Savoir-faire et thèmes classiques – Fonctions numériques – MP2I

Thèmes Classiques

Sav

Continuité, dérivabilité	un polynome reel de degre impair damer une racine reelle
·	Résoudre l'équation fonctionnelle
voir-faire	
_	f(x+y) = f(x) + f(y)
Traduire une limite avec des quantificateurs	avec f continue en 0
Montrer une convergence vers une limite en majorant la norme de la différence par une suite tendant vers 0	Théorème du point fixe d'une fonction continue sur un intervalle stable
$igcap$ Écrire et manipuler des relations de comparaison o, $\mathscr O$ ou \sim entre fonctions numériques	Utilisation du théorème de Rolle pour l'étude des dérivées de polynômes réels simple- ment scindés ou scindés
Traduire la continuité et l'uniforme continuité et leurs caractérisations séquentielles	Utilisation du théorème de Rolle pour montrer que les polynômes de Legendre sont simplement scindés
Utiliser le théorème des valeurs intermédiaires et ses extensions (avec des limites) Exemple : problèmes de point fixe	Généralisations du théorème de Rolle
Utiliser le théorème des bornes atteinte (étendu aux compacts)	Majoration de l'erreur dans l'interpolation de Lagrange
Utiliser le théorème de la bijection	Égalité de Taylor-Lagrange
Utiliser le théorème de Heine	Théorème de Darboux
Traduire une lipschitzianité	2 Convexité
Montrer que deux applications continues sont égales car elles coïncident sur une par- tie dense	Savoir-faire
$oxedsymbol{\square}$ Traduire une dérivabilité à l'aide d'un taux d'accroissement ou d'un DL_1	Définir et donner toutes les caractérisations (cordes, épigraphe, inégalité des trois cordes,
Dériver les fonctions usuelles (une ou plusieurs fois)	taux d'accroissement, dérivée première, dérivée seconde) de la convexité
Effectuer une étude de fonction pour montrer une inégalité, déterminer des extremums, calculer une norme infini, montrer une bijectivité, etc.	Utiliser l'inégalité de Jensen Reconnaître une inégalité de convexité sous forme de somme ou de produit
Étudier la dérivabilité de la réciproque d'une bijection	Thèmes Classiques
Calculer des dérivées successives, utiliser la formule de Leibniz	·
Utiliser la condition nécessaire d'extremum local, le théorème de Rolle, le théorème des accroissements finis, l'inégalité des accroissements finis, le théorème de la limite de la dérivée	Inégalité arithmético-géométrique Théorème de Gauß-Lucas
Utiliser le principe de la démonstration du théorème des accroissements finis	Inégalité de Jensen continuePoint de continuité, de dérivabilité à gauche ou à droite d'une fonction convexe

Intégration sur un segment

Savoir-faire

Majorer la norme d'une intégrale sur un segment
Utiliser la positivité améliorée
Utiliser l'inégalité de Cauchy-Schwarz pour les intégrales et son cas d'égalité
Reconnaître des sommes de Riemann et traduire leur convergence
Utiliser le théorème fondamental de l'analyse
Étudier une fonction intégrale dépendant de ses bornes en introduisant une primitive
Effectuer une intégration par parties et un changement de variables
Calculer une primitive directement, par IPP, par CV, par DES d'une fraction rationnelle, en utilisant les règles de Bioche, en les appliquant aux fonctions hyperboliques, en trouvant un bon CV lorsqu'il y a des racines
Énoncer précisément les trois formules de Taylor avec leurs hypothèses
Thèmes Classiques
Étude complète des intégrales de Wallis
Lemme de Riemann-Lebesgue