Réduction 1 : diagonalisation

Dans tout le chapitre, $(E,+,\cdot)$ désigne un \mathbb{K} -espace vectoriel où \mathbb{K} est un sous-corps de \mathbb{C} , mais se généralise au cas d'un corps quelconque, avec la prudence pour certains résultats de devoir travailler dans un corps de caractéristique nulle $(\forall n \in \mathbb{N}^*, \ n1_{\mathbb{K}} \neq 0_{\mathbb{K}}.)$

Propriété 1 : Caractérisation de la stabilité par une base

Si F est de dimension finie p > 0, $\mathcal{B} = (e_1, ..., e_p)$ une base de F, alors F est stable par u si et seulement si

Sous-espaces stables

Point de vue géométrique

Définition 1 : Sous-espace stable, endomorphisme induit

Si $u \in \mathcal{L}(E)$ et F est un sous-espace vectoriel de E, F est dit **stable par** u lorsque

Lorsque c'est le cas,

Exemple

E1 – $\{0_E\}$ et E sont stables par u.

Remarque

 $R1 - u_F \neq u_{|F}$.

Propriété 2 : Commutation et stabilité d'image et noyau

Si $u, v \in \mathcal{L}(E)$ commutent, l'image et le noyau de l'un sont stables par l'autre.

Point de vue matriciel

Soit M écrite par blocs $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} p \uparrow F \in \mathcal{M}_{p+q}(\mathbb{K}).$

Si $u \in \mathcal{L}(E)$ est représenté par M dans une base \mathcal{B} , alors on peut séparer \mathcal{B} de taille p+q en deux sous-familles :

- \blacksquare les p premiers vecteurs engendrant un sous-espace F de E
- \blacksquare les q derniers vecteurs engendrant un sous-espace G.

Alors F et G sont supplémentaires de E ($F \oplus G = E$.)

De plus, si $x \in E$, x_F et x_G ses composantes sur F et G (donc $x = x_F + x_G$), x est représenté dans \mathscr{B} par $X = \begin{pmatrix} X_F \\ X_G \end{pmatrix} \uparrow p$ où X_F et X_G représentent x_F et x_G . Alors u(x) est

représenté dans % par

$$MX = \begin{pmatrix} AX_F + BX_G \\ CX_F + DX_G \end{pmatrix} \uparrow q$$

représentant respectivement les composantes sur F et G de u(x).

Écrire X sous cette forme est une méthode classique de résolution de problèmes avec des matrices écrites par blocs.

Cela se généralise à un nombre quelconque de sous-espaces.

Exercice 1: Montrer que tout projection peut être représentée par un matrice de

la forme $\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$ et que toute symétrie peut être représentée par un

matrice de la forme $\begin{pmatrix} I_r & 0 \\ 0 & -I_{n-r} \end{pmatrix}$.

Propriété 3 : Matrice par bloc et stabilité

Soit $E = F \oplus G$ et $\mathscr B$ une base adaptée à cette somme directe, $u \in \mathscr L(E)$,

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \operatorname{Mat}_{\mathscr{B}}(u).$$

- \blacksquare F est stable par u si et seulement si
- \blacksquare G est stable par u si et seulement si

Exemple

E2 – Projections et symétries

Propriété 4 : Généralisation

Soit $E = \bigoplus_{i=1}^{r} E_i$ et \mathscr{B} une base adaptée à cette somme directe, $u \in \mathscr{L}(E)$.

 $A = \operatorname{Mat}_{\mathscr{B}}(u)$ est diagonale par blocs $\left(A = \begin{pmatrix} A_1 & & & (0) \\ & \ddots & & \\ & & & A_r \end{pmatrix}\right)$ si et seulement si chaque E_i est stable par u.

On peut alors considérer l'endomorphisme u_i induit par u sur E_i dont la matrice dans la base \mathcal{B}_i (issue de \mathcal{B}) est A_i .

Remarque

R2 – On retrouve le résultat classique qu'alors u est uniquement déterminé par la donnée des u_i .

Exercice 2

Soit u l'endomorphisme de \mathbb{R}^3 canoniquement associé à la matrice

$$A = \begin{pmatrix} -1 & 4 & 1 \\ 1 & 0 & 1 \\ 2 & -3 & 2 \end{pmatrix}$$

- 1. Soit $H = \{(x, y, z) \in \mathbb{R}^3 \mid x y + 2z = 0\}$. Montrer que H est stable par u.
- 2. Soit x = (3,2,1) et D = Vect(x). Montrer que D est stable par u.
- 3. Justifier que $\mathbb{R}^3 = D \oplus H$.
- 4. Déterminer une base de \mathbb{R}^3 dans la quelle la matrice de u est diagonale par blocs, à cœfficients entiers.

ÉLÉMENTS PROPRES D'UN ENDOMORPHISME ET D'UNE MATRICE CARRÉE

Cas d'un endomorphisme

Remarque

R3 – Si $u \in \mathcal{L}(E)$ et D droite de E, on a $a \neq 0_E$ tel que $D = \operatorname{Vect} a$. À quelle condition D est-elle stable par u?

Définition 2 : Éléments propres d'un endomorphisme

Soit $u \in \mathcal{L}(E)$.

- On appelle **valeur propre** de u tout $\lambda \in \mathbb{K}$ tel qu'
- Un tel vecteur **non nul** est appelé **vecteur propre** associé à la valeur propre λ .
- \blacksquare On appelle sous-espace propre associé à la valeur propre λ le sous-espace
- Si E est de dimension finie, l'ensemble des valeurs propres de u est appelé son **spectre**, noté $\operatorname{Sp} u$ ou $\operatorname{Sp}_{\mathbb{K}} u$.

Remarque

- **R4** λ est valeur propre de u ssi $\mathrm{Ker}(u \lambda \mathrm{id}_E) \neq \{0_E\}$ ssi $u \lambda \mathrm{id}_E$ non injectif. En particulier, 0 est valeur propre de u ssi
- **R5** $E_{\lambda}(u)$ est constitué des vecteurs propres associés à λ **et** du vecteur nul.

Exemple

- **E3** $E = \mathscr{C}^{\infty}(\mathbb{R})$ et $u: f \mapsto f'$.
- **E4** $E = \mathbb{R}[X]$ et $u: P \mapsto P'$.
- **E5** Homothétie $u = \lambda \operatorname{id}_E$.
- **E6** Projection p:

Propriété 5 : Droites stables

Les droites stables par u sont

Propriété 6 : Stabilité de sous-espaces propres

Si $u, v \in \mathcal{L}(E)$ commutent, les sous-espaces propres de l'un sont stables par l'autre.

Propriété 7 : Des sous-espaces propres sont en somme directe

Soit $u \in \mathcal{L}(E)$ et $\lambda_1, ..., \lambda_p$ des valeurs propres de u deux à deux distinctes. Alors

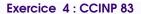
Corollaire 1 : Des vecteurs propres associés à des valeurs propres distinctes sont libres

Des vecteurs propres de u associés à des valeurs propres deux à deux distinctes sont linéairement indépendants (forment une famille libre).

Exercice 3: Montrer que les familles $\left(x\mapsto \mathrm{e}^{\lambda x}\right)_{\lambda\in\mathbb{R}}$ et $\left(x\mapsto \cos(\lambda x)\right)_{\lambda\in\mathbb{R}^+}$ sont des familles libres.

Corollaire 2: Majoration du nombre de valeurs propres

Si E est de dimension finie et $u \in \mathcal{L}(E)$, alors



2 Cas d'une matrice

Soit $n \in \mathbb{N}^*$.

Définition 3 : Éléments propres d'une matrice

Soit $A \in \mathcal{M}_n(\mathbb{K})$.

- On appelle **valeur propre** de A tout $\lambda \in \mathbb{K}$ tel qu'il existe
- Un tel vecteur non nul est appelé vecteur propre associé à la valeur propre λ.
- lacktriangle On appelle **sous-espace propre** associé à la valeur propre λ le sous-espace
- L'ensemble des valeurs propres de A est appelé son **spectre**, noté $\operatorname{Sp} A$ ou $\operatorname{Sp}_{\mathbb{K}} A$.

Remarque

- **R6** Les éléments propres d'une matrice sont ceux de l'application linéaire canoniquement associée (via la base canonique de \mathbb{K}^n).
- **R7** Si $\mathbb K$ sous-corps de $\mathbb C$, $\operatorname{Sp}_{\mathbb K} A \subset \operatorname{Sp}_{\mathbb C} A$ car des vecteurs propres dans $\mathbb K$ sont en particulier des vecteurs propres dans $\mathbb C$.

Exemple

$$\mathbf{E7} - A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

Propriété 8 : Le spectre d'une matrice est le spectre des endomorphismes qu'elle représente

Si $(E,+,\cdot)$ est un \mathbb{K} -espace vectoriel de dimension finie $n\geqslant 1$, \mathscr{B} est une base de E, et $u\in \mathscr{L}(E)$ dont la matrice dans la base \mathscr{B} est A, alors $\operatorname{Sp} u=\operatorname{Sp} A$.

Et plus précisément les vecteurs propres et sous-espaces de A sont les représentations dans la base \mathscr{B} de ceux de u.

Polynôme caractéristique

Soit $(E, +, \cdot)$ un \mathbb{K} -espace vectoriel de dimension finie $n \neq 0$. Si $u \in \mathcal{L}(E)$,

$$\lambda \in \operatorname{Sp} u \Longleftrightarrow$$

$$\iff$$

$$\iff$$

Propriété 9 : Valeur propre et déterminant

Si $u \in \mathcal{L}(E)$, $\lambda \in \mathbb{K}$ est valeur propre de u si et seulement si

Remarque

R8 - En dimension infinie, $u - \lambda \operatorname{id}_E \notin \mathscr{GL}(E) \Longrightarrow \lambda$ valeur propre de u, car

R9 – En particulier, $u \in \mathcal{GL}(E)$ si et seulement si

De la même manière,

Propriété 10 : Version matricielle

Si $A \in \mathcal{M}_n(\mathbb{K})$, $\lambda \in \mathbb{K}$ est valeur propre de A si et seulement si $A - \lambda I_n \notin \mathcal{GL}_n(\mathbb{K})$ si et seulement si $\det(A - \lambda I_n) = 0$.

Remarque

R 10 – En particulier, $A \in \mathcal{GL}_n(\mathbb{K})$ si et seulement si $0 \notin \operatorname{Sp} A$.

Comme, pour $x \in \mathbb{K}$, $\det(xI_n - A) = (-1)^n \det(A - xI_n)$ est polynomial en x, on peut définir :

Définition 4 : Polynôme caractéristique

Soit $A \in \mathcal{M}_n(\mathbb{K})$ et $u \in \mathcal{L}(E)$ où E est de dimension finie.

- On appelle **polynôme caractéristique** de A le polynôme $\chi_A \in \mathbb{K}[X]$ tel que $\forall \lambda \in \mathbb{K}, \ \chi_A(\lambda) =$
- On appelle **polynôme caractéristique** de u le polynôme $\chi_u \in \mathbb{K}[X]$ tel que $\forall \lambda \in \mathbb{K}, \ \chi_u(\lambda) =$

Exemple

$$\mathbf{E8} - \text{Avec } A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

Remarque

R11 – Quitte à travailler dans le corps $\mathbb{K}(X)$ (des fractions rationnelles), on peut rigoureusement écrire $\chi_A = \det(XI_n - A)$.

Propriété 11 : Valeurs propres d'une matrice triangulaire

Les valeurs propres d'une matrice triangulaire sont

Exercice 5 : Montrer que A et A^{T} ont même polynôme caractéristique.

Propriété 12 : du polynômes caractéristique

Soit $u \in \mathcal{L}(E)$, $A \in \mathcal{M}_n(\mathbb{K})$.

- Les racines de χ_A (respectivement χ_u) sont exactement les valeurs propres de A (respectivement u).
- Si \mathscr{B} base de E tel que $A = \operatorname{Mat}_{\mathscr{B}}(u)$, alors $\chi_u = \chi_A$.
- \blacksquare χ_A est de degré n unitaire. Plus précisément,

 χ_u est de degré n unitaire. Plus précisément,

Remarque

- R 12 Les cœfficients se retrouvent facilement en considérant le cas d'une matrice triangulaire et en utilisant les relations cœfficients-racines.
- **R 13** En dimension 2, on a immédiatement $\chi A =$

Propriété 13 : Invariants de similitude

Propriété 14 : Polynôme caractéristique d'un endomorphisme induit

Théorème	1 : de Cayley-Hamilton

Exemple

E9 – Si n = 2,

Multiplicité des valeurs propres

Soit $(E, +, \cdot)$ un \mathbb{K} -espace vectoriel de dimension finie $n \neq 0$, $A \in \mathcal{M}_n(\mathbb{K})$ et $u \in \mathcal{L}(E)$.

Définition 5 : Multiplicité d'une valeur propre

La **multiplicité** d'une valeur propre λ de u (respectivement A) est

Propriété 15 : Nombre de valeurs propres comptées avec multiplicité

Le nombre de valeurs propres comptées avec leur multiplicités est toujours

Lorsque $\mathbb{K} = \mathbb{C}$,

Propriété 16 : Encadrement de la dimension des sous-espaces propres

Si λ valeur propre de u (respectivement A) d'ordre m_{λ} ,

Corollaire 3 : Sous-espace propre associé à une valeur propre simple

Propriété 17 : Trace, déterminant et valeurs propres

Remarque

R14 - Se retrouve facilement avec les matrices triangulaires.

R15 – Ce n'est plus vrai si χ_A n'est pas scindé.

Cas particulier des matrices réelles

Pour $A \in \mathcal{M}_n(\mathbb{C})$, on note \overline{A} la matrice dans laquelle on conjugue tous les coefficients. On a facilement $\overline{A+B} = \overline{A} + \overline{B}$ et $\overline{AB} = \overline{AB}$ lorsque ces opérations sont bien définies.

Propriété 18 : Valeur propre complexe d'une matrice réelle

Soit $A \in \mathcal{M}_n(\mathbb{R})$, λ valeur propre complexe de A de multiplicité m.

- $\overline{\lambda}$
- Si $X \in \mathcal{M}_{n,1}(\mathbb{C})$ est un vecteur propre de A associé à λ ,
- Si $d = \dim E_{\lambda}(A)$, $(e_1, ..., e_n)$ une base de $E_{\lambda}(A)$, alors

Exercice 6 : Si n est impair, montrer qu'il y a toujours au moins une valeur propre réelle.

Remarque: importante

- On peut parler de valeur propre et de vecteur propre complexes d'une matrice réelle car $\mathcal{M}_n(\mathbb{R}) \subset \mathcal{M}_n(\mathbb{C})...$
- Mais \bigwedge si E est un \mathbb{R} -espace vectoriel et $u \in \mathcal{L}(E)$, des valeurs propres complexes de u n'ont pas de sens a priori, car on ne peut pas trouver $x \in E \setminus \{0_F\}$ tel que $u(x) = \lambda x$ si $\lambda \in \mathbb{C} \setminus \mathbb{R}$... On peut cependant chercher des racines complexes de χ_u , mais pas donner facilement de sens à des « vecteurs propres complexes » de u.
- La solution dans ce cas là est de raisonner plutôt matriciellement.
- Complément hors-programme : si on veut vraiment donner une signification géométrique à la notion de vecteur propre complexe d'un

endomorphisme d'un \mathbb{R} -espace vectoriel E, il faut passer par la notion de complexifié de E.

L'idée est, pour $(x, y) \in E^2$, d'identifier $x + i \cdot y$ au couple (x, y) (x et y)sont en quelque sorte la partie réelle et la partie imaginaire de $x+i\cdot y$), et de vérifier qu'on définit bien ainsi sur E^2 une structure de $\mathbb C$ -espace vectoriel en utilisant les propriétés de calcul habituelles sur les nombres complexes: on veut

$$(\lambda + i\mu)(x + iy) = (\lambda x - \mu y) + i(\mu x + \lambda y)$$

donc on pose le produit externe sur $\mathbb{C} \times E^2$

$$(\lambda + i\mu) \cdot (x + iy) = (\lambda x - \mu y, \mu x + \lambda y)$$

L'addition, elle, se fait composante à composante dans le couple. E est ainsi vu comme l'ensemble des couples $x + i \cdot 0_E = (x, 0_E) \in E \times \{0_E\}$, c'est-à-dire pour lesquels la « partie imaginaire » et le vecteur nul. C'est le même principe qui permet de construire C comme ensemble de couples de réels $(x, y) \in \mathbb{R}^2$.

Pour $u \in \mathcal{L}(E)$, on peut alors définir \tilde{u} sur le complexifié de E on posant pour $x, y \in E$, $\tilde{u}(x+iy) = u(x) + iu(y)$.

Rassurez-vous : dans la pratique, inutile de faire tout cela, il suffit de travailler matriciellement.

M DIAGONALISATION

Soit $(E,+,\cdot)$ un \mathbb{K} -espace vectoriel de dimension finie $n \neq 0$, $A \in \mathcal{M}_n(\mathbb{K})$ et $u \in \mathcal{L}(E)$.

Diagonalisabilité des endomorphismes

Définition 6 : Diagonalisabilité d'un endomorphisme

Une telle base est dite diagonalisante.

_		
Exem	_	-
EXEIII	C)	

E10 – Homothéties, projections, symétries, affinités.

Propriété 19 : Caractérisation 1, base de vecteurs propres

Propriété 20 : Caractérisation 2, somme des sous-espaces propres

Exemple

E11 - Projecteurs, symétries.

Propriété 21 : Caractérisation 3, sous-espaces stables induisant des homothéties

Propriété 22 : Caractérisation 4, somme des dimension des sous-espaces propres

Propriété 23 : Caractérisation 5, multiplicité algébrique et géométrique égales

Propriété 24 : Condition suffisante 1, χ_u simplement scindé

Corollaire 4 : Condition suffisante 2, n valeurs propres distinctes en dimension n

Exercice 7: CCINP 72

2 Matrices carrées diagonalisables

Définition 7 : Diagonalisabilité d'une matrice carrée

Vu la définition de la diagonalisabilité d'un endomorphisme, on en tire immédiatement : Propriété 25 : Caractérisation 7, matrice d'un endomorphisme diagonalisable

Un résultat qui sera démontré plus tard mais utilisable dès maintenant :

Propriété 26 : Condition suffisante 3, matrice symétrique réelle

Toute matrice symétrique à cœfficients **réels** est diagonalisable.

Remarque

- R17 Ne pas dire qu'il y a une base dans laquelle A est diagonale!
- R18 En passant par exemple par l'endomorphisme canoniquement associé, les caractérisations/conditions suffisantes vues pour les endomorphismes s'adaptent aux matrices:
 - A est diagonalisable
 - si et seulement s'il existe une base de $\mathcal{M}_{n,1}(\mathbb{K})$ formée de vecteurs propres
 - si et seulement si la somme (directe) des sous-espaces propres de A est égale à $\mathcal{M}_{n,1}(\mathbb{K})$
 - si et seulement si $\sum_{\lambda \in \operatorname{Sp} A} \dim E_{\lambda}(A) = n$
 - si et seulement si χ_A est scindé et pour tout $\lambda \in \operatorname{Sp} A$, $m_{\lambda} = \dim E_{\lambda}(A)$
 - si et seulement si A est annulée par un polynôme simplement scindé
 - **si** χ_A est simplement scindé (n valeurs propres distinctes).
 - **si** A est symétrique réelle
- **R19** Si $u \in \mathcal{L}(\mathbb{K}^n)$ est l'endomorphisme canoniquement associé à A, et si on a une base diagonalisante $\mathcal{B}' = (e'_1, ..., e'_n)$, elle est constituée de vecteurs propres associés à des valeurs propres $\lambda_1, ..., \lambda_n$. Alors la formule de changement de base donne $A = PDP^{-1}$ où $D = \operatorname{diag}(\lambda_1, ..., \lambda_n)$ et pour tout i, $u(e'_i) = \lambda_i e'_i$.

P est la matrice de passage de la base canonique à \mathcal{B}' , donc ses colonnes contiennent directement les composantes des n-uplets e'_1, \ldots, e'_n . Dans la pratique, on travaille directement matriciellement, les colonnes correspondant (dans la base canonique) aux e'_i sont des vecteurs propres de

R20 - P n'est pas unique alors que D l'est : cette dernière va contenir les valeurs propres de A comptées avec leurs multiplicités.

Comme vu dans la remarque précédente, P est la matrice de passage de la base canonique de \mathbb{K}^n vers une base diagonalisante de E pour son endomorphisme canoniquement associé u.

Exercice 8: [Incontournable] Que peut-on dire d'une matrice diagonalisable ayant une unique valeur propre?

Méthode 1 : Diagonaliser une matrice diagonalisable A

- 1. Déterminer les valeurs propres, par exemple avec χ_A . (Parfois du bon sens (de l'observation) suffit. Essayer de sommer les colonnes, par exemple. Ou alors s'intéresser au noyau, à la trace, au déterminant... en connaissant le lien avec les valeurs propres, lorsque χ_A est scindé.)
- 2. Chercher une base de chaque sous-espace propre $E_{\lambda}(A)$.

Si on a calculé χ_A par une méthode du pivot de Gauß, on peut reprendre la forme échelonnée finale et évaluer en λ pour finir la résolution du système. Savoir tirer rapidement des informations de la matrice $A - \lambda I_n$ en observant les colonnes.

Sinon, dans tous les cas, déterminer le noyau de $A - \lambda I_n$, c'est résoudre un système homogène dont c'est la matrice, cela peut se faire par le pivot de Gauß directement sur cette matrice.

- 3. Justifier alors que A est diagonalisable.
- 4. Déterminer une base de vecteurs propres : il suffit de concaténer des bases de chaque sous-espace propre vu qu'ils sont supplémentaires dans $\mathcal{M}_{n,1}(\mathbb{K})$.
- 5. Calculer P la matrice de passage de la base canonique à la base de vecteurs propres (lesquels sont directement les colonnes de P).

- 6. Poser D la matrice diagonale formée des valeurs propres associées à chaque vecteur propre de la base, dans le même ordre.
- 7. On a alors $A = PDP^{-1}$ (en appliquant une formule de changement de base à l'endomorphisme canoniquement associé à A.)

Exercice 9

Diagonaliser
$$A = \begin{pmatrix} 5 & 1 & -1 \\ 2 & 4 & -2 \\ 1 & -1 & 3 \end{pmatrix}$$

Exercice 10: CCINP 67

Exercice 12: CCINP 69

Exercice 11: CCINP 59

Exercice 13: CCINP 70

Exercice 14: Grand classique: matrices compagnes

Calculer le polynôme caractéristique de la matrice compagne $(a_0,...,a_{n-1} \in \mathbb{K})$

$$A = \begin{pmatrix} 0 & 1 & & 0 \\ \vdots & \ddots & \ddots & & \\ \vdots & \ddots & \ddots & & \\ 0 & \cdots & \cdots & 0 & \ddots 1 \\ a_0 & a_1 & \cdots & \cdots & a_{n-1} \end{pmatrix}$$

Vérifier que ses sous-espaces propres sont des droites puis montrer qu'elle est diagonalisable si et seulement si le polynôme caractéristique est simplement scindé.

- 3 Applications de la diagonalisation
 - Calculs de puissances

Méthode 2

Si on diagonalise $A = PDP^{-1}$, alors pour tout $n \in \mathbb{N}$, $A^n = PD^nP^{-1}$, valable dans \mathbb{Z} si A est inversible c'est-à-dire si 0 n'est pas valeur propre.

Exercice 15

Trouver le terme général des suites x, y, z telles que pour tout n,

$$\begin{cases} x_{n+1} = y_n + z_n \\ y_{n+1} = x_n + z_n \\ z_{n+1} = x_n + y_n \end{cases}$$

b Commutant d'une matrice (complément)

Définition 8 : Commutant d'une matrice carrée

Propriété 27 : Structure

Méthode 3 : Commutant d'une matrice diagonalisable $A = PDP^{-1}$

- 1. Si $M \in \mathcal{M}_n(\mathbb{K})$, on pose $N = P^{-1}MP$ et on vérifie que M commute avec A si et seulement si N commute avec D.
 - C'est facile en passant par les endomorphismes!
- 2. On détermine directement $\mathscr{C}(D)$ en traduisant DN = ND. (Rappel : il est facile de multiplier à gauche ou à droite par une matrice diagonale!)
- 3. On en déduit $\mathscr{C}(A)$ qui est l'ensemble des PNP^{-1} .

Exercice 16

Déterminer le commutant de $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ **puis de** $B = \begin{pmatrix} 5 & 1 & -1 \\ 2 & 4 & -2 \\ 1 & -1 & 3 \end{pmatrix}$

Exercice 17: CCINP 73

С

Racines carrées d'une matrice (complément)

Définition 9: Racines carrées d'une matrice

On note $\Re(A)$ l'ensemble des racines carrées de A.

Remarque

- **R21** $\mathcal{R}(A) \subset \mathcal{C}(A)$: si M est une racine de A, alors A est un polynôme en M donc commute avec M.
- R22 Cette fois, on n'a plus un sous-espace vectoriel en général.

Méthode 4 : Racines carrées d'une matrice diagonalisable

 $A = PDP^{-1}$

Même principe que pour le commutant.

- 1. Si $M \in \mathcal{M}_n(\mathbb{K})$, on pose $N = P^{-1}MP$ et on vérifie que M racine carrée de A si et seulement si N racine carrée de D.
- 2. On détermine directement $\mathcal{R}(D)$ en traduisant $N \in \mathcal{C}(D)$ et $N^2 = D$.
- 3. On en déduit $\Re(A)$ qui est l'ensemble des PNP^{-1} .

À noter que cette méthode s'adapte à d'autres équations que $M^2 = A$.

Exercice 18

Déterminer les racines carrées de
$$B=\begin{pmatrix}5&1&-1\\2&4&-2\\1&-1&3\end{pmatrix}$$
, puis, pour $\mathbb{K}=\mathbb{R}$, celles

$$\mathbf{de} \ A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$

d Suites récurrentes

Méthode 5 : Terme général d'une suite vérifiant une relation de ré-

currence linéaire homogène $u_{n+p} = \sum_{i=0}^{p-1} \alpha_i u_{n+i}$

1. On pose
$$X_n = \begin{pmatrix} u_n \\ \vdots \\ u_{n+p-1} \end{pmatrix}$$
.

- 2. On se ramène à $X_{n+1} = AX_n$, ce qui donne pour tout n, $X_n = A^n X_0$.
- 3. On peut, en diagonalisant $A = PDP^{-1}$ (si possible), s'affranchir du calcul de P^{-1} puis de celui de A^n en posant $Y_n = P^{-1}X_n$, ce qui donne $X_n = PD^nY_0$.
- 4. On en déduit l'expression de u_n en fonction de n.

Exercice 19

Déterminer le terme général des suites complexes vérifiant

$$\forall n \in \mathbb{N}, \ u_{n+3} = -u_{n+2} - u_{n+1} - u_n \text{ en posant } X_n = \begin{pmatrix} u_n \\ u_{n+1} \\ u_{n+2} \end{pmatrix}.$$

Remarque

R23 – Quel est le polynôme caractéristique pour l'ordre 2 : $u_{n+2} = au_{n+1} + bu_n$?