remarque
R 21 – Le seul vecteur orthogonal à tous les autres est le vecteur nul. Cela peut être très utile !
R 22 – Pour F ⊂ (

F⊥)⊥ et (F ∩G)⊥ ⊃ F⊥+G⊥, on verra que les inclusions sont des égalités si on ajoute une
hypothèse de dimension finie sur E .
On peut donner commecontre-exemples, dans E =C ([0,1],R), F le sous-espace vectoriel des fonc-
tions polynomiales. C’est un exercice très classique de montrer que F⊥ = {0} à l’aide du théorème
de Weierstrass, donc

(
F⊥)⊥ = E et

F ⊊
(
F⊥)⊥ = E .

Si, de plus, G = {t 7→ P (t )sin(t ) ; P ∈ F }, alors G⊥ = {0} et F ∩G = {0} d’où

E = (F ∩G)⊥⊋ F⊥+G⊥ = {0}.

Exercice 5 : CCINP 39

III ESPACES OU SOUS-ESPACES EUCLIDIENS
Rappel : Un espace euclidien est un R-espace vectoriel de dimension finie muni d’un produit scalaire.

1 Base orthonormale

Théorème 3 : Existence de base orthonormale
Tout espace euclidien non réduit à 0E admet une base orthonormale (abrégé en b.o.n.).

On a même un algorithme permettant de transformer une base en base orthonormale. Redécouvrons-
le sur un exemple avant de le formaliser :
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Exemple
E 6 – Dans R3 muni de sa structure euclidienne canonique, on considère e1 = (0,1,1), e2 = (1,0,1),

e3 = (1,1,0).
Il est facile de voir que (e1,e2,e3) est une base de R3 (en calculant le déterminant dans la base
canonique, par exemple).
On va d’abord transformer la famille en une famille orthogonale, puis orthonormale qui sera donc
bien une base.

■ On pose ε1 = e1 = (0,1,1).

■ Puis on cherche
ε2 = e2 +λε1

avec λ tel que (ε1|ε2) = 0 ie (ε1|e2)+λ(ε1|ε1) = 1+2λ= 0 donc λ=−1

2
et ε2 =

(
1,−1

2
,

1

2

)
.

■ En cherchant
ε3 = e3 +µε1 +νε2

tel que (ε1|ε3) = 0 et (ε2|ε3) = 0, on trouve µ=−1

2
et ν=−1

3
. Soit ε3 =

(
2

3
,

2

3
,−2

3

)
.

On a obtenu trois vecteurs non nuls orthogonaux deux à deux en dimension 3 : il s’agit d’une base
orthogonale de R3. Reste à normaliser pour obtenir une b.o.n. ε′1 =

(
0,

1p
2

,
1p
2

)
, ε′2 =

(
2p
6

,− 1p
6

,
1p
6

)
et ε′3 =

(
1p
3

,
1p
3

,− 1p
3

)
.

Définition 14 : Orthonormalisation de Gram-Schmidt
Étant donné (E , (·|·)) un espace euclidien, et (e1, . . . ,en) une base de E :

1. On pose ε1 = e1.
2. Par récurrence, pour j ⩾ 2, on cherche des réels λk tels que le vecteur

ε j = e j +
j−1∑
k=1

λkεk

soit orthogonal à tous les εi pour i ∈ J1, j −1K :
∀ i < j , (εi |ε j ) = 0.

3. On normalise les vecteurs :
(

ε1

‖ε1‖
, . . . ,

εn

‖εn‖
)

.

Remarque
R 23 – Il est aussi possible de normaliser les vecteurs au fur et à mesure.

Propriété 9 : de la base orthonormalisée
On obtient ainsi que (ε1, . . . ,εn) est une famille orthogonale de vecteurs non nuls tels que pour

tout j , Vect(e1, . . . ,e j ) = Vect(ε1, . . . ,ε j ) et la composante sur e j de ε j vaut 1.
On a alors

(
ε1

‖ε1‖
, . . . ,

εn

‖εn‖
)
est une base orthonormale de E .
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Démonstration

■ 1re étape : Orthogonalisation.

⋆ On pose ε1 = e1. (Et alors ε1 6= 0E .)
⋆ On cherche ε2 ∈Vect(ε1,e2) tel que (ε1|ε2) = 0.

On cherche donc un réel λ tel que ε2 = e2 +λε1 et (ε1|ε2) = 0.
Donc λ‖ε1‖2 + (ε1|e2) = 0, puis λ=− (ε1|e2)

‖ε1‖2 .

Finalement, ε2 = e2 − (ε1|e2)

‖ε1‖2 ε1.

De plus, ε2 6= 0 car (e1,e2) est une famille libre, et Vect(ε1,ε2) =Vect(e1,e2). (L’inclusion ⊂ est im-
médiate, l’inclusion ⊃ vient du fait qu’on puisse exprimer facilement e2 comme combinaison
linéaire de ε1 et ε2 : e2 = ε2 + (ε1|e2)

‖ε1‖2 ε1.)

⋆ Supposons, par récurrence, que l’on ait construit ε1, . . . ,ε j−1 tels que
◦ (ε1, . . . ,ε j−1) est une famille orthogonale de vecteurs non nuls,
◦ pour tout entier i ∈ J2, j −1K, Vect(ε1, . . . ,εi ) =Vect(e1, . . . ,ei )

◦ pour tout entier i ∈ J2, j −1K, la composante de εi sur ei est 1.

On cherche des réels λk tels que le vecteur ε j = e j +
j−1∑
k=1

λkεk soit orthogonal à tous les εi pour

i ∈ J1, j −1K : (εi |ε j ) = 0.

Donc, si i ∈ J1, j −1K, (εi |e j )+
j−1∑
k=1

λk (εi |εk ) = 0.

D’où (εi |e j )+λi ‖εi‖2 = 0, puis λi =− (εi |e j )

‖εi‖2 .

La récurrence est alors établie avec ε j = e j −
j−1∑
k=1

(εk |e j )

‖εk‖2 εk .

En effet :
◦ (ε1, . . . ,ε j ) est une famille orthogonale de vecteurs non nuls,
◦ Vect(ε1, . . . ,ε j ) =Vect(e1, . . . ,e j ).
En effet, Vect(ε1, . . . ,ε j−1) =Vect(e1, . . . ,e j−1), donc l’inclusion ⊂ est immédiate et l’inclusion
⊃ vient du fait que l’on puisse exprimer facilement e j comme combinaison linéaire des

εi , pour i ∈ J1, jK : e j = ε j +
j−1∑
k=1

(εk |e j )

‖εk‖2 εk .

◦ La composante de ε j sur e j est 1.

On obtient n vecteurs non nuls orthogonaux en dimension n : (ε1, . . . ,εn) est une base orthogonale
de E .

■ 2e étape : Normalisation.
On obtient alors très facilement un b.o.n. de E :

(
ε1

‖ε1‖
, . . . ,

εn

‖εn‖
)

.

■
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Remarque
R 24 – Matrice de passage de la base (e1, . . . ,en) à la base (ε1, . . . ,εn) (qui est seulement orthogonale) :

1 ∗ ∗
0

∗
0 0 1


À la base de la décomposition QR (exercice classique, cf TD).

Corollaire 3 : Existence de base orthonormale
Tout sous-espace vectoriel non nul d’un espace euclidien admet une base orthonormale.

Démonstration

C’est en effet encore un espace euclidien, muni du produit scalaire restreint à ce sous-espace. ■

Corollaire 4 : Théorème de la base orthonormale incomplète

Tout famille orthonormale d’un espace euclidien peut être complétée en une b.o.n. de cet
espace.

Démonstration

Il suffit d’appliquer l’orthonormalisation de Schmidt à cette famille libre complétée en une base : les
vecteurs de la famille orthonormale seront inchangés. ■

2 Coordonnées, produit scalaire et norme en base orthonormale

Propriété 10 : Expression en base orthonormale

Soit (E , (·|·)) un espace euclidien et B = (e1, . . . ,en) une base orthonormale de E : x =
n∑

i=1
xi ei ,

y =
n∑

i=1
yi ei , X =

( x1
...xn

)
et Y =

( y1
...yn

)
. Alors

∀ i ∈ J1,nK, xi = (ei |x) (x|y) =
n∑

i=1
xi yi = X ⊺×Y

‖x‖ =
√

n∑
i=1

x2
i =

p
X ⊺×X d(x, y) =

√
n∑

i=1
(xi − yi )2
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Démonstration

• Si i ∈ J1,nK,
(ei |x) =

(
ei

∣∣∣ n∑
j=1

x j e j

)

=
n∑

j=1
x j (ei |e j )

=
n∑

j=1
x jδi , j

= xi

• (x|y) =
( n∑

i=1
xi ei

∣∣∣ n∑
j=1

y j e j

)

=
n∑

i=1
xi

(
ei

∣∣∣ n∑
j=1

y j e j

)

=
n∑

i=1

n∑
j=1

xi y j (ei |e j )

=
n∑

i , j=1
xi y jδi , j

=
n∑

i=1
xi yi

• ‖x‖2 = (x|x) =
n∑

i=1
x2

i , d’après ce qui précède. ■

Propriété 11 : Changement de base orthonormale

Soit E euclidien, B et B′ des bases orthonormales.
(i) Si P = PB′

B
, P−1 = P⊺.

(ii) Si u ∈L (E), la formule de changement de bases orthonormales s’écrit

MatB′(u) = P⊺ MatB(u) P

(iii) detB B′ =±1 : 1 si elles ont même orientation, -1 sinon.

Remarque

R 25 – " La réciproque est fausse, il ne suffit pas que ce déterminant vale ±1 pour que les bases soient
orthonormales.

R 26 – Faciles, les changements de bases orthonormales !!!

Démonstration

(i) Pi , j =
(
ei

∣∣∣e ′j ) (coordonnée de e ′j selon ei .)(
P−1

)
i , j =

(
e ′i

∣∣∣e j

)
=

(
e j

∣∣∣e ′i )= P j ,i = (P⊺)i , j .

(ii) Immédiat.
(iii) detB B′ = detP or PP⊺ = In donc (detP )2 = 1. ■

3 Isomorphisme avec le dual (MPI)

Théorème 4 : de représentation de Riesz
Soit a ∈ E euclidien et Φa : x ∈ E 7→ (a|x). Alors

Ψ :
E −→ L (E ,R)

a 7−→ Φa

est un isomorphisme.
Ainsi, pour tout forme linéaire φ ∈L (E ,R), il existe un unique élément a ∈ E tel que φ= (a|·).
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Démonstration

C’est une application linéaire entre deux espaces de même dimension finie et elle est injective : si
pour tout x ∈ E , (a|x) = (b|x) alors (a −b|a −b) = 0 donc a = b.

C’est donc un isomorphisme. ■

4 Produit mixte
Soit E un espace euclidien orienté de dimension n.

Propriété 12 : Indépendance du déterminant en base orthonormale directe

Si B est une base orthonormale directe de E , detB ne dépend pas de B.

Démonstration

detB = detB B′ detB′ = detB′ . ■

Définition 15 : Produit mixte
On appelle produit mixte sur E le déterminant de n vecteurs dans n’importe quelle base

orthonormale directe.
On le note [v1, . . . , vn], pour v1, . . . , vn ∈ E .

Propriété 13 : du produit mixte

(i) (v1, . . . , vn) 7→ [v1, . . . , vn] est une forme n-linéaire alternée sur E .
(ii) Si (e1, . . . ,en) est une bond, [e1, . . . ,en] = 1 et si (e1, . . . ,en) est une boni, [e1, . . . ,en] =−1 (réciproque

fausse).
(iii) [v1, . . . , vn] = 0 si et seulement si (v1, . . . , vn) est liée.
(iv) Si u ∈L (E), [u(v1), . . . ,u(vn)] = detu × [v1, . . . , vn].

Remarque
R 27 – Comme, si E est de dimension 3 et x, y ∈ E , [x, y, ·] ∈ L (E ,R), avec l’isomorphisme de la partie pré-

cédente, il existe une unique vecteur a ∈ E tel que pour tout z ∈ E , [x, y, z] = (a|z). Ce vecteur a est
appelé produit vectoriel de x et y , noté x ∧ y .
On a alors [x, y, z] = (x ∧ y |z) d’où l’appellation produit mixte.

Propriété 14 : Interprétation géométrique du déterminant

Soit E euclidien orienté.
(i) Si dimE = 2, [u⃗, v⃗] représente l’aire orientée du parallélogramme construit sur u⃗ et v⃗ .
(ii) Si dimE = 3, [u⃗, v⃗ , w⃗] représente le volume orienté du parallélépipède construit sur u⃗, v⃗ et w⃗ .

Démonstration

C’est évident si u⃗, v⃗ (respectivement u⃗, v⃗ , w⃗) sont liés. Sinon :
(i) Si dimE = 2, soit (e1,e2) base orthonormale obtenu par orthonormalisation de Gram-Schmidt de

(u⃗, v⃗). Alors u⃗ = ce1 et v⃗ = de1 +he2, où h hauteur et c côté, donc [u⃗, v⃗] = ch[e1,e2] =±ch aire orientée
du parallélogramme.

ESPACES PRÉHILBERTIENS RÉELS (MP2I) - PAGE 18 SUR 24



J. Larochette VERSION DU 2 FÉVRIER 2026

(ii) Si dimE = 3, soit (e1,e2,e3) base orthonormale obtenu par orthonormalisation de
Schmidt de (u⃗, v⃗ , w⃗). Alors u⃗ = ce1, v⃗ = de1 + he2 et w⃗ = xe1 + ye2 + He3, où H hauteur et ch aire
de la base. [u⃗, v⃗ , w⃗] = chH [e1,e2,e3] = ±chH volume orienté du parallélépipède construit sur u⃗, v⃗ et
w⃗ .

■

5 Propriétés de F⊥

Théorème 5 : Supplémentarité de l’orthogonal d’un sevdf

Si F est un sev de dimension finie de E préhilbertien réel, alors

E = F ⊕F⊥ = F ⊥⊥⊥ F⊥

Le sev F⊥ est alors appelé supplémentaire orthogonal de F , il est unique.

Démonstration

■ Si F = {0E }, on a vu que F⊥ = E et alors le résultat est immédiat.
■ De même, si F = E , on a vu que F⊥ = {0E } et alors le résultat est immédiat.
■ Sinon, on a déjà que F ∩F⊥ = {0E }.

De plus, si (e1, . . . ,ep ) est une base orthonormée de F , et y =
p∑

i=1
(ei |x)ei ∈ F , x = y+(x−y) avec x−y ∈ F⊥

car pour tout i , (x − y |ei ) = 0.
D’où le résultat.
Unicité : Si E = F ⊥⊥⊥ G, alors F et G sont orthogonaux, donc, si E est de dimension finie, G ⊂ F⊥ et
dimG = dimE −dimF = dimF⊥, donc G = F⊥.
Si E n’est pas de dimension finie? si x ∈ F⊥, x = xF + xG et xF = x − xG ∈ F ∩F⊥ = {0E } donc x = xG ∈G et
G = F⊥.

■

Corollaire 5 : Propriété de l’orthogonal en dimension finie

Soit E un espace euclidien, F et G des sous-espaces vectoriels de E .

(i) dimF⊥ = dimE −dimF

(ii)
(
F⊥)⊥ = F

(iii) (F +G)⊥ = F⊥∩G⊥

(iv) (F ∩G)⊥ = F⊥+G⊥

Remarque
R 28 – On retiendra qu’en dimension finie, il n’y a plus trop de problème.

Démonstration

(i) : Vu dans la précédente démonstration.
(ii) : Une inclusion connue et dimensions.

(iii) et (iv) : F⊥ ⊥⊥⊥ F = E : unicité du supplémentaire orthogonal de F⊥.
F⊥∩G⊥ ⊂ (F +G)⊥ est direct.
Donc (F +G)⊥ = F⊥∩G⊥. (Vrai même s’ils ne sont pas de dimension finie.)
Puis (F ∩G)⊥ =

(
F⊥⊥∩G⊥⊥)⊥ = (

(F⊥+G⊥)⊥
)⊥ = F⊥+G⊥.
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■

Exercice 6 : CCINP 77, 92

6 Projections et symétries orthogonales

a Projections orthogonales

Définition 16 : Projection orthogonale
Soit E un espace préhilbertien réel, et F un sous-espace de E de dimension finie.
On appelle projecteur orthogonal sur F la projection pF sur F parallèlement à F⊥.

Remarque

R 29 – Cette définition est justifiée par le fait que E = F ⊕F⊥.

Propriété 15 : des projections orthogonales

(i ) pF ∈L (E)

(i i ) p2
F = pF

(i i i ) F = Im pF = Ker(pF − i dE )

(i v) F⊥ = Ker pF

(v) Im pF ⊥⊥⊥ Ker pF = E

(vi ) ∀x ∈ E , pF (x) ∈ F et x −pF (x) ∈ F⊥.

Remarque

R 30 – Le projeté orthogonal de x ∈ E est le seul vecteur y ∈ E tel que y ∈ F et x − y ∈ F⊥. Pratique pour le
trouver !

Exercice 7 : CCINP 80

Propriété 16 : Expression en base orthonormale

Soit F un sous-espace vectoriel de dimension finie de E préhilbertien réel, (e1, . . . ,ep ) une base
orthonormale de F . Alors

∀x ∈ E , pF (x) =
p∑

i=1
(ei |x)ei

Démonstration

D’après la démonstration du supplémentaire orthogonal. ■

Remarque
R 31 – On peut voir le procédé d’orthogonalisation de Gram-Schmidt en terme de projection : nous
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cherchions un vecteur ε j = e j +
j−1∑
k=1

λkεk i.e.

e j = ε j −
j−1∑
k=1

λkεk . (1)

Donc, si l’on note F = Vect(ε1, . . . ,ε j−1), (1) est la décomposition de e j dans F⊥⊕F . Donc ε j = pF⊥ (e j )

et −
j−1∑
k=1

λkεk = pF (e j ).

De plus, ici (ε1, . . . ,ε j−1) est une base orthogonale de F , donc
(

ε1

‖ε1‖
, . . . ,

ε j−1∥∥ε j−1
∥∥

)
en est une b.o.n. et

pF (e j ) =
j−1∑
k=1

(
εk

‖εk‖
∣∣∣e j

)
εk

‖εk‖
=

j−1∑
k=1

(εk |e j )

‖εk‖2 εk , d’où l’expression des λk que l’on avait trouvé.

À savoir retrouver plutôt que de connaître par cœur :

■ Projection orthogonale sur une droite : D =Ra, où a 6= 0E . Alors
(

1
‖a‖ a

)
est une base orthonormée de D

et
pD : x 7→

(
1

‖a‖ a
∣∣x)(

1
‖a‖ a

)
= (a|x)

‖a‖2 a.

(Attention à ne pas oublier le ‖a‖2...)
■ Projection orthogonale sur un hyperplan : H = (Ra)⊥, où a 6= 0E .

pH : x 7→ x − (a|x)

‖a‖2 a.

Démonstration

Pour la projection sur un hyperplan, si on nomme D la droite Ra = H⊥, on a que E = H ⊥⊥⊥ D et

i dE = pH +pD = pH + (a|·)
‖a‖2 a. ■

Exemple
E 7 – Soit E =R3, P le plan d’équation cartésienne x − z = 0.

On note B = (e1,e2,e3) la base canonique de R3.
Quelle est la matrice dans B de pP ? Vecteur normal à P : (1,0,−1). Donc pour tout x ∈R3,

pP
(
(x, y, z)

)= (x, y, z)− (1,0,−1) · (x, y, z)

2
(1,0,−1) =

(
1

2
(x + z), y,

1

2
(x + z)

)
Donc pP (e1) = 1

2 (e1 +e3), pP (e2) = e2 et pP (e3) = 1
2 (e1 +e3), et

MatB(pP ) = 1

2


1 0 1

0 2 0

1 0 1

.
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Remarque

R 32 – Si B (qui peut être choisie orthonormale) est une base adaptée à la décomposition E = F ⊥⊥⊥ F⊥,

MatB(pF ) =


1

. . . (0)
1

0

(0)
. . .

0


où les p premiers vecteurs de B forment une base de F = Im(pF ) et nous donnent les p premières
colonnes avec des 1 sur la diagonale, et les n −p autres forment une base de F⊥ = Ker pF et nous
donnent les n −p dernières colonnes nulles.

Propriété 17 : Inégalité de Bessel

Soit E un espace préhilbertien, F un sous-espace vectoriel de E de dimension finie, pF la
projection orthogonale sur F . Alors

∀x ∈ E ,
∥∥pF (x)

∥∥⩽ ‖x‖

Démonstration

C’est le théorème de Pythagore : pF (x) ⊥ (x −pF (x)) donc

‖x‖2 = ∥∥pF (x)
∥∥2 +∥∥x −pF (x)

∥∥2 ⩾
∥∥pF (x)

∥∥2 .

■

b Symétries orthogonales (MPI)

Définition 17 : Symétrie orthogonale
Soit E un espace préhilbertien, F un sous-espace vectoriel de E de dimension finie.
On appelle symétrie orthogonales par rapport à F , notée sF , la symétrie par rapport à F ,

parallèlement à F⊥.
Si F est un hyperplan, on parle de réflexion.
Si F est une droite vectorielle, on parle de retournement.

Propriété 18 : des symétries orthogonales

(i) sF ∈L (E)

(ii) sF ◦ sF = idE

(iii) Ker(sF − idE ) = F

(iv) Ker(sF + idE ) = F⊥

(v) sF = 2pF − idE .

(vi) sF = pF −pF⊥

Exemple
E 8 – Symétrie orthogonale par rapport au plan P de l’exemple précédent.

Comme sP = 2pP − i dR3 , on obtient l’expression générale

sP
(
(x, y, z)

)= (
z, y, x

)
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Et alors MatB(sP ) = 2MatB(pP )− I3, donc

MatB(sP ) =


0 0 1

0 1 0

1 0 0

.

Remarque

R 33 – Si B (qui peut être choisie orthonormale) est une base adaptée à la décomposition E = F ⊥⊥⊥ F⊥,

MatB(sF ) =


1

. . . (0)
1 −1

(0)
. . .

−1


où les p premiers vecteurs de B forment une base de F = Ker(sF − i d) et nous donnent les p pre-
mières colonnes avecdes 1 sur la diagonale, et les n−p autres forment unebasede F⊥ = Ker(sF + i d)
et nous donnent les n −p dernières colonnes avec des −1 sur la diagonale.

À savoir retrouver :

■ Soient H est un hyperplan d’un espace euclidien E et a un vecteur non nul de H⊥.

∀x ∈ E , sH (x) = x −2
(x|a)

‖a‖2 a.

Démonstration

sH (x) = 2pH (x)−x = 2(x −pH⊥ (x))−x = x −2pH⊥ (x) ■

7 Distance à un sous-espace
On a vu que si F est un sous-espace vectoriel d’un espace préhilbertien réel E , alors, pour tout x ∈ E ,

d(x,F ) = inf
y∈F

d(x, y) = inf
y∈F

∥∥x − y
∥∥ .

Propriété 19 : Expression de la distance à un sevdf

Soit F est un sous-espace vectoriel de dimension finie d’un espace préhilbertien E , et x ∈ E .
Alors la distance de x à F est atteinte en le projeté orthogonal pF (x) de x sur F , et seulement

en ce vecteur :
d(x,F ) = d(x, pF (x)) = ∥∥x −pF (x)

∥∥
et si d(x,F ) = ∥∥x − y

∥∥ avec y ∈ F , alors y = pF (x).

De plus, si (e1, . . . ,ep ) est une base orthonormale de F ,

d(x,F )2 = ‖x‖2 −
p∑

k=1
(ek |x)2.

Si, enfin, F⊥ est aussi de dimension finie et (ep+1, . . . ,en) une base orthonormale de F⊥,

d(x,F )2 = ∥∥pF⊥(x)
∥∥2 =

n∑
k=p+1

(ek |x)2.
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Démonstration

Par théorème de Pythagore, si y ∈ F ,∥∥x −pF (x)+pF (x)− y
∥∥2 = ∥∥x −pF (x)

∥∥2 +∥∥pF (x)− y
∥∥2 .

Donc
∥∥pF (x)− y

∥∥⩽ ∥∥x − y
∥∥ avec égalité si et seulement si

∥∥pF (x)− y
∥∥= 0 c’est-à-dire y = pF (x).

De plus,
d(x,F )2 = ∥∥x −pF (x)

∥∥2 =
n∑

k=p+1
(ek |x −pF (x))2 =

n∑
k=p+1

(ek |x)2

car (ek |pF (x)) = 0 pour k ⩾ p +1. Et

d(x,F )2 = ∥∥x −pF (x)
∥∥2 = ‖x‖2 −∥∥pF (x)

∥∥2 = ‖x‖2 −
p∑

k=1
(ek |x)2

par théorème de Pythagore. ■

Méthode 1 : Détermination pratique de pF (x)

Plutôt que de calculer une b.o.n. de F (orthonormalisation de Gram-Schmidt), il peut être plus éco-
nomique d’écrire que pF (x) est le seul vecteur de y ∈ F tel que x − y ∈ F⊥.

Connaissant une base quelconque de F , on décompose y dans cette base et on traduit l’orthogo-
nalité de x − y à chaque vecteur de la base : autant d’équation que d’inconnues.

On résout et on trouve y = pF (x).

Remarque
R 34 – Si F n’est pas de dimension finie, cette distance n’est pas nécessairement atteinte. Ainsi, par

exemple, si E = C ([0,1],R) muni du produit scalaire canonique et si F est le sous-espace vec-
toriel des fonctions polynomiales, alors d(exp,F ) n’est pas atteinte car on peut montrer que

d

(
exp, x 7→

n∑
k=0

xk

k !

)
−−−−−→
n→+∞ 0 donc cette distance est nulle. Ainsi, dire qu’elle serait atteinte serait dire

que exp ∈ F ce qui est faux (trop de dérivées non nulles?).
On peut d’ailleurs montrer plus généralement, que si d(x,F ) est atteinte pour un y ∈ F , alors x−y ∈ F⊥
et on peut montrer que si F est le sous-espace vectoriel des fonctions polynomiales, F⊥ = {0}.

Exercice 8 : CCINP 81, 82

Corollaire 6 : Distance à un hyperplan

Soit E un espace euclidien, H un hyperplan de E de vecteur normal a : H = (Ra)⊥.
Alors, pour tout x ∈ E ,

d(x, H) = |(a|x)|
‖a‖ .

Si a1x1+·· ·+an xn = 0 est une équation de H dans une base orthonormale B de E et si (x1, . . . , xn)
sont les coordonnées de x dans cette base, alors

d(x, H) = |a1x1 +·· ·+an xn |√
a2

1 +·· ·+a2
n

.
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