u ESPACE PROBABILISE

Il Tribu
Définition 1 : Tribu

Soit Q un ensemble. On appelle tribu sur Q foute
partie o« de 22(Q) telle que
() geot
(i) Stabilité par passage au complémentaire
Acod = Acof
(i) Stabilité par réunion dénombrable : Si (4,), est
+00
une suite d’éléments de A, | J Ap e/
n=0
Le couple (Q,«f) est appelé espace probabili-
sable, et les éléments de < ses événements.

Le vocabulaire vu en premiere année reste valable :

m Si Ae o/, A est I'événement contraire (qui est bien un évé-
nement).

m L'événement o est appelé événement impossible.

m On dit que deux événements A et B sont incompatibles
lorsque AnB=g.

Ne pas confondre issue = résultat = réalisation avec événe-
ment!

Propriété 1 : des tribus

Une tribu est stable par réunion finie, par intersec-
tion dénombrable, par intersection finie.
Ainsi dit, si «¢ est une fribu sur Q,

() Qe
@i Si (Ap)pew €St une suite d’éléements de «,
+00
() An et
n=0
(iihy Si (An)ogngn €St une famille finie d’élements de
N N
oA, | JAn et et [ Ay et

n=0 n=0

E Probabilité

Définition 2 : Probabilité

Soit (Q,«/) un espace probabilisable. Une probabi-
lité (ou mesure de probabilité) sur (Q, <) est une appli-
cation IP définie sur «f telle que

() YAeo, TP(A) €]0,1] (=0 suffirait)

(i) P=1

(i) o-additivité : Si (A,),ew €st une suite d’évé-
nements deux a deux disjoints (incompatibles),

+00 +00
Ll An|= ) P(4p).

n=0 n=0

Y P(A,) converge et P

On dit alors que le triplet (Q,«/,P) est un espace
probabilisé.
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Probabilités

Propriété 2 : d’une probabilité

Soit (Q,<7,IP) un espace probabilise, A et B des
événements : A,Be .

() Pw@)=0.
(i Si A et B sont deux évenements incompatibles,
P(AuB)=1P(A) +IP(B).

N
=) P(Ap).
n=0
(i Si A= B, P(B\ A) =P(B)-1P(A).Si A et B sont quel-
conques, P(B\ A)=1P(B)-P(AnB).
(iV) PP(AuB)=1P(A)+IP(B)-IP(AnB)

(V) Croissance :si Ac B, P(A) < P(B).

N
Ll An

n=0

Plus généralement, P

Propriété 3 : Probabilité d’une réunion au plus dé-

nombrable

Si (A)jer est une famille au plus dénombrable
d’événements deux a deux incompatibles, alors

L]4:]|=> P@y.

(IP(A,-)) est sommable et P
i iel iel

i€

Définition 3 : Distribution de probabilités

Soit @ un ensemble. On appelle distribution de pro-
babilités sur Q toute famille d’éléments de R+ indexée
par Q et somme (finie) égale a 1.

On appelle support d'une telle distribution (py)
I'ensemble {we Q, py # 0}

weQ

Propriété 4 : Support au plus dénombrable

Le support d’une distribution de probabilités est
toujours au plus dénombrable.

Cas trés simple : univers fini

Si Q est fini, on prend généralement « = 2(Q), et la propriété

de o-addifivité est équivalente a la propriété

Si A et B sont deux événements disjoints, alors
P(AuB) =P(A) +P(B).

Propriété 5 : Probabilité finie associée a une distribu-

tion
SiQ={w,...,0on}, P est enfiecrement définie par la
donnée d'une distribution de probabilités (pw,; ) < ;< m

felle que pour fout i € [1,m], P ({w;}) = pw,. Et. pour
toute partie A de Q,

P(A)= )Y Ploh= Y po

weA weA

Les probabilités des événements élémentaires déter-
minent donc P.
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Propriété 8 : Continuité décroissante

n Cas simple : univers dénombrable Soit (An)pe UNE suite décroissante (pour I'inclu-

. s T , sion) d’évenements :
Ici, on garde la propriété de o-additivité, que I'on ne peut )

plus remplacer par la simple additivité.
Iciencore,iln’y a pas d’obstacle & prendre la tribu « discrete »,
c’est-a-dire 22(Q). On obtient : Alors

VnelN, Apy1c Ay

P(Ay)

P
00

+00
(1 An
n=0

k—+

Propriété 6 : Probabilité discréte associée a une dis-

tribution

Soit © un ensemble dénombrable. Pour toute dis-

tribution de probabilités (pw)weq. il existe une unique Corollaire 2: L_imite d’une probabilité d’'une intersec-
probabilité sur 2(Q) telle que tion
Yo eQ P = po Soit (Ap) ey UNE suite quelconque d’événements,
' alors .
spep.2 2 5a +00
Cette probabilité vérifie P () An | 1 4
n=0 k—+o0 n=0
VAe2(Q), PA=Y po
weA
Donc, encore une fois, P est définie de maniére unique par Inégalité de Boole

les probabilités des singletons. Pour un univers fini ou dénom-

brable, les tribus d’événements n‘ont donc pas grand intérét. Propriété 9 : Inégalité de Boole

Soit (An) e UNe suite quelconque d’évenements.
E . . . . Alors, dans [0, +ool.
Cas moins simple : univers non dénom-

.
brable P < fIP(An)

n=0

+00
U 4n
n=0

Dans le cas ou |'univers est infini indénombrable c’est plus
compliqué : on peut montrer que pour un firage & pile ou face
infini non dénombrable, modélisé par {0, 11N (non dénombrable
par argument diagonal de Cantor), la seule valeur possible
pour la probabilité d’un événement élémentaire est... 0. Négligeabilité

Pourquoi ? Intuitivement, si la probabilité d’obtenir un pile est
p €10,1[, alors la probabilité d’obtenir n piles de suite de va étre .
p" ———10... Donc, il est légitime de penser que I'événement Définition 4 : Evénement négligeable
«n‘obtenir que des piles » a une probabilité nulle, par exemple.

C’est donc moins simple, on en peut pas se conten-
ter des événements élémentaires, mais completement hors-

programme.

On dit gu'un événement A est négligeable
lorsque P(A) = 0.

Propriété 10 : Partie d’un événement négligeable

n Continuités croissante et décroissante , o )
Si A et B sont deux événements tel que A< B, si B

P s . est négligeable, A I’est.
Propriété 7 : Continuité croissante

Soit (Ap) e Une suite croissante (pour I’ inclusion)
d‘évenements : Propriété 11 : Réunion, intersection finie ou dénom-

brable

VnelN, AncAptl

Une reunion (respectivement infersection non
vide) finie ou denombrable d’événements négli-
geables est négligeable.

Alors
P(Ay)

+00
P(U An
n=0

k—+o00

Définition 5 : Evénement presque sir

Corollaire 1 : Limite d’une probabilité d’une réunion Un événement A est presque sir, ou presque cer-

Soit (An) nely UNe suite quelconque d’événements, tr]a]n,lllorsqgjle =, eS EiCevElrel O D A S
alors eglgedvie. = . ~ ;
k 16D Une propriété est dite presque sare lorsque I'en-
Pl U A p— P|U An semble des éléments de Q qui ont cette propriété est
n=0 oo n=0

un événement presque sar.
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Propriété 12 : Réunion, intersection au plus dénom-

brable

Toute réunion non vide (respectivement infersec-
tion) finie ou dénombrable d’événements presque
sars I'est encore.

m CONDITIONNEMENT

Les notions vues en premiere année se généralisent sans pro-
bléme particulier.

n Probabilité conditionnelle

Définition 6

Soit (Q,«/,P) un espace probabilis€, B un événe-
ment tel que P(B) > 0. Pour fout événement A€ o/, on
définit la probabilité conditionnelle de A sachant B
par
PP(AnB)

P(B)

(Se lit en général « probabilité de A sachant B »)

Pp(A) =P(AlB) =

Propriété 13 : Probabilité... conditionnée

Pg: Ae of — P(A|B) est une probabilité sur (Q, ).

... et donc toutes les propriétés des probabilités, toutes les for-
mules qui vont suivre peuvent étre appliquées a des probabilités
conditionnelles.

Lorsque que plusieurs conditions s’enchainent, il suffit de les
infersecter :

«IP(A|B|C) »=P¢(AIB) =IP(AIBN C).
Probabilités composées

Propriété 14 : Formule des probabilités composées

Soit n>2, Ay,..., A, des événements de I'espace
probabilisé (Q, «/,P) tels que P(Ajn---NnA,_1)>0.

P(A1n---nAp) =P(A1) xIP(Az | A)) x P(A3 | ApnAp)
x-xP(Ap | A1N-+-N Ap—1)

Probabilités totales

Définition 7 : Systeme complet et quasi-complet

d’événements

Soit (Q,«/,IP) un espace probabilis€, I un en-
semble fini ou dénombrable. On dit que la famille
(A;)ie; d’événements est un systéme complet d’éve-
nements lorsque

(i#)) = (AinAj=0) et 4=
iel
On dit que la famille (A;);e; d’événements est un
systéme quasi-complet d’événements lorsque
(i#)) = (AinAj=0) et Y Py =1

iel
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Propriété 15 : Formule des probabilités totales

Si (Aj);e; ot I est fini ou dénombrable est un
systeme complet ou quasi-complet d’événements,
alors pour tout événement B,

PB)=) PBNA)

iel
Si, de plus, pour fout i, IP(A;) >0 (A; n‘est pas né-
gligeable),

PB)=) PB|A)PA) =) P(A)P 4, (B).

iel iel
Si certains événements sont négligeables, alors les

Bn A; le seront aussi et il suffit de remplacer la somme
pour i€ I parilasomme pourie]={icl, P(A;)>0}.

n Formule de Bayes

Propriété 16 : Formule de Bayes

Si A,B sont des événements non négligeables,

alors
PB| A P(A)

P(B)
Si, de plus, A n’est pas négligeable,

P(A| B) =

P(B | A) P(A)
PB | A) IP(A)+1P[B | Z) IP(Z)'

P(A|B) =

Plus généralement, si (A));er (I fini ou dénom-
brable) est un systeme complet ou quasi-complet
d’événements non négligeables, on a

l Y P(B| APP(AR
kel

m EVENEMENTS INDEPENDANTS

n Couple d’événements indépendants

Définition 8 : Indépendance de deux événements

Deux événements A et B d’un espace probabilisé
@, «,IP) sont dits indépendants lorsque

P(AnB)=P(A) xIP(B).

On note A L B lorsque A et B sont indépendants.

Propriété 17 : Caractérisation par probabilités condi-

tionnelles

Deux événements A et B d’un espace probabi-
lisé (Q,«,IP) tels que P(B) > 0 sont indépendants si et
seulement siP(A | B) =P (A).
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Propriété 18 : Indépendance et complémentaire

Si deux événements A et B d’un espace probabi-
lise (Q,«/,P) sont indépendants, alors

m A et B sont indépendants,
m A et B sont indépendants,
m A ef B sont indépendants.

E Famille d’événements indépendants

Définition 9 : Evénements indépendants vs 2 & 2 indé-

pendants

Soit (A;);e; avec I fini ou dénombrable une famille
d’événements.

m Les A; sont dit deux & deux indépendants lorsque
pour fout i # j, A; et A; sonf indépendant, c’est-
a-dire que P(4; N Aj) = P(A)P(A)).

m Les A; sont dit indépendants, lorsque pour toute
partie finie non vide j de I,

=[1PAy.
ie]

P(mi

ie]

Propriété 19 :Indépendants =2a2 1L

Si les A; sont indépendants, alors ils sont deux &
deux indépendants.
La réciproque est fausse si n > 3.

Propriété 20 :Passages au complémentaire dans

indépendance

Siles événements A; pour i € I sont indépendants
et si pour fout i € I on pose B; = A; ou A;, alors les B;
sont indépendants.

m VARIABLES ALEATOIRES DISCRETES

On se donne une espace probabilisé (Q, <, P).

n Définition

Définition 10 : Variable aléatoire discréte

Soit E un ensemble quelconque. Une application
X : Q— E est appelée variable aléatoire discréte sur
Q, <, IP) lorsqu’elle vérifie
() X(Q) =ImX = {X(w),w € Q} € Z(E) est fini ou dénom-
brable.
(i) Pourtout xe X(Q), X 1({x) = {w e Q, X(w) = x} € o et
est noté (X = x).

Elle est dite réelle lorsque EcR.
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Propriété 21 : SCE associé a une variable aléatoire

((X = x)) est un systeme complet d’événe-
xeX(Q)

ments appelé systéme complet d’événements asso-
cié a x.

Propriété 22 :Les parties de X(Q) sont des événe-
ments

Soit X une variable aléatoire discrete sur (Q,«/,P).
Alors pour toute partie A de X(Q), (X € A) € «.

Propriété 23 : Une fonction d’'une v.a.d. est une v.a.d.

Si X : Q— E est une variable aléatoire discrete,
si f : E— F est une fonction (ou application) quel-
conque, alors fo X, notée f(X) est une variable aléa-
toire discréfe.

E Loi

On fixe X une variable aléatoire discréte sur (Q, «/,P).

Définition 11 : Loi d’une v.a.d.

L'application

PXQ) — R
X -
A — PXeA

est appelée loi de X.

- ep 2

Propriété 24 : La loi est une probabilité

P x est une probabilité sur l’espace probabilisable
(X@,2(x@)).

Propriété 25 : Expression de la loi de X

SiAe 2(X(Q).

Px(A)=) Pxdah=) P(X=a).

acA acA

Corollaire 3

La loi de X est uniquement déterminée par la dis-
tribution de probabilités (P (X = x)) xe x()-

Notation 1: ~

Si X et Y suivent la méme loi, on note X ~ Y.
Si X suit une loi &, on note X ~ £.
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Propriété 26 : Loi de f(X)

Laloide Y = f(X) est donnée par ¥ y € f(X(Q)),

P(Y=y)=P(f0)=p=P(Xef )= ¥ Px=».
x| f)=y

De la méme maniére, on obtient par exemple :

Propriété 27 : Loi d’'une somme, d’un produit

Si X et Y sont des variables aléatoires,

PX+Y=2= ) PX=xY=y)
X,y | x+y=z
et PXY=2= )Y PX=xY=y)

xy | xy=z

m FAMILLES DE VARIABLES ALEATOIRES

Soit (Q,«/,P) espace probabilisé.

n Définition et lois

n Couple de variables aléatoires discrétes

Les notions vues en premiére année se généralise sans pro-
bléme particulier.

Définition — Propriété 1
Soit X,Y variables aléatoires discrétes sur Q & va-
leurs dans E, E'. L'application

Q — ExEF
%8
0w — X(w),Yw)

est une variable aléatoire discrete appelée couple
Z=(X,Y).

Propriété 28 : SCE associé a un couple

Soit  (X,Y) un couple de variables aléa-
toires discrétes. Alors la famille d’événements
(X, Y) = (6 1)) (4 yyex(@x vy 5T Un systéme complet
d’événements appelé systtme complet d’événe-
ments associé au couple (X,Y).

n Loi conjointe

Définition 12 : Loi conjointe

Soit (X,Y) un couple de variable aléatoires dis-
crétes. On appelle loi conjointe de (X, Y) la loi Px,y)
de la variable aléatoire (X, Y).

VERSION DU 22 JANVIER 2026

s g
Lois marginales

Définition 13 : Lois marginales

Si (X,Y) est un couple de variables aléatoires dis-
crétes, les lois de X et de Y sont appelées premiére et
seconde lois marginales du couple.

Propriété 29 :Loi conjointe détermine lois margi-

nales

La loi conjointe de (X,Y) détermine les lois margi-
nales de (X,Y) mais la réciproque est fausse.

n Lois conditionnelles

Définition 14 : Loi conditionnelle

Soit (X,Y) un couple de variables aléatoires dis-
cretes. Pour tout x € X(Q) tel que P(X = x) # 0, la loi
conditionnelle de Y sachant (X = x) estlaloide Y pour
la probabilité conditionnelle Px=y,.

Elle est donc déterminée par, pour tout ye Y (Q),

PX=x,Y=y

P =yIX=x=—Fx—%

E Extension aux n-uplets

Définition 15 : n-uplets de variables aléatoires

Soit (Xi,...,X,) un n-uplet de variables aléatoires
discretes. C’est encore une variable aléatoire discréte
appelé vecteur aléatoire discret de dimension n.

La loi conjointe de (X;,...,X;) est déterminée par
les P(X; = x1,..., Xn = xp) OU pour tout i, x; € X;(Q).

Les lois de Xj,..., X, sont les lois marginales de
(X1,...,Xn).

Définition 16 : Loi conditionnelle pour » variables

Si Tl pooon Zp=il sont fixés, tel que
PX; = x1,...,.Xp-1 = x5,-1) > 0, la loi conditionnelle
de X, sachant (X = x1,...,X;,-1 = x,—1) est détermi-
née par

P(Xn=xn| X1 =x1,...,X0-1=Xp-1)
_ PX1=x1,...,Xn=xp)
P(X;=x1,...,Xp-1=%Xp-1)

pour tout x;.
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Indépendance

n Cas d’un couple de variable

Définition 17 : Indépendance

Soient X,Y deux variables aléatoires discretes sur
I'espace probabilisé (Q,«,P).

X et v sont dites indépendantes si pour fout
(A,B) € 2(X(Q)) x 2(Y (), les événements (X € A) et
(Y € B) sont indépendants, c’est-a-dire

P(XeAYeB) =P XeA) P(Y €B).

On note parfois X L Y.

Propriété 30 : Caractérisation par des événements

élémentaires

X et Y sont indépendantes si et seulement si pour
fout (x,y) € X(Q) x Y(Q), (X =x) et (Y = y) sont indépen-
dants, c’est-a-dire

PX=xY=y)=PX=x) P(Y=y).

Propriété 31 : Caractérisation par les lois condition-
nelles

Soit (X,Y) couple de variables aléatoires. Il y a
équivalence entre

() Les variables aléatoires X et Y sont indépen-
dantes.

(i Pour fout y e Y(Q) fel que P(Y = y) >0, la loi de X
sachant (Y = y) estla méme que la loi de X.

(i) Pour fout x € X(Q) tel que P(X =x) >0, la loi de Y
sachant (X = x) estla méme que la loide Y.

Propriété 32 : Fonctions de variables aléatoires indé-

pendantes

Si X,Y sont des variables aléatoires indépen-
dantes, f,g définies sur X(Q) et Y (Q) respectivement,
alors f(X) et g(Y) sont indépendantes.

n Variables aléatoires indépendantes

Définition 18 : Variables aléatoires indépendantes

Des variables aléatoires discretes Xj,..., X, sont
dites indépendantes lorsque pour toutes parties A; de
X1(Q), ..., Ay, de X, (Q), les événements (X € A7), ...,
(X, € Ap) le sont.

Une suite (X;) ey de variables aléatoires discretes
est dite une suite de variables aléatoire indépen-
dantes lorsque pour fout ne N, X;,..., X, le sont.

Si, de plus, elles ont méme loi, on dit que ce
sont des variables aléatoires indépendantes identi-
quement distribuées (vaiid).
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Propriété 33 : Caractérisation par des événements

élémentaires

Xi,..., X, sont indépendantes si et seulement si
pourfout (x1,...,x,) € X1 (Q) x---x X, (Q), les événements
(X1 =x1), ... (X5, =xp) lesont.

Propriété 34 : Fonctions de variables aléatoires indé-

pendantes

Si (Xn) new €5t une famille de variables aléatoires in-
dépendantes, pour fout ne N, f, définie X, (Q), alors
(fnXm) e €5t une famille de variables aléatoires in-
dépendantes.

Propriété 35 : Lemme des coalitions

Soit nnme N fels que 0 < m < n, X1,...,Xm,...,Xn
des variables aléatoires discrétes indépendantes sur
(Q,«,P), f définie sur X1 (Q) x---x X;,(Q) et g définie sur
Xm+1(Q) x -+ x X, (Q).

Alors f(Xy,...,Xm) et gXm+1,..., Xn) sSont indépen-
dantes.

Le résultat s’étend & plus de deux coalitions.

Théoréme 1

Soit (£n) e Une suite de lois de probabilites dis-
créfes.

Il existe un espace probabilisé (Q, «/,P) et une suite
(Xn)new de variables aléatoires discrétfes indépen-
danftes sur (Q,«/,P) tels que pour tout ne N, X, ~ %.

m LoIs USUELLES

n Loi Uniforme

Définition 19 : Loi uniforme

On dit que qu’une variable aléatoire finie X suif
une loi uniforme lorsque pour fout x € X(Q),

1
Px(xh=PX=x = .

ou n = |X(Q)|, c'est-G-dire que pour tout A c X(Q),
A
Px(A) = l—nl

On note alors X ~%(n).

E Loi de Bernoulli

Définition 20 : Loi de Bernoulli

On dit que X suit une loi de Bernoulli de para-
meétre p € [0,1] lorsque X est & valeurs dans E = {0,1},
PX=D=petPX=0=qg=1-p.

On note alors X ~ %(p).
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Situation type : Variable aléatoire étudiant le succes (1) d'un
événement donné ou son échec (0).

Propriété 36 : Ce sont les fonctions indicatrices

Les variables aléatoires qui suivent une loi de Ber-
noulli de parametre p sont exactement les fonctions
indicatrices des parties F de Q felles que P(F) = p.

Loi binomiale

Définition 21 : Loi binomiale

On dit que X suit une loi binomiale de parameétre
(n,p) ou p € [0,1] lorsque X est & valeurs dans [0, n] et
pour tout k€ [0, n].

P(X=k) = (Z)pk(l -p)" k= (n)pkq"k

k

avec g=1-p. On note alors X ~ %B(n, p).

Situation type : Nombre de succés dans la répétition de n
expériences de Bernoulli indépendantes.

n Loi géométrique

Définition 22 : Loi géométrique

Soit p €]0,1[ et X une variable aléatoire discrete. On
dit que X suit une loi géomeétrique de parameétre p si

X est & valeurs et

VneN*, P(X=n)=pl-p" L

On note X ~¥4(p).

H Loi de Poisson

Définition 23 : Loi de Poisson

Soit A e R} et X une variable aléatoire discréte. On
dit que X suit une loi de Poisson de parameétre A si X

est & valeurs| dans IN | et
n

A
VnelN, P(X=n)= ?e‘l.

On note X ~22(A).

ﬂ Propriétés des lois usuelles

n Somme de r vaiid de Bernoulli

Propriété 37 : Importante!

Si Xy,..., X, vaiid de loi %(p), alors

X1+...+ Xy ~%B(n,p).
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n Approximation d’une loi de Poisson par des
lois binomiales

Propriété 38 : Approximation d’une loi de Poisson par

des lois binomiales

Soit >0, (pn)n €10, 1[N tel que np, — A, (Xn)n Une
suite de variables aléatoires discrétes réelles.
On suppose que pour tout ne N, X, ~ B(n, pn).
k

A
Alors, pour tout ke N, P(X,, = k) —— ~—e™ .
n—+oo k!

m ESPERANCE

On fixe ici un espace probabilisé (Q, <7, P).

n Définition

Définition 24 : Espérance d’une variable aléatoire dis-

créte réelle positive

Soit X une variable aléatoire discréte & valeurs
dans R U {+oo}.
L'espérance de X est, par définition, dans [0, +oo],

EX)= ) PX=xx
xeX(Q)

On a donc E(X) € Ru{+oco} suivant la sommabilité
ou non de la famille réelle positive (IP(X = x)x) xex(Q)-

Lorsque cette famille est sommable, X est dite
d’espérance finie E(X) e R et on note X e L!.

Propriété 39 : Cas d’une variable aléatoire entiére

Soit X une variable aléatoire & valeurs dans
IN U {+o0}. Alors

+00 +00
EX)=) PX=nm=) PX>n)

n=1 n=0

Définition 25 : Espérance d’une variable aléatoire dis-

créte réelle ou complexe

Soit X une variable aléatoire réelle ou complexe
discrete.

Lorsque la famille (IP(X = x) x) xex(q) €St sommable,
on dit que X est d’espérance finie, on note X e L! et
on définit son espérance

EX)= ) PX=xx
X€X(Q)

Dans le cas contraire, X n'a pas d’espérance (pas
plus infinie que finie)

Lorsque X est d’espérance finie et [E(X) =0, X est
dite centrée.
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E Théoreme de transfert

Théoréme 2 : de transfert

Soit X un variable aléatoire discréte, f une fonc-
tion définie sur X(Q), & valeurs complexes.

f(X) est d’espérance finie si et seulement si la fa-
mille (P(X = x) f(x)cxq €St sommable, et dans ce
cas

E(fe0)= ) PX=x[f(x.
xeX(Q)

Corollaire 4 : Espérance du module

X a une espérance finie si et seulement si |X| a
une espérance finie.
Le cas échéant, E(X))= Y P(X=x)lx.
xeX(Q)

Corollaire 5 : Sur un univers fini ou dénombrable

Uniquement dans le cas ot Q est fini ou dénom-
brable, X est d’espérance finie si et seulement si
(IP({w})X (w)) o est sommable et dans ce cas

wE

EX) = Y P({o)X().

weQ

Propriétés de I'espérance

Une espérance peut étre vue comme une intégrale, ce qui
rend toutes ces propriétés naturelles.

Propriété 40 : de I'espérance
X et Y désignent deux variables aléatoires réelles
ou complexes discrétes.

() Si X est constante presque sGrement, c’est-a-dire
quon aacXK tel que P(X = a) =1, alors elle est
d’espérance finie E(X) = a.

(i Linéarité :siX,YeL' et AeK, X+AY e L! et
EX+AY) =EX) + AEY).

(iii)y Positivité : si X € L' est & valeurs réelles, positive
presque sirement ie P(X > 0) = 1, alors TE(X) > 0.

Positivité améliorée : si X est & valeurs réelles, po-
sitive presque sdrement et si X est nulle presque
sarement.

(iv) Croissance :si X,Y € L' sont & valeurs réelles et si
X <Y presque sirement, alors E(X) < E(Y).

(v) SixelLl, X-TE(X) est centrée et appelée variable
aléatoire centrée associée & X.

(vi) Inégalité triangulaire : Si X € L', | X| e L' et
EO < EAX]).

(viy Si'Y e L et |X1< Y, adlors Xe L! et [EX)| <E(Y).

En particulier, si X est bornée, elle est d’espé-
rance finie.
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Corollaire 6 : Espace vectoriel L1

L'ensemble L' des variables aléatoires discrétes
sur (Q,«/,IP) admettant une espérance finie est donc
un K-espace vectoriel et X — E(X) est une forme li-
néaire sur L1,

n Espérances des lois usuelles

Propriété 41 : Espérance des lois usuelles

(i Si X ~ B(p), alors
EX) = p.

ziiy Si X ~ 4(p). alors
EX) = l.
p

(i) Si X ~ %B(n,p), alors
EX) =np.

(iv) Si X ~ 22(A), alors
EX) =A.

Corollaire 7 : Cas d’une fonction indicatrice

Soit A un événement de notre tribu «¢. Alors 1 4, a
une espéerance finie et B(1 4) = P(A).

H Espérance et indépendance

Propriété 42 : Espérance et indépendance

Soit X, Y € L! indépendantes. Alors XY € L, et
EXY)=EXEYY).

Réciproque fausse en genéral.
Plus généralement, si (X,...,Xn) est une famille
de variables aléatoires indépendantes d’espérance

n
finie, alors || X; I'est et
i=1

i

E(lﬁ[lxi) _ le(X,-).

m VARIANCE, ECART-TYPE ET COVARIANCE

On fixe ici un espace probabilisé (Q, <, P). Les variables aléa-

toires considérées sont & valeurs réelles.

n Espace 12

Notation 2: 2

Soit X une variable aléatoire réelle discrete.

On note X € I? lorsque X2 est d’espérance finie
(ce qu’on peut noter IE(X?) < +oo car X? est & valeurs
réelles positives).
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Propriété 43 : Inégalité de Cauchy-Schwarz

Si deux variables aléatoires réelles discrétfes
X,Y €2, leur produit Xy e L', et

EXY)? <E(X?)E(v?)
avec égalité si et seulement si X et Y sont coli-

néaires presque strement, c’est-a-dire lorsqu’il existe
A, w #(0,0) tel fel que P(AX +uY =0) = 1.

Corollaire 8

L2 est un R-espace vectoriel.

Propriété 44 : 12!

Sixel? xelLl,

E Variance et écart-type

Définition 26 : Variance, écart-type, variable réduite

Soit X € 12,
On appelle variance de X le nombre

V(X) = IE((X—E(X))Z).
On appelle écart-type de X le nombre

o(X) =V VX) =/E(X-EX))?).

Lorsque V(X) =1, X est dite réduite.

Propriété 45 : de la variance

Soit X € I?,
() Formule de Koenig-Huygens :

VX) = E(XZJ ~EX)2.

(i S ab € R, V@X + b = a*V(x donc
o(aX +Db) =lalo(X).
(ziihy Sio(X) #0, wem‘ centrée réduite, appelée

o(X)
variable aléafoire centrée réduite associée & X.

Covariance

Définition 27 : Covariance

Soit (X,Y) e (LZ)2 un couple de variables aléatoires
réelles discretes admettant un moment d’ordre 2.

On appelle covariance du couple (X,Y) le
nombre

Cov(X, Y) = B((X - EX) (Y - E(V)).

Lorsque Cov(X,Y) =0, X et Y sont dites non corré-
lées.
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Propriété 46 : de la covariance

Soient X, Y € I? deux variables aléatoires réelles
discréfe admettant un moment d’ordre 2.

() Cov est une forme bilinéaire symétrique positive.
(i Formule de Koenig-Huygens :

Cov(X,Y) = E(XY) - E(X)E(Y).
(i) V(X+Y)=V(X)+2Cov(X,Y)+V(Y).

(iv) SiX 1LY, Cov(X,Y)=0 et la réciproque est fausse.
(v) Inégaiité de Cauchy-Schwarz :

(Cov(X, Y)* < VOOV(Y) ie |Cov(X, V)| <a(X)a(Y)

avec egalité si et seulement si les variables aléa-
tfoires sont colinéaires presque sirement.

n Variance d’une somme de variables
aléatoires

Propriété 47 : Variance d’une somme

Soient X1,..., X, € L2,
() Xi+--+X,el?et

n
VX ++X) =Y VXp+2 Y cOv(x,-,xj].
i=1 1<i<j<n

@in Si Xy,...,X, sont décorrélées deux a deux
(i#j=Cov(X;, Xj)=0),

VX1+-+Xp)=V(Xy) +---+ V(Xp).
En particulier, si X,..., X, sont des vaiid,

V(X1 +:--+Xp) =nV(X).

H Cas des lois usuelles

Propriété 48 : Espérance et variance des lois usuelles

() SiX~RBp), BX)=p et V(X)=p-p)=pq.
(i SiX~%Bn,p)., EX)=npetV(X)=np(l-p)=npq.
(i) SiX~9(p), BX) == et Voo =L =1
p P> p
(iv) SiXx~2), EX)=V(X)=A.

m INEGALITES DE MARKOV ET DE BIENAYME-

TCHEBYCHEV, LOI FAIBLE DES GRANDS
NOMBRES

Propriété 49 : Inégalité de Markov

Soit X € L' une variable aléatoire discréte admet-
tant une espérance finie. Pour fout a >0,

PlXIZ2a < ]E(IaXI).

PROBABILITES - PAGE @ SUR ??



y LyCEE LECONTE DE LISLE — LA REUNION

Propriété 50 : Inégalité de Bienaymé-Tchebychev

Soit X € 1?2 une variable aléatoire réelle discréte
admettant un moment d’ordre 2, a > 0.

V(X)

P(X-EX|>a)< —5
a

c’est-a-dire, en notant m I'espérance de X et o
son écart-type,

2

g
P(X-mlza)<—
a

Théoréme 3 : Loi faible des grands nombres

Soit (Xp)p>1 € (Lz)lN* une suite de variable aléa-
toires discrétes réelles deux & deux indépendantes
identiquement distribuées (de méme loi) sur (Q,«/,1P),
admettant un moment d‘ordre 2. Soit m I’'espérance
de X, ef o son écart-type.

On pose enfin Sy = X1 +-+- + Xj,.

Pour fout € >0,

0.

ﬁ—m 25)

IP(n

n—+oo

m FONCTIONS GENERATRICES

Dans cette partie, les variables aléatoires sont & va-
leurs dans IN.

n Définition

Définition 28 : Fonction génératrice

Soit X variable aléatoire discréte sur (Q, «,1P) & va-
leurs dans IN.
On appelle fonction génératrice associée a X la

+00
fonction Gx:t— ) P(X=n)t".
n=0

Propriété 51 : des fonctions génératrices

() Le rayon de convergence de la série entiére
Y P(X=n1i" est au moins égal & l.et elle
converge normalement sur [-1,1].

(i) Pour fout te [-1,1], Gx (8 = E(X).

(i) Gx est continue sur [-1,1], de classe €*° sur]-1,1]

GY ()
et pourtout nelN, P(X =n) = T

Corollaire 9 : Caractérisation de la loi

Deux variables aléatoires X,Y & valeurs dans IN
ont méme loi si et seulement si elles ont méme fonc-
tion génératrice.
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Propriété 52 : Lien avec I'espérance et la variance

() X eL! (estd’espérance finie) si et seulement si Gx
est dérivable est 1 et alors E(X) = G (1).

(i X e L? si et seulement si Gx est deux fois dérivable
est 1 et alors E(X(X - 1)) = Gy (1).
On exprime alors V(X) & I’aide de G, (1) et G (1).

Loi de Bernoulli %(p) :

‘GX(t):q+pt:1—p+pt‘

définie sur R, ce qui redonne bien E(X) = p et V(X) = pgq.

n
Loi binomiale %(n,p): Gx(1) =Y
k=0

Z)pkq”’ktk donc

Gx()=(q+pd"=0Q-p+pn)"

définie sur R, ce qui redonne bien E(X) = np et V(X) = npgq.

+00
Loi géométrique 9(p): Gx()= Y pg™ 't" donc
k=1

pt_ _ pt

Gx(H) = =P
X0 = T T a—

définie sur ]—é%[ ce qui redonne bien E(X) = % et

p
V(X) = 4.
qZ
too an
Loi de Poisson 22(1) : Gx(1)= Y. ;e”l " donc
k=0 ™

Gx (1) =MD

définie sur R, ce qui redonne bien E(X) =V(X) = A.

H Somme des variables aléatoires

Propriété 53 : Fonction génératrice d’'une somme

Soient Xi,..., X, des variables aléatoires discretes
indépendantes a valeurs dans IN. Alors

n
Gxy+t X, = 1_[ Gx;-
i=1

Applications

m On refrouve la fonction génératrice d’une loi binomiale &
partir de la somme de n vaiid de loi de Bernoulli.

m Une somme de variables aléatoires de loi de Poisson 2(1;)
est encore de loi de Poisson de parameétre la somme des
Ai.

® Une somme de variables aléatoires de loi B(n;, p) indépen-
dantes est de loi B3 n;, p)
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m Continuités croissante et décroissante

m Si (An) hew UNe suite croissante (pour I'inclusion)
FORMULAIRE

+00
PA P A
Sous réserve d’existence, sommabilité, d’admission de mo- (Ar) k—+o00 (,ll‘;Jo n)

ments, etc. Voici les principales formules du chapitre.

Si (An) hew UNe suite décroissante (pour I'inclusion)

m loi de X Py:A— ) P(X=x) déferminée par les

+00
xeA P(Ag) P| () An
P(X = x) pour x € X(Q), positifs de somme 1. k=00 \n=0
Espérance de X| E(X) = PXx= etsi Qfiniou
P X0 xe;gm (X=0x m Inégalité de Markov Sia>0, P(X|>a) < E(LXD.
dénombrable  E(X) = ZQIP({“’})X(‘U) et si X(Q) = N, m Inégalité de Bienaymé-Tchebychev Si a >0, m = E(X)
WE.
2
too eto=0(X)=VVX. PUX-ml>a)< 2
EX)=) PX>n). a
=1
? m Loi faible des grands nombres Si € > 0, (X;;) une suite
a Formule de transfert de vaiid I? d’espérance m, alors
Efx)= Y PX=xf() IP( L PR e)
= =X X). - - =
xeX(Q) n e
m Inégalité de Cauchy-Schwarz Si X,v € 2, alors
m Variancede X V(X) = E((X-E(X)?) = E(X?)- EX)2. XyelLl et
m Covariance de X et v (EXY)* <E(X?*)E(Y?) ICovX, VIS VOV (V)
Cov(X,Y) = E(X - EX) (Y - E(Y)) = E(XY) - ECOE(Y) avec égalité si et seulement si X et Y sont colinéaires

presque strement.

nulle si indépendantes.

m Variance d’une somme

VX+Y)=V(X)+2Cov(X,Y)+ V(Y).

m Loi de Bernoulli %(p)
PX=1)=p PX=0=1-p=q EX)=p VX)=pg Gx()=qg+pt
m Loi binomiale %(n, p)

Vke[o,n], 1P(X=k)=(Z)pkq”‘k EX)=np VX =npg Gx®)=(q+pd"

m Loi géométrique ¥ (p)

q
—_ GX =

pelo, 1l  VneN*, P(X=n)=pg"! E(X):% VX)) =

m Loi de Poisson 22(1)

n

A>0 VnelN, IP(X:n):%e_’l EX)=A VX)) =4  Gx(n=erD
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