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Probabilités

I ESPACE PROBABILISÉ

1 Tribu

Définition 1 : Tribu
Soit Ω un ensemble. On appelle tribu sur Ω toute

partie A de P (Ω) telle que
(i) ∅ ∈A

(ii) Stabilité par passage au complémentaire :
A ∈A =⇒ A ∈A

(iii) Stabilité par réunion dénombrable : Si (An )n est

une suite d’éléments de A,
+∞⋃
n=0

An ∈A

Le couple (Ω,A ) est appelé espace probabili-
sable, et les éléments de A ses événements.

Le vocabulaire vu en première année reste valable :
■ Si A ∈ A , A est l’événement contraire (qui est bien un évé-

nement).
■ L’événement ∅ est appelé événement impossible.
■ On dit que deux événements A et B sont incompatibles

lorsque A∩B =∅.

Ne pas confondre issue = résultat = réalisation avec événe-
ment !

Propriété 1 : des tribus

Une tribu est stable par réunion finie, par intersec-
tion dénombrable, par intersection finie.

Ainsi dit, si A est une tribu sur Ω,
(i) Ω ∈A

(ii) Si (An )n∈N est une suite d’éléments de A ,
+∞⋂
n=0

An ∈A

(iii) Si (An )0⩽n⩽N est une famille finie d’éléments de

A ,
N⋃

n=0
An ∈A et

N⋂
n=0

An ∈A

2 Probabilité

Définition 2 : Probabilité
Soit (Ω,A ) un espace probabilisable. Une probabi-

lité (oumesure de probabilité) sur (Ω,A ) est une appli-
cation P définie sur A telle que
(i) ∀A ∈A , P(A) ∈ [0,1] (⩾ 0 suffirait)
(ii) P(Ω) = 1

(iii) σ-additivité : Si (An )n∈N est une suite d’évé-
nements deux à deux disjoints (incompatibles),∑

P(An ) converge et P
(+∞⊔

n=0
An

)
=

+∞∑
n=0

P(An ).

On dit alors que le triplet (Ω,A ,P) est un espace
probabilisé.

Propriété 2 : d’une probabilité

Soit (Ω,A ,P) un espace probabilisé, A et B des
événements : A,B ∈A .
(i) P(∅) = 0.
(ii) Si A et B sont deux événements incompatibles,

P(AtB) =P(A)+P(B).

Plus généralement, P
(

N⊔
n=0

An

)
=

N∑
n=0

P(An ).

(iii) Si A ⊂ B , P(B \ A) =P(B)−P(A).Si A et B sont quel-
conques, P(B \ A) =P(B)−P(A∩B).

(iv) P(A∪B) =P(A)+P(B)−P(A∩B)

(v) Croissance : si A ⊂ B , P(A)⩽P(B).

Propriété 3 : Probabilité d’une réunion au plus dé-
nombrable

Si (Ai )i∈I est une famille au plus dénombrable
d’événements deux à deux incompatibles, alors(
P(Ai )

)
i∈I

est sommable et P
(⊔

i∈I
Ai

)
= ∑

i∈I
P(Ai ).

Définition 3 : Distribution de probabilités

SoitΩ un ensemble.Onappelledistribution de pro-
babilités surΩ toute famille d’éléments deR+ indexée
par Ω et somme (finie) égale à 1.

On appelle supportd’une telle distribution
(
pω

)
ω∈Ω

l’ensemble {ω ∈Ω, pω 6= 0}.

Propriété 4 : Support au plus dénombrable

Le support d’une distribution de probabilités est
toujours au plus dénombrable.

3 Cas très simple : univers fini
Si Ω est fini, on prend généralement A =P (Ω), et la propriété

de σ-additivité est équivalente à la propriété
Si A et B sont deux événements disjoints, alors

P(AtB) =P(A)+P(B).

Propriété 5 : Probabilité finie associée à une distribu-
tion

Si Ω= {ω1, . . . ,ωm }, P est entièrement définie par la
donnée d’une distribution de probabilités

(
pωi

)
1⩽i⩽m

telle que pour tout i ∈ J1,mK, P({
ωi

}) = pωi . Et, pour
toute partie A de Ω,

P(A) = ∑
ω∈A

P({ω}) = ∑
ω∈A

pω

Les probabilités des événements élémentaires déter-
minent donc P.
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4 Cas simple : univers dénombrable
Ici, on garde la propriété de σ-additivité, que l’on ne peut

plus remplacer par la simple additivité.
Ici encore, il n’y a pas d’obstacle à prendre la tribu «discrète »,

c’est-à-dire P (Ω). On obtient :

Propriété 6 : Probabilité discrète associée à une dis-
tribution

Soit Ω un ensemble dénombrable. Pour toute dis-
tribution de probabilités (pω)ω∈Ω, il existe une unique
probabilité sur P (Ω) telle que

∀ω ∈Ω, P({ω}) = pω

Cette probabilité vérifie

∀A ∈P (Ω), P(A) = ∑
ω∈A

pω

Donc, encore une fois, P est définie de manière unique par
les probabilités des singletons. Pour un univers fini ou dénom-
brable, les tribus d’évènements n’ont donc pas grand intérêt.

5 Cas moins simple : univers non dénom-
brable

Dans le cas où l’univers est infini indénombrable c’est plus
compliqué : on peut montrer que pour un tirage à pile ou face
infini non dénombrable, modélisé par {0,1}N (non dénombrable
par argument diagonal de Cantor), la seule valeur possible
pour la probabilité d’un événement élémentaire est... 0.
Pourquoi? Intuitivement, si la probabilité d’obtenir un pile est

p ∈]0,1[, alors la probabilité d’obtenir n piles de suite de va être
pn −−−−−−→

n→+∞ 0... Donc, il est légitime de penser que l’événement
« n’obtenir que des piles » a une probabilité nulle, par exemple.

C’est donc moins simple, on en peut pas se conten-
ter des événements élémentaires, mais complètement hors-
programme.

6 Continuités croissante et décroissante

Propriété 7 : Continuité croissante

Soit (An )n∈N une suite croissante (pour l’inclusion)
d’événements :

∀n ∈N, An ⊂ An+1

Alors
P(Ak ) −−−−−→

k→+∞
P

(+∞⋃
n=0

An

)

Corollaire 1 : Limite d’une probabilité d’une réunion

Soit (An )n∈N une suite quelconque d’événements,
alors

P

(
k⋃

n=0
An

)
−−−−−→
k→+∞

P

(+∞⋃
n=0

An

)

Propriété 8 : Continuité décroissante

Soit (An )n∈N une suite décroissante (pour l’inclu-
sion) d’événements :

∀n ∈N, An+1 ⊂ An

Alors
P(Ak ) −−−−−→

k→+∞
P

(+∞⋂
n=0

An

)

Corollaire 2 : Limite d’une probabilité d’une intersec-
tion

Soit (An )n∈N une suite quelconque d’événements,
alors

P

(
k⋂

n=0
An

)
−−−−−→
k→+∞

P

(+∞⋂
n=0

An

)

7 Inégalité de Boole

Propriété 9 : Inégalité de Boole

Soit (An )n∈N une suite quelconque d’événements.
Alors, dans [0,+∞],

P

(+∞⋃
n=0

An

)
⩽

+∞∑
n=0

P(An )

8 Négligeabilité

Définition 4 : Événement négligeable

On dit qu’un événement A est négligeable
lorsque P(A) = 0.

Propriété 10 : Partie d’un événement négligeable

Si A et B sont deux événements tel que A ⊂ B , si B
est négligeable, A l’est.

Propriété 11 : Réunion, intersection finie ou dénom-
brable

Une réunion (respectivement intersection non
vide) finie ou dénombrable d’événements négli-
geables est négligeable.

Définition 5 : Événement presque sûr

Un événement A est presque sûr, ou presque cer-
tain, lorsque P(A) = 1, ce qui équivaut à dire que A est
négligeable.

Une propriété est dite presque sûre lorsque l’en-
semble des éléments de Ω qui ont cette propriété est
un événement presque sûr.
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Propriété 12 : Réunion, intersection au plus dénom-
brable

Toute réunion non vide (respectivement intersec-
tion) finie ou dénombrable d’événements presque
sûrs l’est encore.

II CONDITIONNEMENT
Les notions vues en première année se généralisent sans pro-

blème particulier.

1 Probabilité conditionnelle

Définition 6
Soit (Ω,A ,P) un espace probabilisé, B un événe-

ment tel que P(B) > 0. Pour tout événement A ∈A , on
définit la probabilité conditionnelle de A sachant B
par

PB (A) =P(A|B) = P(A∩B)

P(B)

(Se lit en général « probabilité de A sachant B »)

Propriété 13 : Probabilité... conditionnée

PB : A ∈A 7→P(A|B) est une probabilité sur (Ω,A ).

... et donc toutes les propriétés des probabilités, toutes les for-
mules qui vont suivre peuvent être appliquées à des probabilités
conditionnelles.
Lorsque que plusieurs conditions s’enchaînent, il suffit de les

intersecter :
«P(A|B |C ) »=PC (A|B) =P(A|B ∩C ).

2 Probabilités composées

Propriété 14 : Formule des probabilités composées

Soit n ⩾ 2, A1, . . . , An des événements de l’espace
probabilisé (Ω,A ,P) tels que P(A1 ∩·· ·∩ An−1) > 0.

P(A1 ∩·· ·∩ An ) =P(A1)×P(A2 | A1)×P(A3 | A1 ∩ A2)

×·· ·×P(An | A1 ∩·· ·∩ An−1)

3 Probabilités totales

Définition 7 : Système complet et quasi-complet
d’événements

Soit (Ω,A ,P) un espace probabilisé, I un en-
semble fini ou dénombrable. On dit que la famille
(Ai )i∈I d’événements est un système complet d’évè-
nements lorsque

(i 6= j ) =⇒ (
Ai ∩ A j =∅

)
et

⊔
i∈I

Ai =Ω

On dit que la famille (Ai )i∈I d’événements est un
système quasi-complet d’évènements lorsque

(i 6= j ) =⇒ (
Ai ∩ A j =∅

)
et

∑
i∈I

P(Ai ) = 1

Propriété 15 : Formule des probabilités totales

Si
(

Ai
)

i∈I où I est fini ou dénombrable est un
système complet ou quasi-complet d’événements,
alors pour tout événement B ,

P(B) = ∑
i∈I

P(B ∩ Ai )

Si, de plus, pour tout i , P(Ai ) > 0 (Ai n’est pas né-
gligeable),

P(B) = ∑
i∈I

P(B | Ai )P(Ai ) = ∑
i∈I

P(Ai )PAi (B).

Si certains événements sont négligeables, alors les
B ∩Ai le seront aussi et il suffit de remplacer la somme
pour i ∈ I par la somme pour i ∈ J = {i ∈ I , P(Ai ) > 0}.

4 Formule de Bayes

Propriété 16 : Formule de Bayes

Si A,B sont des événements non négligeables,
alors

P(A | B) = P(B | A) P(A)

P(B)
.

Si, de plus, A n’est pas négligeable,

P(A | B) = P(B | A) P(A)

P(B | A) P(A)+P
(
B | A

)
P

(
A

) .

Plus généralement, si (Ai )i∈I (I fini ou dénom-
brable) est un système complet ou quasi-complet
d’événements non négligeables, on a

∀i ∈ I P(Ai | B) = P(B | Ai ) P(Ai )∑
k∈I

P(B | Ak )P(Ak )
.

III ÉVÉNEMENTS INDÉPENDANTS

1 Couple d’événements indépendants

Définition 8 : Indépendance de deux événements

Deux événements A et B d’un espace probabilisé
(Ω,A ,P) sont dits indépendants lorsque

P(A∩B) =P(A)×P(B).

On note A ⊥⊥ B lorsque A et B sont indépendants.

Propriété 17 : Caractérisation par probabilités condi-
tionnelles

Deux événements A et B d’un espace probabi-
lisé (Ω,A ,P) tels que P(B) > 0 sont indépendants si et
seulement si P(A | B) =P(A).
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Propriété 18 : Indépendance et complémentaire

Si deux événements A et B d’un espace probabi-
lisé (Ω,A ,P) sont indépendants, alors

■ A et B sont indépendants,
■ A et B sont indépendants,
■ A et B sont indépendants.

2 Famille d’événements indépendants

Définition 9 : Événements indépendants vs 2 à 2 indé-
pendants

Soit (Ai )i∈I avec I fini ou dénombrable une famille
d’événements.

■ Les Ai sont dit deux à deux indépendants lorsque
pour tout i 6= j , Ai et A j sont indépendant, c’est-
à-dire que P(Ai ∩ A j ) =P(Ai )P(A j ).

■ Les Ai sont dit indépendants, lorsque pour toute
partie finie non vide J de I ,

P

(⋂
i∈J

Ai

)
= ∏

i∈J
P(Ai ).

Propriété 19 : Indépendants ⇒ 2 à 2 ⊥⊥
Si les Ai sont indépendants, alors ils sont deux à

deux indépendants.
La réciproque est fausse si n ⩾ 3.

Propriété 20 : Passages au complémentaire dans
l’indépendance

Si les événements Ai pour i ∈ I sont indépendants
et si pour tout i ∈ I on pose Bi = Ai ou Ai , alors les Bi
sont indépendants.

IV VARIABLES ALÉATOIRES DISCRÈTES
On se donne une espace probabilisé (Ω,A ,P).

1 Définition

Définition 10 : Variable aléatoire discrète
Soit E un ensemble quelconque. Une application

X : Ω→ E est appelée variable aléatoire discrète sur
(Ω,A ,P) lorsqu’elle vérifie
(i) X (Ω) = Im X = {X (ω),ω ∈Ω} ∈P (E) est fini ou dénom-

brable.
(ii) Pour tout x ∈ X (Ω), X−1({x}) = {ω ∈Ω, X (ω) = x} ∈A et

est noté (X = x).
Elle est dite réelle lorsque E ⊂R.

Propriété 21 : SCE associé à une variable aléatoire(
(X = x)

)
x∈X (Ω)

est un système complet d’événe-
ments appelé système complet d’événements asso-
cié à X .

Propriété 22 : Les parties de X (Ω) sont des événe-
ments

Soit X une variable aléatoire discrète sur (Ω,A ,P).
Alors pour toute partie A de X (Ω), (X ∈ A) ∈A .

Propriété 23 : Une fonction d’une v.a.d. est une v.a.d.

Si X : Ω → E est une variable aléatoire discrète,
si f : E → F est une fonction (ou application) quel-
conque, alors f ◦X , notée f (X ) est une variable aléa-
toire discrète.

2 Loi
On fixe X une variable aléatoire discrète sur (Ω,A ,P).

Définition 11 : Loi d’une v.a.d.
L’application

PX :
P (X (Ω)) −→ R

A 7−→ P(X ∈ A)

est appelée loi de X .

Propriété 24 : La loi est une probabilité

PX est une probabilité sur l’espace probabilisable(
X (Ω),P (X (Ω))

)
.

Propriété 25 : Expression de la loi de X

Si A ∈P (X (Ω)),

PX (A) = ∑
a∈A

PX ({a}) = ∑
a∈A

P(X = a).

Corollaire 3

La loi de X est uniquement déterminée par la dis-
tribution de probabilités (P(X = x))x∈X (Ω).

Notation 1 : ∼
Si X et Y suivent la même loi, on note X ∼ Y .
Si X suit une loi L , on note X ∼L .
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Propriété 26 : Loi de f (X )

La loi de Y = f (X ) est donnée par ∀ y ∈ f (X (Ω)),

P(Y = y) =P( f (X ) = y) =P
(

X ∈ f −1({y})
)
= ∑
x | f (x)=y

P(X = x).

De la même manière, on obtient par exemple :

Propriété 27 : Loi d’une somme, d’un produit

Si X et Y sont des variables aléatoires,

P(X +Y = z) = ∑
x,y | x+y=z

P
(
X = x,Y = y

)
et P(X Y = z) = ∑

x,y | x y=z
P

(
X = x,Y = y

)

V FAMILLES DE VARIABLES ALÉATOIRES
Soit (Ω,A ,P) espace probabilisé.

1 Définition et lois

a Couple de variables aléatoires discrètes

Les notions vues en première année se généralise sans pro-
blème particulier.

Définition – Propriété 1

Soit X ,Y variables aléatoires discrètes sur Ω à va-
leurs dans E ,E ′. L’application

Z :
Ω −→ E ×E ′

ω 7−→ (X (ω),Y (ω))

est une variable aléatoire discrète appelée couple
Z = (X ,Y ).

Propriété 28 : SCE associé à un couple

Soit (X ,Y ) un couple de variables aléa-
toires discrètes. Alors la famille d’événements(
((X ,Y ) = (x, y))

)
(x,y)∈X (Ω)×Y (Ω) est un système complet

d’événements appelé système complet d’événe-
ments associé au couple (X ,Y ).

b Loi conjointe

Définition 12 : Loi conjointe

Soit (X ,Y ) un couple de variable aléatoires dis-
crètes. On appelle loi conjointe de (X ,Y ) la loi P(X ,Y )
de la variable aléatoire (X ,Y ).

c Lois marginales

Définition 13 : Lois marginales

Si (X ,Y ) est un couple de variables aléatoires dis-
crètes, les lois de X et de Y sont appelées première et
seconde lois marginales du couple.

Propriété 29 : Loi conjointe détermine lois margi-
nales

La loi conjointe de (X ,Y ) détermine les lois margi-
nales de (X ,Y ) mais la réciproque est fausse.

d Lois conditionnelles

Définition 14 : Loi conditionnelle
Soit (X ,Y ) un couple de variables aléatoires dis-

crètes. Pour tout x ∈ X (Ω) tel que P(X = x) 6= 0, la loi
conditionnelle de Y sachant (X = x) est la loi de Y pour
la probabilité conditionnelle P(X=x).

Elle est donc déterminée par, pour tout y ∈ Y (Ω),

P(Y = y | X = x) = P(X = x,Y = y)

P(X = x)
.

2 Extension aux n-uplets

Définition 15 : n-uplets de variables aléatoires

Soit (X1, . . . , Xn ) un n-uplet de variables aléatoires
discrètes. C’est encore une variable aléatoire discrète
appelé vecteur aléatoire discret de dimension n.

La loi conjointe de (X1, . . . , Xn ) est déterminée par
les P(X1 = x1, . . . , Xn = xn ) où pour tout i , xi ∈ Xi (Ω).

Les lois de X1, . . . , Xn sont les lois marginales de
(X1, . . . , Xn ).

Définition 16 : Loi conditionnelle pour n variables

Si x1, . . . , xn−1 sont fixés, tel que
P(X1 = x1, . . . , Xn−1 = xn−1) > 0, la loi conditionnelle
de Xn sachant (X1 = x1, . . . , Xn−1 = xn−1) est détermi-
née par

P(Xn = xn | X1 = x1, . . . ,Xn−1 = xn−1)

= P(X1 = x1, . . . , Xn = xn )

P(X1 = x1, . . . , Xn−1 = xn−1)

pour tout xn .
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3 Indépendance
a Cas d’un couple de variable

Définition 17 : Indépendance

Soient X ,Y deux variables aléatoires discrètes sur
l’espace probabilisé (Ω,A ,P).

X et Y sont dites indépendantes si pour tout
(A,B) ∈ P (X (Ω)) ×P (Y (Ω)), les événements (X ∈ A) et
(Y ∈ B) sont indépendants, c’est-à-dire

P(X ∈ A,Y ∈ B) =P(X ∈ A) P(Y ∈ B).

On note parfois X ⊥⊥ Y .

Propriété 30 : Caractérisation par des événements
élémentaires

X et Y sont indépendantes si et seulement si pour
tout (x, y) ∈ X (Ω)×Y (Ω), (X = x) et (Y = y) sont indépen-
dants, c’est-à-dire

P(X = x,Y = y) =P(X = x) P(Y = y).

Propriété 31 : Caractérisation par les lois condition-
nelles

Soit (X ,Y ) couple de variables aléatoires. Il y a
équivalence entre
(i) Les variables aléatoires X et Y sont indépen-

dantes.
(ii) Pour tout y ∈ Y (Ω) tel que P(Y = y) > 0, la loi de X

sachant (Y = y) est la même que la loi de X .
(iii) Pour tout x ∈ X (Ω) tel que P(X = x) > 0, la loi de Y

sachant (X = x) est la même que la loi de Y .

Propriété 32 : Fonctions de variables aléatoires indé-
pendantes

Si X ,Y sont des variables aléatoires indépen-
dantes, f , g définies sur X (Ω) et Y (Ω) respectivement,
alors f (X ) et g (Y ) sont indépendantes.

b Variables aléatoires indépendantes

Définition 18 : Variables aléatoires indépendantes

Des variables aléatoires discrètes X1, . . . , Xn sont
dites indépendantes lorsque pour toutes parties A1 de
X1(Ω), …, An de Xn (Ω), les événements (X1 ∈ A1), …,
(Xn ∈ An ) le sont.

Une suite (Xn )n∈N de variables aléatoires discrètes
est dite une suite de variables aléatoire indépen-
dantes lorsque pour tout n ∈N, X1, . . . , Xn le sont.

Si, de plus, elles ont même loi, on dit que ce
sont des variables aléatoires indépendantes identi-
quement distribuées (vaiid).

Propriété 33 : Caractérisation par des événements
élémentaires

X1, . . . , Xn sont indépendantes si et seulement si
pour tout (x1, . . . , xn ) ∈ X1(Ω)×·· ·×Xn (Ω), les événements
(X1 = x1), …, (Xn = xn ) le sont.

Propriété 34 : Fonctions de variables aléatoires indé-
pendantes

Si (Xn )n∈N est une famille de variables aléatoires in-
dépendantes, pour tout n ∈N, fn définie Xn (Ω), alors(

fn (Xn )
)

n∈N est une famille de variables aléatoires in-
dépendantes.

Propriété 35 : Lemme des coalitions

Soit n,m ∈ N tels que 0 < m < n, X1, . . . , Xm , . . . , Xn
des variables aléatoires discrètes indépendantes sur
(Ω,A ,P), f définie sur X1(Ω)×·· ·×Xm (Ω) et g définie sur
Xm+1(Ω)×·· ·×Xn (Ω).

Alors f (X1, . . . , Xm ) et g (Xm+1, . . . , Xn ) sont indépen-
dantes.

Le résultat s’étend à plus de deux coalitions.

Théorème 1

Soit (Ln )n∈N une suite de lois de probabilités dis-
crètes.

Il existe un espaceprobabilisé (Ω,A ,P) et une suite
(Xn )n∈N de variables aléatoires discrètes indépen-
dantes sur (Ω,A ,P) tels que pour tout n ∈N, Xn ∼Ln .

VI LOIS USUELLES

1 Loi Uniforme

Définition 19 : Loi uniforme
On dit que qu’une variable aléatoire finie X suit

une loi uniforme lorsque pour tout x ∈ X (Ω),

PX ({x}) =P(X = x) = 1

n

où n = |X (Ω)|, c’est-à-dire que pour tout A ⊂ X (Ω),
PX (A) = |A|

n
.

On note alors X ∼U (n).

2 Loi de Bernoulli

Définition 20 : Loi de Bernoulli
On dit que X suit une loi de Bernoulli de para-

mètre p ∈ [0,1] lorsque X est à valeurs dans E = {0,1},
P(X = 1) = p et P(X = 0) = q = 1−p.

On note alors X ∼B(p).
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Situation type : Variable aléatoire étudiant le succès (1) d’un
événement donné ou son échec (0).

Propriété 36 : Ce sont les fonctions indicatrices

Les variables aléatoires qui suivent une loi de Ber-
noulli de paramètre p sont exactement les fonctions
indicatrices des parties F de Ω telles que P(F ) = p.

3 Loi binomiale

Définition 21 : Loi binomiale
On dit que X suit une loi binomiale de paramètre

(n, p) où p ∈ [0,1] lorsque X est à valeurs dans J0,nK et
pour tout k ∈ J0,nK,

P(X = k) =
(

n

k

)
pk (1−p)n−k =

(
n

k

)
pk qn−k

avec q = 1−p. On note alors X ∼B(n, p).

Situation type : Nombre de succès dans la répétition de n

expériences de Bernoulli indépendantes.

4 Loi géométrique

Définition 22 : Loi géométrique

Soit p ∈]0,1[et X une variable aléatoire discrète.On
dit que X suit une loi géométrique de paramètre p si
X est à valeurs dans N∗ et

∀n ∈N∗, P(X = n) = p(1−p)n−1.

On note X ∼G (p).

5 Loi de Poisson

Définition 23 : Loi de Poisson
Soit λ ∈R∗+ et X une variable aléatoire discrète. On

dit que X suit une loi de Poisson de paramètre λ si X

est à valeurs dans N et

∀n ∈N, P(X = n) = λn

n!
e−λ.

On note X ∼P (λ).

6 Propriétés des lois usuelles

a Somme de n vaiid de Bernoulli

Propriété 37 : Importante !

Si X1, . . . , Xn vaiid de loi B(p), alors

X1 + . . .+Xn ∼B(n, p).

b Approximation d’une loi de Poisson par des
lois binomiales

Propriété 38 : Approximation d’une loi de Poisson par
des lois binomiales

Soit λ > 0, (pn )n ∈]0,1[N tel que npn → λ, (Xn )n une
suite de variables aléatoires discrètes réelles.

On suppose que pour tout n ∈N, Xn ∼B(n, pn ).

Alors, pour tout k ∈N, P(Xn = k) −−−−−→
n→+∞

λk

k !
e−λ.

VII ESPÉRANCE
On fixe ici un espace probabilisé (Ω,A ,P).

1 Définition

Définition 24 : Espérance d’une variable aléatoire dis-
crète réelle positive

Soit X une variable aléatoire discrète à valeurs
dans R+∪ {+∞}.

L’espérance de X est, par définition, dans [0,+∞],

E(X ) = ∑
x∈X (Ω)

P(X = x)x.

On a donc E(X ) ∈R∪ {+∞} suivant la sommabilité
ou non de la famille réelle positive (P(X = x)x)x∈X (Ω).

Lorsque cette famille est sommable, X est dite
d’espérance finie E(X ) ∈R et on note X ∈ L1.

Propriété 39 : Cas d’une variable aléatoire entière

Soit X une variable aléatoire à valeurs dans
N∪ {+∞}. Alors

E(X ) =
+∞∑
n=1

P(X ⩾ n) =
+∞∑
n=0

P(X > n)

Définition 25 : Espérance d’une variable aléatoire dis-
crète réelle ou complexe

Soit X une variable aléatoire réelle ou complexe
discrète.

Lorsque la famille (P(X = x) x)x∈X (Ω) est sommable,
on dit que X est d’espérance finie, on note X ∈ L1 et
on définit son espérance

E(X ) = ∑
x∈X (Ω)

P(X = x)x.

Dans le cas contraire, X n’a pas d’espérance (pas
plus infinie que finie)

Lorsque X est d’espérance finie et E(X ) = 0, X est
dite centrée.
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2 Théorème de transfert

Théorème 2 : de transfert

Soit X un variable aléatoire discrète, f une fonc-
tion définie sur X (Ω), à valeurs complexes.

f (X ) est d’espérance finie si et seulement si la fa-
mille

(
P(X = x) f (x)

)
x∈X (Ω) est sommable, et dans ce

cas
E

(
f (X )

)= ∑
x∈X (Ω)

P(X = x) f (x).

Corollaire 4 : Espérance du module

X a une espérance finie si et seulement si |X | a
une espérance finie.

Le cas échéant, E(|X |) = ∑
x∈X (Ω)

P(X = x) |x| .

Corollaire 5 : Sur un univers fini ou dénombrable

Uniquement dans le cas où Ω est fini ou dénom-
brable, X est d’espérance finie si et seulement si(
P({ω})X (ω)

)
ω∈Ω est sommable et dans ce cas

E(X ) = ∑
ω∈Ω

P({ω})X (ω).

3 Propriétés de l’espérance
Une espérance peut être vue comme une intégrale, ce qui

rend toutes ces propriétés naturelles.

Propriété 40 : de l’espérance

X et Y désignent deux variables aléatoires réelles
ou complexes discrètes.
(i) Si X est constante presque sûrement, c’est-à-dire

qu’on a a ∈ K tel que P(X = a) = 1, alors elle est
d’espérance finie E(X ) = a.

(ii) Linéarité : si X ,Y ∈ L1 et λ ∈K, X +λY ∈ L1 et

E(X +λY ) =E(X )+λE(Y ).

(iii) Positivité : si X ∈ L1 est à valeurs réelles, positive
presque sûrement ie P(X ⩾ 0) = 1, alors E(X )⩾ 0.
Positivité améliorée : si X est à valeurs réelles, po-
sitive presque sûrement et si X est nulle presque
sûrement.

(iv) Croissance : si X ,Y ∈ L1 sont à valeurs réelles et si
X ⩽ Y presque sûrement, alors E(X )⩽E(Y ).

(v) Si X ∈ L1, X −E(X ) est centrée et appelée variable
aléatoire centrée associée à X .

(vi) Inégalité triangulaire : Si X ∈ L1, |X | ∈ L1 et

|E(X )|⩽E(|X |).

(vii) Si Y ∈ L1 et |X |⩽ Y , alors X ∈ L1 et |E(X )|⩽E(Y ).
En particulier, si X est bornée, elle est d’espé-
rance finie.

Corollaire 6 : Espace vectoriel L1

L’ensemble L1 des variables aléatoires discrètes
sur (Ω,A ,P) admettant une espérance finie est donc
un K-espace vectoriel et X 7→ E(X ) est une forme li-
néaire sur L1.

4 Espérances des lois usuelles

Propriété 41 : Espérance des lois usuelles

(i) Si X ∼ B(p), alors
E(X ) = p.

(ii) Si X ∼ B(n, p), alors
E(X ) = np.

(iii) Si X ∼ G (p), alors
E(X ) = 1

p
.

(iv) Si X ∼ P (λ), alors
E(X ) =λ.

Corollaire 7 : Cas d’une fonction indicatrice

Soit A un événement de notre tribu A . Alors 1A a
une espérance finie et E(1A) =P(A).

5 Espérance et indépendance

Propriété 42 : Espérance et indépendance

Soit X , Y ∈ L1 indépendantes. Alors X Y ∈ L1, et

E(X Y ) =E(X )E(Y ).

Réciproque fausse en général.
Plus généralement, si (X1, . . . , Xn ) est une famille

de variables aléatoires indépendantes d’espérance
finie, alors

n∏
i=1

Xi l’est et

E

(
n∏

i=1
Xi

)
=

n∏
i=1

E
(
Xi

)
.

VIII VARIANCE, ÉCART-TYPE ET COVARIANCE
On fixe ici un espace probabilisé (Ω,A ,P). Les variables aléa-

toires considérées sont à valeurs réelles.

1 Espace L2

Notation 2 : L2

Soit X une variable aléatoire réelle discrète.
On note X ∈ L2 lorsque X 2 est d’espérance finie

(ce qu’on peut noter E
(
X 2)<+∞ car X 2 est à valeurs

réelles positives).
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Propriété 43 : Inégalité de Cauchy-Schwarz

Si deux variables aléatoires réelles discrètes
X ,Y ∈ L2, leur produit X Y ∈ L1, et

(E(X Y ))2 ⩽E
(

X 2
)
E

(
Y 2

)
avec égalité si et seulement si X et Y sont coli-

néaires presque sûrement, c’est-à-dire lorsqu’il existe
(λ,µ) 6= (0,0) tel tel que P(λX +µY = 0) = 1.

Corollaire 8

L2 est un R-espace vectoriel.

Propriété 44 : L2 ⊂ L1

Si X ∈ L2, X ∈ L1.

2 Variance et écart-type

Définition 26 : Variance, écart-type, variable réduite

Soit X ∈ L2.
On appelle variance de X le nombre

V(X ) =E
(
(X −E(X ))2

)
.

On appelle écart-type de X le nombre

σ(X ) =
√
V(X ) =

√
E

(
(X −E(X ))2)

.

Lorsque V(X ) = 1, X est dite réduite.

Propriété 45 : de la variance

Soit X ∈ L2.
(i) Formule de Kœnig-Huygens :

V(X ) =E
(

X 2
)
−E(X )2.

(ii) Si a,b ∈ R, V(aX + b) = a2V(x) donc
σ(aX +b) = |a|σ(X ).

(iii) Si σ(X ) 6= 0, X −E(X )

σ(X )
est centrée réduite, appelée

variable aléatoire centrée réduite associée à X .

3 Covariance

Définition 27 : Covariance

Soit (X ,Y ) ∈ (
L2)2 un couple de variables aléatoires

réelles discrètes admettant un moment d’ordre 2.
On appelle covariance du couple (X ,Y ) le

nombre

Cov(X ,Y ) =E
((

X −E(X )
)(

Y −E(Y )
))

.

Lorsque Cov(X ,Y ) = 0, X et Y sont dites non corré-
lées.

Propriété 46 : de la covariance

Soient X , Y ∈ L2 deux variables aléatoires réelles
discrète admettant un moment d’ordre 2.
(i) Cov est une forme bilinéaire symétrique positive.
(ii) Formule de Kœnig-Huygens :

Cov(X ,Y ) =E(X Y )−E(X )E(Y ).

(iii) V(X +Y ) =V(X )+2Cov(X ,Y )+V(Y ).
(iv) Si X ⊥⊥ Y , Cov(X ,Y ) = 0 et la réciproque est fausse.
(v) Inégalité de Cauchy-Schwarz :

(Cov(X ,Y ))2 ⩽V(X )V(Y ) i e |Cov(X ,Y )|⩽σ(X )σ(Y )

avec égalité si et seulement si les variables aléa-
toires sont colinéaires presque sûrement.

4 Variance d’une somme de variables
aléatoires

Propriété 47 : Variance d’une somme

Soient X1, . . . , Xn ∈ L2.
(i) X1 +·· ·+Xn ∈ L2 et

V(X1 +·· ·+Xn ) =
n∑

i=1
V(Xi )+2

∑
1⩽i< j⩽n

Cov
(

Xi , X j

)
.

(ii) Si X1, . . . , Xn sont décorrélées deux à deux
(i 6= j ⇒ Cov(Xi , X j ) = 0),

V(X1 +·· ·+Xn ) =V(X1)+·· ·+V(Xn ).

En particulier, si X1, . . . , Xn sont des vaiid,

V(X1 +·· ·+Xn ) = nV(X1).

5 Cas des lois usuelles

Propriété 48 : Espérance et variance des lois usuelles

(i) Si X ∼B(p), E(X ) = p et V(X ) = p(1−p) = pq.
(ii) Si X ∼B(n, p), E(X ) = np et V(X ) = np(1−p) = npq.

(iii) Si X ∼G (p), E(X ) = 1

p
et V(X ) = 1−p

p2
= q

p2
.

(iv) Si X ∼P (λ), E(X ) =V(X ) =λ.

IX INÉGALITÉS DE MARKOV ET DE BIENAYMÉ-
TCHEBYCHEV, LOI FAIBLE DES GRANDS
NOMBRES

Propriété 49 : Inégalité de Markov

Soit X ∈ L1 une variable aléatoire discrète admet-
tant une espérance finie. Pour tout a > 0,

P(|X |⩾ a)⩽ E(|X |)
a

.
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Propriété 50 : Inégalité de Bienaymé-Tchebychev

Soit X ∈ L2 une variable aléatoire réelle discrète
admettant un moment d’ordre 2, a > 0.

P (|X −E(X )|⩾ a)⩽ V(X )

a2

c’est-à-dire, en notant m l’espérance de X et σ

son écart-type,

P (|X −m|⩾ a)⩽ σ2

a2

Théorème 3 : Loi faible des grands nombres

Soit (Xn )n⩾1 ∈ (
L2)N∗

une suite de variable aléa-
toires discrètes réelles deux à deux indépendantes
identiquement distribuées (de même loi) sur (Ω,A ,P),
admettant un moment d’ordre 2. Soit m l’espérance
de Xn et σ son écart-type.

On pose enfin Sn = X1 +·· ·+Xn .
Pour tout ε> 0,

P

(∣∣∣∣ Sn

n
−m

∣∣∣∣⩾ ε

)
−−−−−→
n→+∞ 0.

X FONCTIONS GÉNÉRATRICES
Dans cette partie, les variables aléatoires sont à va-

leurs dans N.

1 Définition

Définition 28 : Fonction génératrice

Soit X variable aléatoire discrète sur (Ω,A ,P) à va-
leurs dans N.

On appelle fonction génératrice associée à X la

fonction GX : t 7→
+∞∑
n=0

P(X = n)t n .

Propriété 51 : des fonctions génératrices

(i) Le rayon de convergence de la série entière∑
P(X = n)t n est au moins égal à 1,et elle

converge normalement sur [−1,1].
(ii) Pour tout t ∈ [−1,1], GX (t ) =E

(
t X )

.
(iii) GX est continue sur [−1,1], de classe C ∞ sur ]−1,1[

et pour tout n ∈N, P(X = n) =
G(n)

X (0)

n!
.

Corollaire 9 : Caractérisation de la loi

Deux variables aléatoires X ,Y à valeurs dans N

ont même loi si et seulement si elles ont même fonc-
tion génératrice.

Propriété 52 : Lien avec l’espérance et la variance

(i) X ∈ L1 (est d’espérance finie) si et seulement si GX
est dérivable est 1 et alors E(X ) =G ′

X (1).
(ii) X ∈ L2 si et seulement si GX est deux fois dérivable

est 1 et alors E(X (X −1)) =G ′′
X (1).

On exprime alors V(X ) à l’aide de G ′
X (1) et G ′′

X (1).

Loi de Bernoulli B(p) :

GX (t ) = q +pt = 1−p +pt

définie sur R, ce qui redonne bien E(X ) = p et V(X ) = pq.

Loi binomiale B(n, p) : GX (t ) =
n∑

k=0

(
n

k

)
pk qn−k t k donc

GX (t ) = (q +pt )n = (1−p +pt )n

définie sur R, ce qui redonne bien E(X ) = np et V(X ) = npq.

Loi géométrique G (p) : GX (t ) =
+∞∑
k=1

pqn−1t n donc

GX (t ) = pt

1−qt
= pt

1− (1−p)t

définie sur
]
− 1

q
,

1

q

[
, ce qui redonne bien E(X ) = 1

p
et

V(X ) = p

q2
.

Loi de Poisson P (λ) : GX (t ) =
+∞∑
k=0

λn

n!
e−λt n donc

GX (t ) = eλ(t−1)

définie sur R, ce qui redonne bien E(X ) =V(X ) =λ.

2 Somme des variables aléatoires

Propriété 53 : Fonction génératrice d’une somme

Soient X1, . . . , Xn des variables aléatoires discrètes
indépendantes à valeurs dans N. Alors

GX1+···+Xn =
n∏

i=1
GXi .

Applications
■ On retrouve la fonction génératrice d’une loi binomiale à

partir de la somme de n vaiid de loi de Bernoulli.
■ Une somme de variables aléatoires de loi de Poisson P (λi )

est encore de loi de Poisson de paramètre la somme des
λi .

■ Une somme de variables aléatoires de loi B(ni , p) indépen-
dantes est de loi B(

∑
ni , p)
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XI FORMULAIRE
Sous réserve d’existence, sommabilité, d’admission de mo-

ments, etc. Voici les principales formules du chapitre.

■ Loi de X PX : A 7→ ∑
x∈A

P(X = x) déterminée par les

P(X = x) pour x ∈ X (Ω), positifs de somme 1.

■ Espérance de X E(X ) = ∑
x∈X (Ω)

P(X = x)x et siΩ fini ou

dénombrable E(X ) = ∑
ω∈Ω

P({ω})X (ω) et si X (Ω) ⊂ N,

E(X ) =
+∞∑
n=1

P(X ⩾ n).

■ Formule de transfert

E( f (X )) = ∑
x∈X (Ω)

P(X = x) f (x).

■ Variancede X V(X ) =E
(
(X −E(X ))2)=E

(
X 2)−E(X )2.

■ Covariance de X et Y

Cov(X ,Y ) =E ((X −E(X ))(Y −E(Y ))) =E(X Y )−E(X )E(Y )

nulle si indépendantes.

■ Variance d’une somme

V(X +Y ) =V(X )+2Cov(X ,Y )+V(Y ).

■ Loi de Bernoulli B(p)

P(X = 1) = p P(X = 0) = 1−p = q E(X ) = p V(X ) = pq GX (t ) = q +pt

■ Loi binomiale B(n, p)

∀k ∈ J0,nK, P(X = k) =
(

n

k

)
pk qn−k E(X ) = np V(X ) = npq GX (t ) = (q +pt )n

■ Loi géométrique G (p)

p ∈]0,1[ ∀n ∈N∗, P(X = n) = pqn−1 E(X ) = 1

p
V(X ) = q

p2
GX (t ) = pt

1−qt

■ Loi de Poisson P (λ)

λ> 0 ∀n ∈N, P(X = n) = λn

n!
e−λ E(X ) =λ V(X ) =λ GX (t ) = eλ(t−1)

■ Continuités croissante et décroissante
Si (An )n∈N une suite croissante (pour l’inclusion)

P(Ak ) −−−−−→
k→+∞

P

(+∞⋃
n=0

An

)

Si (An )n∈N une suite décroissante (pour l’inclusion)

P(Ak ) −−−−−→
k→+∞

P

(+∞⋂
n=0

An

)

■ Inégalité de Markov Si a > 0, P(|X |⩾ a)⩽ E(|X |)
a

.

■ Inégalité de Bienaymé-Tchebychev Si a > 0, m =E(X )

et σ=σ(X ) =p
V(X ). P(|X −m|⩾ a)⩽ σ2

a2

■ Loi faible des grands nombres Si ε> 0, (Xn ) une suite
de vaiid L2 d’espérance m, alors

P

(∣∣∣∣ Sn

n
−m

∣∣∣∣⩾ ε

)
−−−−−→
n→+∞ 0.

■ Inégalité de Cauchy-Schwarz Si X ,Y ∈ L2, alors
X Y ∈ L1, et

(E(X Y ))2 ⩽E
(
X 2)

E
(
Y 2) |Cov(X ,Y )|⩽V (X )V (Y )

avec égalité si et seulement si X et Y sont colinéaires
presque sûrement.
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