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Probabilités

I ESPACE PROBABILISÉ

1 Tribu
Comme vu en première année dans le cadre des probabilités finies, on appelle univers, noté

en général Ω, l’ensemble des issues ou résultats ou réalisations d’une expérience aléatoire.

Commençons par rappeler quelques situations modèles dans le cadre des univers finis : ti-
rage de p boules dans une urne en contenant n, numérotées de 1 à n.

Exemple

E 1 – Tirages successifs, avec remise : Dans ce cas, l’ordre est important, et il peut y avoir
répétition. On peut choisir comme modèle de résultat un p-uplet (ou p-liste) d’élé-
ments de J1,nK.
On pose Ω= J1,nKp , et alors |Ω| = np .
Il s’agit aussi du nombre d’applications d’un ensemble à p éléments vers un en-
semble à n éléments (à chaque tirage, on associe sa boule).

E 2 – Tirages successifs, sans remise : Dans ce cas, l’ordre est important, et il ne peut pas
y avoir répétition. On peut choisir comme modèle de résultat un p-uplet d’éléments
deux à deux distincts (ou p-arrangements) de J1,nK.
On pose Ω=Ap

(J1,nK), et alors
|Ω| = A

p
n = n(n −1) · · · (n −p +1) = n!

(n −p)!

(notation hors-programme).
Il s’agit aussi du nombre d’injections d’un ensemble à p éléments vers un ensemble
à n éléments (à chaque tirage, on associe sa boule).

E 3 – Tirage simultané : Dans ce cas, l’ordre n’est pas important, et il ne peut pas y avoir
répétition. On peut choisir comme modèle de résultat une partie à p éléments deJ1,nK (ou p-combinaison).
On pose Ω=Pp

(J1,nK), et alors
|Ω| =

(
n

p

)
= n(n −1) · · · (n −p +1)

p !
= n!

p !(n −p)!
.

Rappelons également qu’une même expérience peut donner lieu à différents univers pos-
sible selon ce que l’on souhaite observer (par exemple : carte d’une main vs couleur seulement
de la carte, ou bien résultat d’un dé vs parité de ce résultat, etc.)

C’est encore plus vrai pour des univers infinis : le cadre formel que l’on va se donner prévoit
que certaines parties de l’univers Ω seulement soient « observables » (les événements), afin de
définir une probabilité dans ce cadre plus général.

Remarque

R 1 – Conformément aux habitudes probabilistes, on note, pour A ⊂Ω, A =Ω\ A le complé-
mentaire dans Ω de A. Cela n’a absolument rien à voir avec l’adhérence topolo-
gique, donc.

R 2 – Convention d’écriture : les lettres cursives A , P ... désignent des ensembles d’en-
sembles tandis que les lettres droites A, B désignent des ensembles simples (comme
les événements).

Définition 1 : Tribu
Soit Ω un ensemble. On appelle tribu sur Ω toute partie A de P (Ω) telle que

(i)
(ii) Stabilité par passage au complémentaire :

(iii) Stabilité par réunion dénombrable :

Le couple (Ω,A ) est appelé espace probabilisable, et les éléments de A ses
événements.

Exemple

E 4 – P (Ω) est une tribu sur Ω (dite discrète)
E 5 – {∅,Ω} est une tribu sur Ω (dite grossière)
E 6 – Si A est une partie non vide de Ω, distincte de Ω, la plus petite tribu sur Ω contenant

A est
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Le vocabulaire vu en première année reste valable :
■ Si A ∈A , A est l’événement contraire (qui est bien un événement).
■ L’événement ∅ est appelé événement impossible.
■ On dit que deux événements A et B sont incompatibles lorsque A∩B =∅.

Ne pas confondre issue = résultat = réalisation avec événement !

D’après le programme officiel, la manipulation de tribu n’est pas un objectif du programme :
elles servent de cadre théorique mais, dans la pratique, on n’attend pas nécessairement de les
préciser.

Propriété 1 : des tribus

Une tribu est stable par réunion finie, par intersection dénombrable, par inter-
section finie.

Ainsi dit, si A est une tribu sur Ω,
(i) Ω ∈A

(ii) Si (An )n∈N est une suite d’éléments de A ,

(iii) Si (An )0⩽n⩽N est une famille finie d’éléments de A ,

Exercice 1
Soit A une tribu d’événements d’un espace probabilisable Ω et (An )n⩾1 une famille de

A . Décrire à l’aide des opérations ou comparaisons ensemblistes usuelles les situations ou
les événements suivants (sauf pour les items 4 à 6, on écrira des choses du type «ω ∈ E » où
E est un ensemble à déterminer).

1. L’un au moins des événements A1,
A2, A3 est réalisé.

2. L’un seulement des événements A1
et A2 est réalisé.

3. A1 et A2 se réalisent mais pas A3.

4. À chaque fois que A1 est réalisé, A2
l’est aussi.

5. A1 et A2 ne se produisent jamais en-
semble.

6. A1 ou A2 se produisent toujours.

7. Tous les événements (Ai )i∈N∗ se réa-
lisent.

8. L’un au moins des Ai se réalise.
9. Tous les événements Ai se réalisent

à partir du rang i0.
10. Tous les événements Ai se réalisent

à partir d’un certain rang.
11. Une infinité d’événements Ai se réa-

lisent.
12. Seul un nombre fini d’événements

Ai se réalisent.

2 Probabilité

Définition 2 : Probabilité
Soit (Ω,A ) un espaceprobabilisable. Uneprobabilité (oumesure de probabilité)

sur (Ω,A ) est une application P définie sur A telle que

(i) ∀A ∈A , P(A) ∈
(ii) P(Ω) =
(iii) σ-additivité : Si (An )n∈N est une suite d’événements deux à deux disjoints (in-

compatibles),

On dit alors que le triplet (Ω,A ,P) est un espace probabilisé.

Propriété 2 : d’une probabilité

Soit (Ω,A ,P) un espace probabilisé, A et B des événements : A,B ∈A .
(i) P(∅) =
(ii) Si A et B sont deux événements incompatibles, P(AtB) =

Plus généralement, P
(

N⊔
n=0

An

)
=

(iii) Si A ⊂ B , P(B \ A) = Si A et B sont quelconques, P(B \ A) =
(iv) P(A∪B) =
(v) Croissance : si A ⊂ B ,

Remarque

R 3 – Pour trois événements,
P(A∪B ∪C ) =
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Et plus généralement, Formule de Poincaré (HP) : pour toute famille (A1, . . . , An ) ∈P (Ω)n ,

qui peut semontrer par récurrencepar exemple, ou, plus simplement, en remarquant

que P

(
n⋃

i=1
Ai

)
= 1−P

(
n⋂

i=1
Ai

)
= 1−E

(
1⋂n

i=1 Ai

)
= . . .Voir l’exercice 15 du cours.

Propriété 3 : Probabilité d’une réunion au plus dénombrable

Si (Ai )i∈I est une famille au plus dénombrable d’événements deux à deux in-

compatibles, alors
(
P(Ai )

)
i∈I

est sommable et P
(⊔

i∈I
Ai

)
= ∑

i∈I
P(Ai ).

Définition 3 : Distribution de probabilités

Soit Ω un ensemble. On appelle distribution de probabilités sur Ω toute famille
d’éléments de R+ indexée par Ω et somme (finie) égale à 1.

On appelle support d’une telle distribution
(
pω

)
ω∈Ω l’ensemble {ω ∈Ω, pω 6= 0}.

Propriété 4 : Support au plus dénombrable

Le support d’une distribution de probabilités est toujours au plus dénombrable.

3 Cas très simple : univers fini
Si Ω est fini, on prend généralement A =P (Ω), et la propriété de σ-additivité est équivalente

à la propriété
Si A et B sont deux événements disjoints, alors P(AtB) =P(A)+P(B).

Propriété 5 : Probabilité finie associée à une distribution

Si Ω= {ω1, . . . ,ωm },P est entièrement définie par la donnée d’une distribution de
probabilités

(
pωi

)
1⩽i⩽m telle que pour tout i ∈ J1,mK, P({

ωi
}) = pωi . Et, pour toute

partie A de Ω,
P(A) =

Les probabilités des événements élémentaires déterminent donc P.

4 Cas simple : univers dénombrable
Ici, on garde la propriété de σ-additivité, que l’on ne peut plus remplacer par la simple

additivité.
Ici encore, il n’y a pas d’obstacle à prendre la tribu « discrète », c’est-à-dire P (Ω). On obtient :

Propriété 6 : Probabilité discrète associée à une distribution

Soit Ω un ensemble dénombrable. Pour toute distribution de probabilités
(pω)ω∈Ω, il existe une unique probabilité sur P (Ω) telle que

∀ω ∈Ω, P({ω}) = pω

Cette probabilité vérifie

∀A ∈P (Ω), P(A) =

Donc, encore une fois, P est définie de manière unique par les probabilités des singletons.
Pour un univers fini ou dénombrable, les tribus d’évènements n’ont donc pas grand intérêt.

5 Cas moins simple : univers non dénombrable
Dans le cas où l’univers est infini indénombrable c’est plus compliqué : on peut montrer que

pour un tirage à pile ou face infini non dénombrable, modélisé par {0,1}N (non dénombrable
par argument diagonal de Cantor), la seule valeur possible pour la probabilité d’un événement
élémentaire est... 0.

Pourquoi? Intuitivement, si la probabilité d’obtenir un pile est p ∈]0,1[, alors la probabilité d’ob-
tenir n piles de suite de va être pn −−−−−−→

n→+∞ 0... Donc, il est légitime de penser que l’événement
« n’obtenir que des piles » a une probabilité nulle, par exemple.

C’est donc moins simple, on en peut pas se contenter des événements élémentaires, mais
complètement hors-programme.
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6 Continuités croissante et décroissante

Propriété 7 : Continuité croissante

Soit (An )n∈N une suite croissante (pour l’inclusion) d’événements :

∀n ∈N, An ⊂ An+1

Alors

Remarque

R 4 – Continuité car
+∞⋃
n=0

An est en quelque sorte la « limite » de la suite croissante (An )n∈N.

Remarquons aussi que Ak =
k⋃

n=0
An .

Corollaire 1 : Limite d’une probabilité d’une réunion

Soit (An )n∈N une suite quelconque d’événements, alors

Propriété 8 : Continuité décroissante

Soit (An )n∈N une suite décroissante (pour l’inclusion) d’événements :

∀n ∈N, An+1 ⊂ An

Alors

Corollaire 2 : Limite d’une probabilité d’une intersection

Soit (An )n∈N une suite quelconque d’événements, alors

7 Inégalité de Boole

Propriété 9 : Inégalité de Boole

Soit (An )n∈N une suite quelconque d’événements. Alors, dans [0,+∞],

Remarque

R 5 – Où, si la série à termes positifs
∑

P(An ) diverge, on lira la formule P

(+∞⋃
n=0

An

)
⩽+∞, ce

qui ne dit rien.
Si la série converge et a une somme ⩾ 1, le résultat ne dit rien non plus.

8 Négligeabilité

a Événements négligeables

Définition 4 : Événement négligeable

On dit qu’un événement A est négligeable lorsque P(A) = 0.

Remarque

R 6 – L’événement impossible est négligeable.
Un événement négligeable n’est pas en général impossible.
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Exemple

E 7 – Dans le jeu de Pile ou Face infini, l’événement « la pièce donne Pile un nombre fini
de fois » est négligeable.
Voir plus loin pour une justification rigoureuse !

Propriété 10 : Partie d’un événement négligeable

Si A et B sont deux événements tel que A ⊂ B , si B est négligeable, A l’est.

Propriété 11 : Réunion, intersection finie ou dénombrable

Une réunion (respectivement intersection non vide) finie ou dénombrable
d’événements négligeables est négligeable.

b Événements, propriétés presque sûr·e·s

Définition 5 : Événement presque sûr

Un événement A est presque sûr, ou presque certain, lorsque P(A) = 1, ce qui
équivaut à dire que A est négligeable.

Une propriété est dite presque sûre lorsque l’ensemble des éléments de Ω qui
ont cette propriété est un événement presque sûr.

Propriété 12 : Réunion, intersection au plus dénombrable

Toute réunion non vide (respectivement intersection) finie ou dénombrable
d’événements presque sûrs l’est encore.

II CONDITIONNEMENT
Les notions vues en première année se généralisent sans problème particulier.

1 Probabilité conditionnelle

Définition 6
Soit (Ω,A ,P) un espace probabilisé, B un événement tel que P(B) > 0. Pour tout

événement A ∈A , on définit la probabilité conditionnelle de A sachant B par

(Se lit en général « probabilité de A sachant B »)

Remarque

R 7 – " Il n’y a toujours pas d’« événement conditionnel A|B » (élément de A ) : ce n’est
qu’une notation signifiant qu’on se place en observateur de l’événement A sachant
que l’événement B est déjà réalisé.
Mais la notation PB peut aussi être trompeuse, car c’est la même que celle de la loi
d’une variable aléatoire.

Propriété 13 : Probabilité... conditionnée

PB : A ∈A 7→P(A|B) est une probabilité sur (Ω,A ).

... et donc toutes les propriétés des probabilités, toutes les formules qui vont suivre peuvent
être appliquées à des probabilités conditionnelles.

Lorsque que plusieurs conditions s’enchaînent, il suffit de les intersecter :
«P(A|B |C ) »=PC (A|B) =P(A|B ∩C ).

2 Probabilités composées

Propriété 14 : Formule des probabilités composées

Soit n ⩾ 2, A1, . . . , An des événements de l’espace probabilisé (Ω,A ,P) tels que
P(A1 ∩·· ·∩ An−1) > 0.

Remarque

R 8 – À nouveau, cela correspond à notre intuition : on réalise A1, puis A2 sachant que A1
l’est, puis A3 sachant que A1 et A2 le sont, etc. On se sert donc en général de cette
formule lorsque l’on a des événements successifs, chronologiques.
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3 Probabilités totales

Définition 7 : Système complet et quasi-complet d’événements

Soit (Ω,A ,P) un espace probabilisé, I un ensemble fini ou dénombrable. On dit
que la famille (Ai )i∈I d’événements est un système complet d’évènements lorsque

Ondit que la famille (Ai )i∈I d’événements est un système quasi-complet d’évè-
nements lorsque

Remarque

R 9 – Si on impose de plus les Ai non vides, ce qui se fait parfois, {Ai }i∈I est une partition
de Ω.

R 10 – Un système complet d’événement est quasi-complet, mais la réciproque est fausse.
R 11 – Si (Ai )i∈I est un système quasi-complet d’événements, en lui ajoutant l’événement

négligeable
⊔
i∈I

Ai , on obtient un système complet d’événements.

Propriété 15 : Formule des probabilités totales

Si
(

Ai
)

i∈I où I est fini ou dénombrable est un systèmecomplet ou quasi-complet
d’événements, alors pour tout événement B ,

Si, de plus, pour tout i , P(Ai ) > 0 (Ai n’est pas négligeable),

Si certains événements sont négligeables, alors les B∩Ai le seront aussi et il suffit
de remplacer la somme pour i ∈ I par la somme pour i ∈ J = {i ∈ I , P(Ai ) > 0}.

Remarque

R 12 – La formule des probabilités totales est utile lorsque l’on fait une expérience aléatoire
en plusieurs étapes. Elle permet de raisonner par disjonction de cas, suivant le résultat
de la première étape.
" ne pas confondre P(B ∩ Ai ) et P(B | Ai ) !

Exercice 2 : CCINP 101 Exercice 3 : CCINP 107

4 Formule de Bayes

Propriété 16 : Formule de Bayes

Si A,B sont des événements non négligeables, alors

Si, de plus, A n’est pas négligeable,

Plus généralement, si (Ai )i∈I (I fini ou dénombrable) est un système complet
ou quasi-complet d’événements non négligeables, on a

Remarque

R 13 – Formule permettant de remonter le temps, appelée aussi formule de probabilité des
causes.

Exercice 4 : CCINP 105

III ÉVÉNEMENTS INDÉPENDANTS

1 Couple d’événements indépendants
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Définition 8 : Indépendance de deux événements

Deux événements A et B d’un espace probabilisé (Ω,A ,P) sont dits indépen-
dants lorsque

On note A ⊥⊥ B lorsque A et B sont indépendants.

Propriété 17 : Caractérisation par probabilités conditionnelles

Deux événements A et B d’un espace probabilisé (Ω,A ,P) tels que P(B) > 0
sont indépendants si et seulement si

Remarque

R 14 – Cela traduit bien notre intuition : que B soit réalisé ou non, la probabilité de A ne
change pas.

R 15 – Bien sûr, si P(A) > 0, cela s’écrit aussi P(B | A) =P(B).
R 16 – " Ne pas confondre l’indépendance de deux événements et le fait qu’ils soient

incompatibles. Ces notions s’excluent en général. En effet, si A et B sont incompa-
tibles, A ∩B =∅, donc P(A ∩B) = 0. Si A et B sont de probabilité non nulle, ils ne sont
pas indépendants. (Ce qui se comprend car A ⊂ B par exemple).

R 17 – Contrairement à l’incompatibilité qui est une notion ensembliste, l’indépendance est
une notion probabiliste : elle dépend de la probabilité dont est muni Ω.

R 18 – Il n’est pas toujours facile de prédire si deux événements sont indépendants.

Naturellement, si deux événements sont indépendants, leurs complémentaires le sont. Plus
précisément :

Propriété 18 : Indépendance et complémentaire

Si deux événements A et B d’un espace probabilisé (Ω,A ,P) sont indépen-
dants, alors

■ A et B sont indépendants,
■ A et B sont indépendants,
■ A et B sont indépendants.

Remarque

R 19 – Si A,B sont indépendants et A,C aussi, on ne peut rien dire en général de A et B ∩C
et de A et B ∪C .

Exercice 5
On lance deux pièces équilibrées et l’on considère les événements A « le premier lan-

cer donne Pile », B « le deuxième lancer donne Pile » et C « les deux lancer donnent le
même résultat ».

Montrer que A,B ,C sont deux à deux indépendants mais que A n’est indépendant ni
de B ∩C , ni de B ∪C .

2 Famille d’événements indépendants

Définition 9 : Événements indépendants vs 2 à 2 indépendants

Soit (Ai )i∈I avec I fini ou dénombrable une famille d’événements.

■ Les Ai sont dit deux à deux indépendants lorsque pour tout i 6= j , Ai et A j sont
indépendant, c’est-à-dire que P(Ai ∩ A j ) =P(Ai )P(A j ).

■ Les Ai sont dit indépendants, lorsque

Remarque

R 20 – C’est une propriété très forte : elle demande de vérifier énormément conditions ! En
général, les espaces probabilisés sont construits pour avoir des événements indépen-
dants et on n’a donc pas à le vérifier à la main.

R 21 – L’indépendance est stable par extraction de sous-familles.

Propriété 19 : Indépendants ⇒ 2 à 2 ⊥⊥
Si les Ai sont indépendants, alors ils sont deux à deux indépendants.
La réciproque est fausse si n ⩾ 3.

Remarque

R 22 – Attention c’est l’inverse des nombres premiers / polynômes entre eux :
indépendants globalement ⇒ deux à deux.

R 23 – Si les événements Ai sont deux à deux indépendants et si pour tout i on pose Bi = Ai
ou Ai , alors les Bi sont deux à deux indépendants d’après la propriété vue précé-
demment. Cela se généralise aux événements indépendants :
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Propriété 20 : Passages au complémentaire dans l’indépendance

Si les événements Ai pour i ∈ I sont indépendants et si pour tout i ∈ I on pose
Bi = Ai ou Ai , alors les Bi sont indépendants.

Exercice 6 : Indicatrice d’Euler
SoitΩ= J1,nK où n est un entier non premier supérieur ou égal à 2, muni de la probabilité

uniforme. Si d |n, on note Ad = {kd | k ∈Ω et kd ∈Ω}.

1. Quelle est la probabilité de Ad ?
2. Soit P l’ensemble des diviseurs premiers de n.

(a) Démontrer que
(

Ap
)

p∈P est une famille d’événements indépendants.

(b) En déduire le cardinal φ(n) de l’ensemble A des nombres inférieurs ou égaux à
n et premiers avec n (indicatrice d’Euler).

Exercice 7
Si A1, . . . , An sont indépendants, 1 ⩽ p ⩽ n −1, Montrer que les événements suivants sont

indépendants :

■
p⋂

i=1
Ai et

n⋂
i=p+1

Ai , ■
p⋃

i=1
Ai et

n⋂
i=p+1

Ai . ■
p⋃

i=1
Ai et

n⋃
i=p+1

Ai ,

IV VARIABLES ALÉATOIRES DISCRÈTES
On se donne une espace probabilisé (Ω,A ,P).

1 Définition

Définition 10 : Variable aléatoire discrète
Soit E un ensemble quelconque. Une application X : Ω → E est appelée va-

riable aléatoire discrète sur (Ω,A ,P) lorsqu’elle vérifie
(i)

(ii)

Elle est dite réelle lorsque E ⊂R.

Remarque

R 24 – La notation (X = x) est un peu déroutante, cela revient par exemple à noter
πZ= sin−1({0}) = (sin = 0).
Si A est une partie de E , on note (X ∈ A) l’événement X−1(A) = {ω ∈Ω, X (ω) ∈ A}.

R 25 – On note aussi, pour une variable aléatoire réelle,

(X ⩽ x) = X−1(]−∞, x]) = {ω ∈Ω, X (ω)⩽ x}

et on introduit de la même façon, (X < x), (X ⩾ x), (X > x).
R 26 – Enfin, si f est une fonction définie sur X (Ω), on note f (X ) la fonction f ◦ X . Est-ce une

variable aléatoire? Oui. Voir ci-après.
R 27 – La deuxième condition est là pour qu’on puisse calculer la probabilité P(X = x) pour

tout x ∈ X (Ω).
Si x ∈ E \ X (Ω), (X = x) =∅ ∈A également.

R 28 – On ne demande pas que E soit fini ou dénombrable, seulement que X (Ω) le soit : si
des valeurs de E ne sont pas atteintes, on peut s’en débarrasser.
On ne demande pas non plus que l’univers Ω soit fini ou dénombrable.

R 29 – Lorsque l’univers est fini ou dénombrable, on choisit A =P (Ω) et toute fonction de Ω
dans E est une variable aléatoire discrète.

Exemple : fondamental

E 8 – Si F événement de l’univers Ω, alors

1F :

Ω −→ {0,1}

ω 7−→
 1 si ω ∈ F

0 si ω 6∈ F

est une variable aléatoire.
P(1F = 1) =P(F ) et P(1F = 0) =P

(
F

)
.

Propriété 21 : SCE associé à une variable aléatoire(
(X = x)

)
x∈X (Ω)

est un système complet d’événements appelé système complet
d’événements associé à X .

Remarque

R 30 – On peut remplacer X (Ω) par E , ce qui revient à ajouter des ensembles vides.
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Propriété 22 : Les parties de X (Ω) sont des événements

Soit X une variable aléatoire discrète sur (Ω,A ,P). Alors pour toute partie A de
X (Ω), (X ∈ A) ∈A .

Propriété 23 : Une fonction d’une v.a.d. est une v.a.d.

Si X : Ω→ E est une variable aléatoire discrète, si f : E → F est une fonction (ou
application) quelconque, alors f ◦X , notée f (X ) est une variable aléatoire discrète.

2 Loi
On fixe X une variable aléatoire discrète sur (Ω,A ,P).

Définition 11 : Loi d’une v.a.d.
L’application

PX :
P (X (Ω)) −→ R

A 7−→ P(X ∈ A)

est appelée loi de X .

Propriété 24 : La loi est une probabilité

PX est une probabilité sur l’espace probabilisable
(
X (Ω),P (X (Ω))

)
.

Remarque

R 31 – Comme X (Ω) est au plus dénombrable, il n’est pas choquant de choisir P (X (Ω))
comme tribu.(
X (Ω),P (X (Ω)),PX

)
est l’espace probabilisé associé à X .

Propriété 25 : Expression de la loi de X

Si A ∈P (X (Ω)), PX (A) =

Corollaire 3

La loi de X est uniquement déterminée par la distribution de probabilités
(P(X = x))x∈X (Ω).

Remarque

R 32 – Ainsi, pour décrire la loi d’une variable aléatoire, on se contente de préciser X (Ω) et
les P(X = x) pour x ∈ X (Ω).
On verra plus loin les lois usuelles à connaître parfaitement.

Notation 1 : ∼
Si X et Y suivent la même loi, on note X ∼ Y .
Si X suit une loi L , on note X ∼L .

Exercice 8 : CCINP 109

Exercice 9 : CCINP 104

Propriété 26 : Loi de f (X )

La loi de Y = f (X ) est donnée par ∀ y ∈ f (X (Ω)),

De la même manière, on obtient par exemple :

Propriété 27 : Loi d’une somme, d’un produit

Si X et Y sont des variables aléatoires,
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V FAMILLES DE VARIABLES ALÉATOIRES
Soit (Ω,A ,P) espace probabilisé.

1 Définition et lois

a Couple de variables aléatoires discrètes
Les notions vues en première année se généralise sans problème particulier.

Définition – Propriété 1

Soit X ,Y variables aléatoires discrètes sur Ω à valeurs dans E ,E ′. L’application

Z :
Ω −→ E ×E ′

ω 7−→ (X (ω),Y (ω))

est une variable aléatoire discrète appelée couple Z = (X ,Y ).

Remarque

R 33 – (X ,Y )(Ω) ⊂ X (Ω)×Y (Ω) et il n’y a pas égalité en général.
R 34 – On note indifféremment ((X ,Y ) = (x, y)) ou (X = x) ∩ (Y = y) ou (X = x et X = y) ou

(X = x,Y = y) ces événements.

Propriété 28 : SCE associé à un couple

Soit (X ,Y ) un couple de variables aléatoires discrètes. Alors la famille d’événe-
ments

(
((X ,Y ) = (x, y))

)
(x,y)∈X (Ω)×Y (Ω) est un système complet d’événements appelé

système complet d’événements associé au couple (X ,Y ).

Remarque

R 35 – On sait donc que
■ Si X et Y sont deux variables aléatoires discrètes définies sur un espace proba-

bilisé (Ω,A ,P ), le « couple »
(X ,Y ) : ω 7−→ (X (ω),Y (ω))

est une variable aléatoire discrète.

■ Si Z : Ω → E est une variable aléatoire discrète, si f : E → F est une fonction
quelconque, alors f ◦Z , notée f (Z ) est une variable aléatoire discrète.

Et constatons que donc, si X et Y sont des variables aléatoires discrètes réelles définies
sur unmême univers probabilisé, alors X +Y , X Y , min(X ,Y ), max(X ,Y ) sont des variables
aléatoires réelles discrètes.
Bien sûr, il y aussi Γ

(
Arctan

(
1+X 2 +Y 2

))
, mais on n’a cité que quelques exemples fré-

quemment utiles.

Pour calculer les lois :

P(X +Y = z) = ∑
x,y | x+y=z

P
(
X = x,Y = y

)
et P(X Y = z) = ∑

x,y | x y=z
P

(
X = x,Y = y

)

b Loi conjointe

Définition 12 : Loi conjointe

Soit (X ,Y ) un couple de variable aléatoires discrètes. On appelle loi conjointe
de (X ,Y ) la loi P(X ,Y ) de la variable aléatoire (X ,Y ).

Remarque

R 36 – Vu la propriété précédente, cette loi est déterminée par P(X = x,Y = y) pour
(x, y) ∈ X (Ω)×Y (Ω). Lorsque les variables aléatoires sont finies, cette loi peut être re-
présentée dans un tableau à double entrée.

Exemple

E 9 – On lance deux dés, X est la v.a. égale au plus grand des nombres, Y celle du plus
petit. On pose Ω= J1,6K2 muni de la probabilité uniforme. Calculer la loi conjointe de
(X ,Y ).

c Lois marginales

Définition 13 : Lois marginales

Si (X ,Y ) est un couple de variables aléatoires discrètes, les lois de X et de Y sont
appelées première et seconde lois marginales du couple.
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Propriété 29 : Loi conjointe détermine lois marginales

La loi conjointe de (X ,Y ) détermine les lois marginales de (X ,Y ) mais la réci-
proque est fausse.

d Lois conditionnelles

Définition 14 : Loi conditionnelle
Soit (X ,Y ) un couple de variables aléatoires discrètes. Pour tout x ∈ X (Ω) tel que

P(X = x) 6= 0, la loi conditionnelle de Y sachant (X = x) est la loi de Y pour la proba-
bilité conditionnelle P(X=x).

Elle est donc déterminée par, pour tout y ∈ Y (Ω),

P(Y = y | X = x) = P(X = x,Y = y)

P(X = x)
.

Remarque

R 37 – Les lois conditionnelles de Y sachant (X = x) et la loi de X permettent de déterminer
la loi conjointe de (X ,Y ) :

■ Soit P(X = x) = 0 et alors P(X = x,Y = y)⩽P(X = x) = 0 donc P(X = x,Y = y) = 0,
■ soit P(X = x) 6= 0 et

P(X = x,Y = y) =P(Y = y | X = x)P(X = x).

2 Extension aux n-uplets

Définition 15 : n-uplets de variables aléatoires

Soit (X1, . . . , Xn ) un n-uplet de variables aléatoires discrètes. C’est encore une
variable aléatoire discrète appelé vecteur aléatoire discret de dimension n.

La loi conjointe de (X1, . . . , Xn ) est déterminée par les P(X1 = x1, . . . , Xn = xn ) où
pour tout i , xi ∈ Xi (Ω).

Les lois de X1, . . . , Xn sont les lois marginales de (X1, . . . , Xn ).

Définition 16 : Loi conditionnelle pour n variables

Si x1, . . . , xn−1 sont fixés, tel que P(X1 = x1, . . . , Xn−1 = xn−1) > 0, la loi conditionnelle
de Xn sachant (X1 = x1, . . . , Xn−1 = xn−1) est déterminée par

P(Xn = xn | X1 = x1, . . . , Xn−1 = xn−1) = P(X1 = x1, . . . , Xn = xn )

P(X1 = x1, . . . , Xn−1 = xn−1)

pour tout xn .

Remarque

R 38 – Lorsque l’on a la propriété
P

(
Xi+1 = xi+1 | X1 = x1, . . . , Xi = xi

)=P(Xi+1 = xi+1 | Xi = xi )

(phénomène sans mémoire), on dit que la famille (X1, . . . Xn ) de variables aléatoires
estmarkovienne.

3 Indépendance

a Cas d’un couple de variable

Définition 17 : Indépendance

Soient X ,Y deux variables aléatoires discrètes sur l’espace probabilisé (Ω,A ,P).
X et Y sont dites indépendantes si pour tout (A,B) ∈ P (X (Ω))×P (Y (Ω)), les évé-

nements (X ∈ A) et (Y ∈ B) sont indépendants, c’est-à-dire

On note parfois X ⊥⊥ Y .

Propriété 30 : Caractérisation par des événements élémentaires

X et Y sont indépendantes si et seulement si pour tout (x, y) ∈ X (Ω)×Y (Ω), (X = x)
et (Y = y) sont indépendants, c’est-à-dire
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Remarque

R 39 – Si X et Y sont indépendantes, la donnée des lois marginales de (X ,Y ) détermine sa
loi conjointe.

Propriété 31 : Caractérisation par les lois conditionnelles

Soit (X ,Y ) couple de variables aléatoires. Il y a équivalence entre
(i) Les variables aléatoires X et Y sont indépendantes.
(ii) Pour tout y ∈ Y (Ω) tel que P(Y = y) > 0, la loi de X sachant (Y = y) est la même

que la loi de X .
(iii) Pour tout x ∈ X (Ω) tel que P(X = x) > 0, la loi de Y sachant (X = x) est la même

que la loi de Y .

Propriété 32 : Fonctions de variables aléatoires indépendantes

Si X ,Y sont des variables aléatoires indépendantes, f , g définies sur X (Ω) et Y (Ω)
respectivement, alors

Exemple

E 10 – Si X et Y sont indépendantes, pour tous m,n ∈N, X m et Y n le sont.

Remarque

R 40 – En reprenant un calcul précédent, on obtient, si X ,Y indépendantes,
P(X +Y = z) =

où l’on peut remplacer X +Y (et x + y) par n’importe quelle fonction de X et Y .

b Variables aléatoires indépendantes

Définition 18 : Variables aléatoires indépendantes

Des variables aléatoires discrètes X1, . . . , Xn sont dites indépendantes lorsque
pour toutes parties A1 de X1(Ω), …, An de Xn (Ω), les événements (X1 ∈ A1), …,
(Xn ∈ An ) le sont.

Une suite (Xn )n∈N de variables aléatoires discrètes est dite une suite de variables
aléatoire indépendantes lorsque pour tout n ∈N, X1, . . . , Xn le sont.

Si, de plus, elles ont même loi, on dit que ce sont des variables aléatoires indé-
pendantes identiquement distribuées (vaiid).

Propriété 33 : Caractérisation par des événements élémentaires

X1, . . . , Xn sont indépendantes si et seulement si pour tout
(x1, . . . , xn ) ∈ X1(Ω)×·· ·×Xn (Ω), les événements (X1 = x1), …, (Xn = xn ) le sont.

Remarque

R 41 – n expériences aléatoires indépendantes peuvent être modélisées par n variables
aléatoires indépendantes. Le résultat de la ie expérience est noté Xi et

P(X1 = x1, . . . , Xn = xn ) =P(X1 = x1) · · ·P(Xn = xn ).

R 42 – Comme pour les événements, indépendants ⇒ indépendants deux à deux, mais la
réciproque est fausse si n > 2.

Exemple

E 11 – Si X1, X2 vaiid finies de loi uniforme U (2) sur {−1,1}. X3 = X1 × X2. Montrer que X1, X2, X3
sont deux à deux indépendantes mais pas indépendantes globalement.
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Propriété 34 : Fonctions de variables aléatoires indépendantes

Si (Xn )n∈N est une famille de variables aléatoires indépendantes, pour tout
n ∈N, fn définie Xn (Ω), alors

Propriété 35 : Lemme des coalitions

Soit n,m ∈ N tels que 0 < m < n, X1, . . . , Xm , . . . , Xn des variables aléatoires dis-
crètes indépendantes sur (Ω,A ,P), f définie sur X1(Ω)× ·· · × Xm (Ω) et g définie sur
Xm+1(Ω)×·· ·×Xn (Ω).

Le résultat s’étend à plus de deux coalitions.

Théorème 1

Soit (Ln )n∈N une suite de lois de probabilités discrètes.
Il existe un espace probabilisé (Ω,A ,P) et une suite (Xn )n∈N de variables aléa-

toires discrètes indépendantes sur (Ω,A ,P) tels que pour tout n ∈N, Xn ∼Ln .

Exemple

E 12 – Un jeu de pile ou face infini se modélise (naturellement) par une suite d’épreuves de
Bernoulli indépendantes.

Démonstration : Admis

■

Exemple

E 13 – Reprenons l’exemple E7 et montrons que l’événement A « la pièce donne Pile un
nombre fini de fois » est négligeable.

VI LOIS USUELLES

1 Loi Uniforme

Définition 19 : Loi uniforme
On dit que qu’une variable aléatoire finie X suit une loi uniforme lorsque pour

tout x ∈ X (Ω),
PX ({x}) =P(X = x) = 1

n

où n = |X (Ω)|, c’est-à-dire que pour tout A ⊂ X (Ω), PX (A) = |A|
n
.

On note alors X ∼U (n).

Exemple

E 14 – Si on tire un dééquilibré à n faces ou si on tire uneboule dans une urne qui en contient
n (numérotée), alors la variable aléatoire du résultat suit U (n).

Remarque

R 43 – " cela ne concerne pas de la probabilité P initiale : PX peut être uniforme sans
que P le soit.
Si, par exemple, on lance un dé à 6 faces truqué tel que l’on obtient 1 ou 6 avec
une probabilité 1/4 et 2,3,4 ou 5 avec probabilité 1/8, X variable aléatoire 12N, alors
P(X = 0) =P(X = 1) = 1/2 donc X ∼U (2) alors que P n’est pas la probabilité uniforme.

2 Loi de Bernoulli

Définition 20 : Loi de Bernoulli
On dit que X suit une loi de Bernoulli de paramètre p ∈ [0,1] lorsque X est à

valeurs dans E = {0,1}, P(X = 1) = p et P(X = 0) = q = 1−p.
On note alors X ∼B(p).
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Exemple : Situation type

E 15 – Variable aléatoire étudiant le succès (1) d’un événement donné ou son échec (0).

Propriété 36 : Ce sont les fonctions indicatrices

Les variables aléatoires qui suivent une loi de Bernoulli de paramètre p sont
exactement les fonctions indicatrices des parties F de Ω telles que P(F ) = p.

Remarque

R 44 – Deux variables aléatoires de Bernoulli sont indépendantes si et seulement si (X = 1) et
(Y = 1) le sont.

R 45 – Si X prend deux valeurs a et b distinctes, alors Y = X −a

b −a
suit une loi de Bernoulli de

paramètre p =P(X = b).
Autrement dit, X = a + (b −a)Y où Y suit une loi de Bernoulli.

3 Loi binomiale
Lors de la répétition de n expériences de Bernoulli indépendantes, la probabilité d’avoir k ⩽ n

succès s’écrit
(

n

k

)
pk (1−p)n−k où p est la probabilité d’un succès.

Si on appelle X la variable aléatoire du nombre de succès, à valeurs dans J0,nK, alors elle
suit la loi donnée par

P(X = k) =
(

n

k

)
pk (1−p)n−k .

Remarquons que l’on peut écrire X = X1 +·· ·+ Xn où Xi est la variable aléatoire de Bernoulli
succès à la ie répétition.

Définition 21 : Loi binomiale
On dit que X suit une loi binomiale de paramètre (n, p) où p ∈ [0,1] lorsque X est

à valeurs dans J0,nK et pour tout k ∈ J0,nK,
P(X = k) =

(
n

k

)
pk (1−p)n−k =

(
n

k

)
pk qn−k

avec q = 1−p. On note alors X ∼B(n, p).

Exemple : Situation type

E 16 – Nombre de succès dans la répétition de n expériences de Bernoulli indépendantes.

Remarque
R 46 – B(1, p) =B(p).

R 47 – La formule du binôme redonne (ou se retrouve par)
n∑

k=0
P(X = k) = 1.

FIGURE 1 – Loi B(10, 1/4)

Exercice 10
Si X ∼B(n, p) alors Y = n −X ∼B(n, q).

4 Loi géométrique
Soit p ∈]0,1[.

On lance une infinité de fois une pièce donnant pile avec probabilité p. Les lancers sont
indépendants.

Soit Xn la variable aléatoire du succès au ne lancer : elle vaut 1 si c’est pile, et 0 sinon.

(Xn )n∈N∗ est une suite de vadiid, toutes de loi B(p).

Soit X la variable aléatoire du rang du premier succès : pour tout ω ∈Ω, X (ω) =
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Soit n ∈N∗.

■ (X > n) =

P(X > n) =

■ (X = n) =

P(X = n) =

■ En passant au contraire,
P(X ⩽ n) =

■ Soit A l’événement « N’obtenir que des faces », et An = (X > n).
Alors (An ) est décroissante et A = ⋂

n∈N∗
An .

Par continuité décroissante,

P(An ) =

Définition 22 : Loi géométrique

Soit p ∈]0,1[ et X une variable aléatoire discrète. On dit que X suit une loi géo-
métrique de paramètre p si X est à valeurs dans et

On note X ∼G (p).

Remarque

R 48 – Première loi dénombrable du programme. On vérifie bien
+∞∑
n=1

P(X = n) = 1.

R 49 – De nouveau, on calcule (à savoir faire !)
P(X > n) =

Exemple : Situation type

E 17 – Le rang du premier succès dans une répétition infinie d’épreuves de Bernoulli indé-
pendantes de paramètre p suit G (p).

5 Loi de Poisson

Définition 23 : Loi de Poisson
Soit λ ∈ R∗+ et X une variable aléatoire discrète. On dit que X suit une loi de

Poisson de paramètre λ si X est à valeurs dans et

On note X ∼P (λ).

Remarque

R 50 – On vérifie bien
+∞∑
n=0

P(X = n) = 1.

6 Propriétés des lois usuelles

a Somme de n vaiid de Bernoulli

Propriété 37 : Importante !

Si X1, . . . , Xn vaiid de loi B(p), alors

X1 + . . .+Xn ∼

Remarque

R 51 – Plus généralement, si les Xi indépendantes suivent B(ni , p), alors
X1 +·· ·+Xn ∼B(

∑
ni , p).

b Approximation d’une loi de Poisson par des lois binomiales

Propriété 38 : Approximation d’une loi de Poisson par des lois binomiales

Soit λ > 0, (pn )n ∈]0,1[N tel que npn → λ, (Xn )n une suite de variables aléatoires
discrètes réelles.

On suppose que pour tout n ∈N, Xn ∼B(n, pn ).

Alors, pour tout k ∈N, P(Xn = k) −−−−−→
n→+∞

λk

k !
e−λ.
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Remarque

R 52 – Une loi binomiale B(n, p) (qui peut être vue comme nombre de succès dans la ré-
pétition de n épreuve de Bernoulli avec probabilité p de succès) peut donc être
approchée par une loi de Poisson P (λ) où λ = np à condition que n soit grand et
p = λ

n
soit petit.

La loi de Poisson est qualifiée de loi des événements rares.

7 Exercices CCINP

Exercice 11 : CCINP 98 Exercice 12 : CCINP 95

VII ESPÉRANCE
On fixe ici un espace probabilisé (Ω,A ,P).

1 Définition

Définition 24 : Espérance d’une variable aléatoire discrète réelle positive

Soit X une variable aléatoire discrète à valeurs dans R+∪ {+∞}.
L’espérance de X est, par définition, dans [0,+∞],

On a donc E(X ) ∈ R∪ {+∞} suivant la sommabilité ou non de la famille réelle
positive (P(X = x)x)x∈X (Ω).

Lorsque cette famille est sommable, X est dite d’espérance finie E(X ) ∈R et on
note X ∈ L1.

Propriété 39 : Cas d’une variable aléatoire entière

Soit X une variable aléatoire à valeurs dans N∪ {+∞}. Alors

Définition 25 : Espérance d’une variable aléatoire discrète réelle ou complexe

Soit X une variable aléatoire réelle ou complexe discrète.
Lorsque la famille (P(X = x) x)x∈X (Ω) est sommable, on dit que X est d’espérance

finie, on note X ∈ L1 et on définit son espérance

E(X ) = ∑
x∈X (Ω)

P(X = x)x.

Dans le cas contraire, X n’a pas d’espérance (pas plus infinie que finie)
Lorsque X est d’espérance finie et E(X ) = 0, X est dite centrée.

Remarque

R 53 – Une expression équivalente à « X est d’espérance finie » est « X a un moment d’ordre
1 ».

R 54 – Une variable aléatoire réelle finie est toujours d’espérance finie (programme de
MP2I).

R 55 – Une variable aléatoire à valeurs dénombrables (xn )n∈N est d’espérance fi-
nie si et seulement si la série

∑
n∈N

P(X = xn )xn converge absolument, et alors

E(X ) =
+∞∑
n=0

P(X = xn )xn .

R 56 – Ne pas confondre « centrée » et « symétrique » : si
P (X = 1) = P (X = 2) = P (X = 3) = P (X =−6) = 1/4,

la variable aléatoire X est bien centrée. Pour autant, X et −X n’ont pas même loi.

2 Théorème de transfert

Théorème 2 : de transfert

Soit X un variable aléatoire discrète, f une fonction définie sur X (Ω), à valeurs
complexes.

f (X ) est d’espérance finie si et seulement si la famille
(
P(X = x) f (x)

)
x∈X (Ω) est

sommable, et dans ce cas

Remarque

R 57 – Pas besoin de connaître la loi de f (X ) !
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Corollaire 4 : Espérance du module

X a une espérance finie si et seulement si |X | a une espérance finie.
Le cas échéant,

Corollaire 5 : Sur un univers fini ou dénombrable

Uniquement dans le cas où Ω est fini ou dénombrable, X est d’espérance finie
si et seulement si

(
P({ω})X (ω)

)
ω∈Ω est sommable et dans ce cas

Remarque

R 58 – Vu en MP2I dans le cas fini.

Exercice 13 : CCINP 97

3 Propriétés de l’espérance
Une espérance peut être vue comme une intégrale, ce qui rend toutes ces propriétés natu-

relles.

Propriété 40 : de l’espérance

X et Y désignent deux variables aléatoires réelles ou complexes discrètes.
(i) Si X est constante presque sûrement, c’est-à-dire qu’on a a ∈ K tel que

P(X = a) = 1, alors elle est d’espérance finie E(X ) =
(ii) Linéarité : si X ,Y ∈ L1 et λ ∈K, X +λY ∈ L1 et

E(X +λY ) =

(iii) Positivité : si X ∈ L1 est à valeurs réelles, positive presque sûrement ie
P(X ⩾ 0) = 1, alors

Positivité améliorée : si X est à valeurs réelles, positive presque sûrement et si

(iv) Croissance : si X ,Y ∈ L1 sont à valeurs réelles et si X ⩽ Y presque sûrement,
alors

(v) Si X ∈ L1, est centrée et appelée variable aléatoire centrée as-
sociée à X .

(vi) Inégalité triangulaire : Si X ∈ L1, |X | ∈ L1 et

(vii) Si Y ∈ L1 et |X |⩽ Y , alors X ∈ L1 et

En particulier, si X est bornée, elle est d’espérance finie.

Corollaire 6 : Espace vectoriel L1

L’ensemble L1 des variables aléatoires discrètes sur (Ω,A ,P) admettant une es-
pérance finie est donc un K-espace vectoriel et X 7→E(X ) est une forme linéaire
sur L1.

Exercice 14 : Inégalité de Jensen
Si X est une variable aléatoire réelle finie et ϕ une fonction réelle d’une variable réelle

convexe, montrer que
ϕ(E(X ))⩽E(ϕ(X )).

Si X est une variable aléatoire réelle discrète, ϕ une fonction réelle d’une variable réelle
convexe dérivable, et si X et ϕ(X ) sont d’espérance finie, en comparant la courbe de ϕ à
une de ses tangentes, retrouver l’inégalité précédente.

4 Espérances des lois usuelles

Propriété 41 : Espérance des lois usuelles

(i) Si X ∼B(p), alors E(X ) =

(ii) Si X ∼B(n, p), alors E(X ) =

(iii) Si X ∼G (p), alors E(X ) =

(iv) Si X ∼P (λ), alors E(X ) =
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Remarque

R 59 – L’espérance d’une loi uniforme est lamoyenne arithmétiques des valeurs (en nombre
fini) prises par la variable aléatoire.

Corollaire 7 : Cas d’une fonction indicatrice

Soit A un événement de notre tribu A . Alors 1A a une espérance finie et
E(1A) =

Exercice 15 : Formule de Poincaré

En remarquant que P

(
n⋃

i=1
Ai

)
= 1−P

(
n⋂

i=1
Ai

)
= 1−E

(
1⋂n

i=1 Ai

)
, prouver la formule de Poin-

caré.

5 Exercices CCINP

Exercice 16 : CCINP
102

Exercice 17 : CCINP
103

Exercice 18 : CCINP
106

Exercice 19 : CCINP
108

Exercice 20 : CCINP
111

6 Espérance et indépendance

Propriété 42 : Espérance et indépendance

Soit X , Y ∈ L1 indépendantes. Alors X Y ∈ L1, et

Réciproque fausse en général.
Plus généralement, si (X1, . . . , Xn ) est une famille de variables aléatoires indépen-

dantes d’espérance finie, alors
n∏

i=1
Xi l’est et

VIII VARIANCE, ÉCART-TYPE ET COVARIANCE
On fixe ici un espace probabilisé (Ω,A ,P). Les variables aléatoires considérées sont à valeurs

réelles.

1 Espace L2

Sous réserve d’existence, les moments (dénomination hors programme) d’une variable aléa-
toire sont les E

(
|X |k

)
pour k ∈N∗. Ce sont des paramètres numériques qui donnent des rensei-

gnements sur sa loi. En général, on se limite aux moments d’ordre 1 (espérance) et d’ordre 2
(permet d’obtenir la variance).

Notation 2 : L2

Soit X une variable aléatoire réelle discrète.
On note X ∈ L2 lorsque X 2 est d’espérance finie (ce qu’on peut noter

E
(
X 2)<+∞ car X 2 est à valeurs réelles positives).

Propriété 43 : Inégalité de Cauchy-Schwarz

Si deux variables aléatoires réelles discrètes X ,Y ∈ L2, leur produit X Y ∈ L1, et

avec égalité si et seulement si X et Y sont colinéaires presque sûrement, c’est-
à-dire

Corollaire 8

L2 est un R-espace vectoriel.

Propriété 44 : L2 ⊂ L1

Si X ∈ L2, X ∈ L1.
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Remarque

R 60 – Donc L2 est un sous-espace de L1.

2 Variance et écart-type

Définition 26 : Variance, écart-type, variable réduite

Soit X ∈ L2.
On appelle variance de X le nombre

On appelle écart-type de X le nombre

Lorsque V(X ) = 1, X est dite réduite.

Remarque

R 61 – V(X ) est le moment d’ordre 2 de la variable aléatoire centrée associée à X : X −E(X ).
Par positivité de l’espérance, V(x)⩾ 0 donc l’écart-type est bien défini.

R 62 – L’écart-type d’une variable aléatoire finie s’interprète comme une distance eucli-
dienne dans Rn entre le vecteur dont les coordonnées sont les valeurs prises par
X et le vecteur dont toutes les coordonnées valent E(X ). C’est donc un indicateur
de dispersion de X autour de sa moyenne E(X ).

R 63 – Ne pas hésiter à noter m =E(X ). Il est plus facile à visualiser E(X −m) =E(X )−m = 0 que
E(X −E(X )) =E(X )−E(X ) = 0, par exemple.

R 64 – D’après la formule de transfert, si les valeurs prises par X sont les xi pour i ∈ I et
m =E(X ),

V(X ) = ∑
i∈I

P(X = xi )(xi −m)2.

R 65 – Plus la variance (et donc l’écart-type) est petit, plus X est concentrée autour de sa
moyenne m =E(X ).
Le cas extrême est pour une variable aléatoire constante : V(X ) = 0.
Réciproquement, si V(X ) = 0, alors

∀x ∈ X (Ω), P(X = x) = 0 ou x = m =E(X ).

Autrement dit, P(X 6= m) = 0 ou encore P(X = m) = 1 : X est constante presque sûre-
ment.

Exercice 21 : CCINP 100

Propriété 45 : de la variance

Soit X ∈ L2.
(i) Formule de Kœnig-Huygens :

(ii) Si a,b ∈R,

(iii) Si σ(X ) 6= 0, est centrée réduite, appelée variable aléatoire centrée
réduite associée à X .

Remarque

R 66 – La deuxième formule est intuitive au sens où une translation des valeurs de X ne
perturbe la distance à la moyenne, et comme cette distance est au carré, une ho-
mothétie de rapport a la multiplie par a2.

3 Covariance

Définition 27 : Covariance

Soit (X ,Y ) ∈ (
L2)2 un couple de variables aléatoires réelles discrètes admettant

un moment d’ordre 2.
On appelle covariance du couple (X ,Y ) le nombre

Lorsque Cov(X ,Y ) = 0, X et Y sont dites non corrélées.

Remarque

R 67 – La covariance mesure la corrélation entre les variations de X et de Y dans le sens
où elle est positive lorsque X et Y s’écartent de leur moyenne dans le même sens, et
négative si c’est dans le sens opposé.

R 68 – Cela ressemble à un produit scalaire et ce n’est pas un hasard ! On va vérifier que
c’est une forme bilinéaire symétrique positive. La variance correspond au carré de
la « norme » (et donc l’écart-type à la « norme ».)
Elle n’est pas définie positive mais presque : Cov(X , X ) = V(X ) = 0 =⇒ X = 0 presque
sûrement.
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Propriété 46 : de la covariance

Soient X , Y ∈ L2 deux variables aléatoires réelles discrète admettant unmoment
d’ordre 2.

(i) Cov est une forme bilinéaire symétrique positive.
(ii) Formule de Kœnig-Huygens :

(iii) V(X +Y ) =
(iv) Si X ⊥⊥ Y , Cov(X ,Y ) = 0 et la réciproque est fausse.
(v) Inégalité de Cauchy-Schwarz :

(Cov(X ,Y ))2 ⩽V(X )V(Y ) i e |Cov(X ,Y )|⩽σ(X )σ(Y )

avec égalité si et seulement si les variables aléatoires sont colinéaires presque
sûrement.

Remarque

R 69 – Cov(X ,Y )

σ(X )σ(Y )
= Cov

(
X

σ(X )
× Y

σ(Y )

)
∈]−1,1[ est le cœfficient de corrélation de X et Y .

4 Variance d’une somme de variables aléatoires

Propriété 47 : Variance d’une somme

Soient X1, . . . , Xn ∈ L2.
(i) X1 +·· ·+Xn ∈ L2 et

(ii) Si X1, . . . , Xn sont décorrélées deux à deux (i 6= j ⇒ Cov(Xi , X j ) = 0),

En particulier, si X1, . . . , Xn sont des vaiid,

V(X1 +·· ·+Xn ) = nV(X1).

5 Cas des lois usuelles

Propriété 48 : Espérance et variance des lois usuelles

(i) Si X ∼B(p),

(ii) Si X ∼B(n, p),

(iii) Si X ∼G (p),

(iv) Si X ∼P (λ),

IX INÉGALITÉS DE MARKOV ET DE BIENAYMÉ-TCHEBYCHEV, LOI FAIBLE
DES GRANDS NOMBRES

Propriété 49 : Inégalité de Markov

Soit X ∈ L1 une variable aléatoire discrète admettant une espérance finie. Pour
tout a > 0,

Remarque

R 70 – Si X est à valeurs positives, on a donc aussi P(X ⩾ a)⩽ E(X )

a
.

R 71 – On a aussi P(|X | > a)⩽ E(|X |)
a

.
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Propriété 50 : Inégalité de Bienaymé-Tchebychev

Soit X ∈ L2 une variable aléatoire réelle discrète admettant un moment d’ordre
2, a > 0.

c’est-à-dire, en notant m l’espérance de X et σ son écart-type,

Remarque

R 72 – Le a2 est logique pour des raisons d’homogénéité (dimension).
R 73 – On retrouve avec l’inégalité de Bienaymé-Tchebychev, le fait que si V(X ) = 0,

∀ε> 0, P(|X −E(X )|⩾ ε) = 0.

Donc, P(|X −E(X )| > 0) = 0, c’est-à-dire P(X =E(X )) = 1.

R 74 – En particulier, P (|X −E(X )| < a)⩾ 1− V(X )

a2
.

Intuitivement, en répétant de nombreuses fois un lancer de pièce équilibrée, la fréquence
d’apparition de pile doit se rapprocher de 1

2
.

Le théorème suivant permet de donner un cadre théorique à cette intuition.

Théorème 3 : Loi faible des grands nombres

Soit (Xn )n⩾1 ∈ (
L2)N∗

une suite de variable aléatoires discrètes réelles deux à
deux indépendantes identiquement distribuées (de même loi) sur (Ω,A ,P), ad-
mettant un moment d’ordre 2. Soit m l’espérance de Xn et σ son écart-type.

On pose enfin Sn = X1 +·· ·+Xn .
Pour tout ε> 0,

Remarque

R 75 – Parmi tous les échantillons de valeurs possibles (X1, . . . , Xn ), ceux dont la moyenne
(Sn /n) s’éloigne de l’espérance m sont rares, et cette rareté s’accentue avec la taille
de l’échantillon (n →+∞).

Exercice 22 : CCINP 99

X FONCTIONS GÉNÉRATRICES
Dans cette partie, les variables aléatoires sont à valeurs dans N.

1 Définition

Définition 28 : Fonction génératrice

Soit X variable aléatoire discrète sur (Ω,A ,P) à valeurs dans N.
On appelle fonction génératrice associée à X la fonction

Remarque

R 76 – Il s’agit donc de la somme de la série entière sont la suite de cœfficients est la (distri-
bution de probabilité associée à la) loi de X .
L’unicité des cœfficients de la série entière assure que la fonction génératrice déter-
mine la loi de X (il suffit de calculer ces cœfficients).

Propriété 51 : des fonctions génératrices

(i) Le rayon de convergence de la série entière
∑

P(X = n)t n est et
elle converge normalement sur

(ii) Pour tout t ∈ [−1,1], GX (t ) =E ( ).
(iii) GX est continue sur [−1,1], de classe C ∞ sur ]−1,1[ et pour tout n ∈N,

P(X = n) =

Remarque

R 77 – Avec la dernière propriété, on vérifie de nouveau que GX détermine la loi de X .
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Corollaire 9 : Caractérisation de la loi

Deux variables aléatoires X ,Y à valeurs dans N ont même loi si et seulement si
elles ont même fonction génératrice.

Propriété 52 : Lien avec l’espérance et la variance

(i) X ∈ L1 (est d’espérance finie) si et seulement si GX est dérivable est 1 et alors

(ii) X ∈ L2 si et seulement si GX est deux fois dérivable est 1 et alors

On exprime alors V(X ) à l’aide de G ′
X (1) et G ′′

X (1).

2 Cas des lois usuelles
Le programme demande de savoir calculer la fonction génératrice d’une variable aléatoire

de Bernoulli, binomiale, géométrique, de Poisson. Allons-y.

3 Somme des variables aléatoires

Propriété 53 : Fonction génératrice d’une somme

Soient X1, . . . , Xn des variables aléatoires discrètes indépendantes à valeurs
dans N. Alors

Applications
■ On retrouve la fonction génératrice d’une loi binomiale à partir de la somme de n vaiid

de loi de Bernoulli.
■ Une somme de variables aléatoires de loi de Poisson P (λi ) est encore de loi de Poisson de

paramètre la somme des λi .
■ Une somme de variables aléatoires de loi B(ni , p) indépendantes est de loi B(

∑
ni , p)

Exercice 23 : Identité de Wald
Soit (Xn )n∈N une suite de variables aléatoires demême loi et d’espérance finie à valeurs

dans N et N une variable aléatoire à valeurs dans N, d’espérance finie tel que N et toutes
les Xn soient indépendantes.

1. On suppose dans cette question que les Xn suivent une loi B(p) de paramètre p ∈]0,1[
et que N suit une loi P (θ) de paramètre θ > 0.

Rappeler les fonctions génératrices, pour n ∈N, de Xn ,
n∑

ℓ=1
Xℓ et N puis déterminer la

loi de Y =
N∑
ℓ=1

Xℓ (on admet qu’elle définit bien une variable aléatoire discrète.)

2. Dans cette question, on suppose que les Xn suivent une même loi quelconque, et
que N suit une loi quelconque, toujours toutes à valeurs dans N et indépendantes.
Montrer l’identité de Wald

E

(
N∑
ℓ=1

Xℓ

)
=E(N )E(X1).

4 Exercices CCINP

Exercice 24 : CCINP 96 Exercice 25 : CCINP 110

PROBABILITÉS - PAGE 22 SUR 24

https://mpi.lecontedelisle.re


J. Larochette VERSION DU 22 JANVIER 2026

XI FORMULAIRE
Sous réserve d’existence, sommabilité, d’admission de moments, etc. Voici les principales

formules du chapitre.

■ Loi de X PX : A 7→ ∑
x∈A

P(X = x) déterminée par les P(X = x) pour x ∈ X (Ω), positifs

de somme 1.

■ Espérance de X E(X ) = ∑
x∈X (Ω)

P(X = x)x

et si Ω fini ou dénombrable E(X ) = ∑
ω∈Ω

P({ω})X (ω)

et si X (Ω) ⊂N, E(X ) =
+∞∑
n=1

P(X ⩾ n).

■ Formule de transfert
E( f (X )) = ∑

x∈X (Ω)
P(X = x) f (x).

■ Variance de X

V(X ) =E
(
(X −E(X ))2)=E

(
X 2)−E(X )2.

■ Covariance de X et Y

Cov(X ,Y ) =E ((X −E(X ))(Y −E(Y ))) =E(X Y )−E(X )E(Y )

nulle si indépendantes.

■ Variance d’une somme

V(X +Y ) =V(X )+2Cov(X ,Y )+V(Y ).

■ Loi de Bernoulli B(p)

P(X = 1) = p P(X = 0) = 1−p = q E(X ) = p V(X ) = pq GX (t ) = q +pt

■ Loi binomiale B(n, p)

∀k ∈ J0,nK, P(X = k) =
(

n

k

)
pk qn−k E(X ) = np V(X ) = npq GX (t ) = (q +pt )n

■ Loi géométrique G (p)

p ∈]0,1[ ∀n ∈N∗, P(X = n) = pqn−1 E(X ) = 1

p
V(X ) = q

p2
GX (t ) = pt

1−qt

■ Loi de Poisson P (λ)

λ> 0 ∀n ∈N, P(X = n) = λn

n!
e−λ E(X ) =λ V(X ) =λ GX (t ) = eλ(t−1)

■ Continuités croissante et décroissante
Si (An )n∈N une suite croissante (pour l’inclusion)

P(Ak ) −−−−−→
k→+∞

P

(+∞⋃
n=0

An

)

Si (An )n∈N une suite décroissante (pour l’inclusion)

P(Ak ) −−−−−→
k→+∞

P

(+∞⋂
n=0

An

)

■ Inégalité de Markov Si a > 0, P(|X |⩾ a)⩽ E(|X |)
a

.

■ Inégalité de Bienaymé-Tchebychev Si a > 0, m =E(X ) et σ=σ(X ) =p
V(X ).

P(|X −m|⩾ a)⩽ σ2

a2

■ Loi faible des grands nombres Si ε> 0, (Xn ) une suite de vaiid L2 d’espérance m,
alors

P

(∣∣∣∣ Sn

n
−m

∣∣∣∣⩾ ε

)
−−−−−→
n→+∞ 0.

■ Inégalité de Cauchy-Schwarz Si X ,Y ∈ L2, alors X Y ∈ L1, et

(E(X Y ))2 ⩽E
(
X 2)

E
(
Y 2) |Cov(X ,Y )|⩽V (X )V (Y )

avec égalité si et seulement si X et Y sont colinéaires presque sûrement.
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XII ANNEXE : L’UNIVERS PROBABILISÉ DU PILE-FACE INFINI
Pour l’univers, pas de problème. On pose Ω= {0,1}N

∗ .
Bien sûr, on pourrait remplacer {0,1} par {P,F } ou par {−1,1}. Dans la suite, on comprendra 1

comme « Pile », 0 comme « Face », on note alors que l’avantage du codage 0−1 est que pour
dénombrer les « Pile » on n’a qu’à faire la somme des issues. On note p un élément arbitraire de
]0,1[ (qui désignera la probabilité d’obtenir Pile à un tirage quelconque).

Définition 29 : Événements de type fini

On appelle évènement de type fini (ou événement cylindrique) toute partie B
de Ω telle qu’il existe n ⩾ 1 et A ∈ {0,1}n , vérifiant

ω ∈ B ⇐⇒ (ω1, . . . ,ωn ) ∈ A.

Propriété 54 : Structure

L’ensemble C des évènements de type fini est une « algèbre » :
(i) Ω ∈C

(ii) (A,B) ∈C 2 =⇒ A∪B ∈C

(iii) A ∈C =⇒ A ∈C

Remarque

R 78 – C est stable par réunion finie et par intersection finie.

On peut définir de manière naturelle ce que l’on voudrait être la probabilité d’événements
ne portant que sur un nombre fini de lancers indépendants.

Définition 30 : Probabilité sur les événements de type fini

On pose, si n ⩾ 1 et si (ε1, . . . ,εn ) ∈ {0,1}n

P ({ω ∈Ω, (ω1, . . . ,ωn ) = (ε1, . . . ,εn )}) = pε1+···+εn (1−p)n−(ε1+···+εn ).

La difficulté est de l’étendre à une tribu contenant tous les événements de type fini.

Propriété 55 : Extension

P s’étend de manière unique à C en une application que l’on notera encore
P, et qui vérifie

(i) P(Ω) = 1

(ii) ∀(A,B) ∈C 2, A∩B =∅ ⇒ P (AtB) = P (A)+P (B)

Propriété 56 : σ-additivité

P a la propriété plus forte que (ii) suivante :
(ii’) Pour toute suite ∀(An )n∈N ∈ CN, si les An sont deux-à-deux disjoints et si

+∞⋃
n=0

An ∈C , alors

P

(+∞⋃
n=0

An

)
=

+∞∑
n=0

P (An ).

Théorème 4 : Existence et unicité de la probabilité

Il existe une unique probabilité sur la tribu A engendrée par C qui prolonge P.

Propriété 57

A ⊊P (Ω) : il y a des parties de Ω qui n’ont pas de probabilité.

■ La propriété 56 n’est pas trop facile.
■ Le théorème 4 non plus : c’est le théorème de Caratheodory.

Elle utilise la notion de tribu engendrée qui, elle, ne présente pas de difficulté : on vérifie
que l’intersection des tribus contenant une partie de P (Ω) donnée est une tribu.

■ La propriété 57 est décevante, car on aimerait bien exhiber des telles parties. Or pour
montrer leur existence, on a besoin du célèbre Axiome du Choix, on est donc en pleine
théorie des ensembles…remarquons que c’est cela qui oblige à s’occuper de tribus : si on
pouvait définir les probabilités, à chaque fois, sur P (Ω), la notion de tribu d’évènements
serait moins nécessaire.
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