Groupe symétrique et déterminant [MP2I]

GROUPE SYMÉTRIQUE

Définition, structure

Définition 1 : Permutation, groupe symétrique

Si E est un ensemble, on appelle **permutation** de E toute bijection de E dans E. On note $\mathfrak{S}(E)$ leur ensemble.

Si E = [1, n] où $n \in \mathbb{N}^*$, on note \mathfrak{S}_n appelé groupe symétrique d'ordre n (ou de degré n) cet ensemble.

Si
$$\sigma \in \mathfrak{S}_n$$
, on note $\sigma = \begin{pmatrix} 1 & 2 & 3 \cdots n \\ \sigma(1) & \sigma(2) & \sigma(3) \cdots \sigma(n) \end{pmatrix}$.

Propriété 1 : Structure

 (\mathfrak{S}_n, \circ) est un groupe d'ordre (le de cardinal) n!, non abélien dès que $n \geqslant 3$.

Définition 2 : Orbites

Soit $\sigma \in \mathfrak{S}_n$. La relation binaire définie sur $[\![1,n]\!]$ par

$$x \sim y \iff \exists k \in \mathbb{Z}, y = \sigma^k(x)$$

est une relation d'équivalence dont les classes d'équivalence sont les **orbites** de σ .

Si
$$x \in [1, n]$$
,

$$\mathcal{O}(x) = \left\{ \sigma^k(x), \ k \in \mathbb{Z} \right\}.$$

Propriété 2 : Description d'une orbite

Soit $\sigma \in \mathfrak{S}_n$, $x \in [1, n]$. Alors il existe $\ell \in \mathbb{N}$ tel que $\mathscr{O}(x) = \{x, \sigma(x), \dots, \sigma^{\ell-1}(x)\}$ (deux à deux distincts).

Définition 3: Support

Si $\sigma \in \mathfrak{S}_n$, son **support** est l'ensemble des éléments de [1, n] qui **ne sont pas** invariants par σ .

Propriété 3 : Commutation de permutations à supports disjoints

- (i) Le support d'une permutation est stable par cette permutation.
- (ii) Deux permutations à supports disjoints commutent.

2 Cycles

Définition 4: Transposition, cycle

• Une **transposition** τ est une permutation qui échange deux éléments i et j de [1,n], et laisse les autres invariants ie dont le support est $\{i,j\}$.

On la note
$$\tau = (i \ j)$$
 ou parfois $\tau_{i,j}$.
 $\tau_{i,j}(i) = j$, $\tau_{i,j}(j) = i$ et si $k \notin \{i,j\}$, $\tau_{i,j}(k) = k$.

■ Soit $p \in \mathbb{N}$ tel que $2 \leq p \leq n$.

On appelle p-cycle une permutation c de \mathfrak{S}_n qui permute circulairement p éléments i_1, i_2, \ldots, i_n de $[\![1,n]\!]$ et laisse les autres invariants ie dont le support est $\{i_1, \ldots, i_p\}$ et telle que

$$c(i_1) = i_2$$
; $c(i_2) = i_3$; ...; $c(i_{p-1}) = i_p$; $c(i_p) = i_1$

p est la **longueur** du cycle c. On note $c = (i_1 \ i_2 \ \cdots \ i_p)$.

Propriété 4 : Ordre d'un cycle

Un p-cycle est d'ordre p.

Théorème 1 : Unique décomposition en produit de cycles à supports disjoints

Toute permutation se décompose en produit (composée) de cycles à supports disjoints. La décomposition est unique à l'ordre des facteurs près.

Corollaire 1 : Décomposition en produit de transpositions (non unique)

Toute permutation se décompose en produit (composée) de transpositions.

Voici deux propositions adaptables à tout cycle :

$$(1 \ 2 \ \cdots \ p) = (1 \ p) (1 \ p-1) \cdots (1 \ 2)$$

= $(1 \ 2) (2 \ 3) \cdots (p-1 \ p)$

3 Signature

Définition 5 : Inversions, signature

Soit $\sigma \in \mathfrak{S}_n$. On appelle **inversion** par σ tout couple (i, j) tel que i < j et $\sigma(i) > \sigma(j)$.

On note $I(\sigma)$ le nombre d'inversions par σ .

On appelle **signature** de σ le nombre $\varepsilon(\sigma) = (-1)^{I(\sigma)} \in \{-1, 1\}.$

On vérifie que $\varepsilon(\sigma) = \prod_{1 \leqslant i < j \leqslant n} \frac{\sigma(j) - \sigma(i)}{j - i}$.

Une permutation σ est dite **paire** lorsque $I(\sigma)$ est pair et donc $\varepsilon(\sigma) = 1$. Elle est dite **impaire** dans le cas contraire.

Théorème 2 : Morphisme de signature

Soit $n \ge 2$. L'application

$$\varepsilon: \left| \begin{array}{ccc} (\mathfrak{S}_n, \circ) & \longrightarrow & (\{-1, 1\}, \times) = (\mathbb{U}_2, \times) \\ \sigma & \longmapsto & \varepsilon(\sigma) \end{array} \right|$$

est un morphisme de groupe, le si $\sigma, \sigma' \in \mathfrak{S}_n$, $\varepsilon(\sigma\sigma') = \varepsilon(\sigma)\varepsilon(\sigma')$.

Propriété 5 : de la signature

(i) Si $\sigma \in \mathfrak{S}_n$ se décompose en produit de Ntranspositions, $\varepsilon(\sigma) = (-1)^N$.

En particulier, cette décomposition n'est pas unique mais la parité du nombre de termes est toujours celle de la permutation.

(ii) Si c est un p-cycle, $\varepsilon(c) = (-1)^{p-1}$.

(iii) Si $\sigma \in \mathfrak{S}_n$, $\varepsilon(\sigma^{-1}) = \varepsilon(\sigma)$.

Groupe alterné (HP)

Définition 6 : Groupe alterné

Le sous-groupe $\mathfrak{A}_n = \operatorname{Ker}(\varepsilon)$ des permutations paires de \mathfrak{S}_n est appelé groupe alterné d'ordre n (ou de degré n).

Propriété 6

Pour tout $n \ge 2$, $|\mathfrak{A}_n| = \frac{n!}{2}$.

FORMES *n*-LINÉAIRES

Définition 7 : Application n-linéaire

Soit \mathbb{K} corps commutatif, $n \in \mathbb{N}^*$, E, F des \mathbb{K} espaces vectoriels.

Une application $f: E^n \to F$ est dite n-linéaire lorsque pour tout $(x_1,...,x_n) \in E^n$, et tout $i \in [1,n]$,

$$f_i: \begin{vmatrix} E & \longrightarrow & F \\ x & \longmapsto & f(x_1, \dots, x_{i-1}, x, x_{i+1}, \dots, x_n) \end{vmatrix}$$

linéaire. (Linéarité par est port à la ie variable.) c'est-à-dire $\forall (x_1,...,x_n) \in E^n, \forall i \in [1,n], \forall x,y \in E, \forall \lambda \in \mathbb{K},$

$$f(x_1,...,x_{i-1},x+\lambda y,x_{i+1},...,x_n)$$

$$= f(x_1,...,x_{i-1},x,x_{i+1},...,x_n)$$

$$+ \lambda f(x_1,...,x_{i-1},y,x_{i+1},...,x_n)$$

On note $\mathcal{L}_n(E,F)$ l'ensemble des formes nlinéaires.

Lorsque $F = \mathbb{K}$, on parle de **forme n-linéaire**.

Propriété 7 : Espace vectoriel de applications *n*-linéaires

 $\mathcal{L}_n(E,F)$ est un \mathbb{K} -espace vectoriel.

Définition 8 : Symétrie, antisymétrie et caractère alterné

Soit $f \in \mathcal{L}_n(E, \mathbb{K})$.

 \blacksquare f est dite **symétrique** si et seulement si $\forall (x_1, \dots, x_n) \in E^n, \forall i \neq j,$

$$f(x_1, \dots, x_i, \dots, x_j, \dots, x_n)$$

= $f(x_1, \dots, x_i, \dots, x_i, \dots, x_n)$.

 \blacksquare f est dite **antisymétrique** si et seulement si $\forall (x_1, \dots, x_n) \in E^n, \forall i \neq j,$

$$f(x_1,...,x_i,...,x_j,...,x_n)$$

= $-f(x_1,...,x_j,...,x_i,...,x_n).$

lacksquare f est dite **alternée** si et seulement si $\forall (x_1, \dots, x_n) \in E^n, \forall i \neq j,$

$$f(x_1,...,x_i,...,x_i,...,x_n) = 0_{\mathbb{K}}.$$

Propriété 8 : Caractérisations

Soit $f \in \mathcal{L}_n(E, \mathbb{K})$.

(i) f est symétrique si et seulement si $\forall \sigma \in \mathfrak{S}_n, \ \forall (x_1,...,x_n) \in E^n$,

$$f(x_{\sigma(1)},\ldots,x_{\sigma(n)})=f(x_1,\ldots,x_n).$$

(ii) f est antisymétrique si et seulement si $\forall \sigma \in \mathfrak{S}_n, \ \forall (x_1, ..., x_n) \in E^n,$

$$f(x_{\sigma(1)},...,x_{\sigma(n)}) = \varepsilon(\sigma)f(x_1,...,x_n).$$

(iii) f est alternée si et seulement si $\forall (x_1,...,x_n) \in E^n$,

$$(x_1,...,x_n)$$
 liée $\Longrightarrow f(x_1,...,x_n) = 0_{\mathbb{K}}$.

Propriété 9 : Équivalence entre alternée et antisymétrique

Soit $f \in \mathcal{L}_n(E, \mathbb{K})$ une forme linéaire. Alors f est alternée si et seulement si f est antisymétrique.

Théorème 3: fondamental

Soit E un \mathbb{K} -espace vectoriel de dimension finie, $n = \dim E \in \mathbb{N}^*$.

Si $n = \dim E$, l'ensemble des formes n-linéaires alternées sur E est un \mathbb{K} -espace vectoriel de dimension 1.

1 Définitions

On fixe E un \mathbb{K} -espace vectoriel de dimension finie n, $\mathscr{B}=(e_1,\ldots,e_n)$ une base de E.

Définition 9 : Déterminant d'une famille de vecteurs dans une base

On appelle **déterminant dans la base** \mathcal{B} l'unique forme n-linéaire alternée sur E notée $\det_{\mathcal{B}}$ telle que $\det_{\mathcal{B}}(\mathcal{B}) = 1$.

Si pour $1 \leqslant j \leqslant n$, $x_j \in E$ de coordonnées $(x_{1,j},...,x_{n,j})$ dans \mathscr{B} , alors

$$\det_{\mathcal{B}}(x_1,\ldots,x_n) = \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) x_{\sigma(1),1} \ldots x_{\sigma(n),n}$$

On note

$$\det_{\mathscr{B}}(x_1,\ldots,x_n) = \begin{vmatrix} x_{1,1} \cdot \cdots \cdot x_{1,n} \\ \vdots & \ddots & \vdots \\ x_{n,1} \cdot \cdots \cdot x_{n,n} \end{vmatrix}.$$

Propriété 10 : du déterminant

Soit E un \mathbb{K} -espace vectoriel de dimension finie $n, \mathcal{B}, \mathcal{B}'$ des bases de E.

(i) Formule de changement de base :

$$\det_{\mathscr{B}'} = \det_{\mathscr{B}'}(\mathscr{B}) \det_{\mathscr{B}}.$$

- (ii) $\det_{\mathscr{B}}(\mathscr{B}') \neq 0 \in t \det_{\mathscr{B}'}(\mathscr{B}) = (\det_{\mathscr{B}}(\mathscr{B}'))^{-1}$.
- (iii) $(x_1,...,x_n)$ est libre/une base de E si et seulement si $\det_{\mathscr{B}}(x_1,...,x_n) \neq 0_{\mathbb{K}}$.

On montre que si $u \in \mathcal{L}(E)$, alors $\det_{\mathcal{B}}(u(\mathcal{B}))$ ne dépend pas de \mathcal{B} . On en déduit la définition :

Définition 10 : Déterminant d'un endomorphisme

Soit $u \in \mathcal{L}(E)$. On appelle **déterminant** de u le scalaire

$$\det u = \det_{\mathcal{B}}(u(\mathcal{B})) = \det_{(e_1,\dots,e_n)}(u(e_1),\dots,u(e_n))$$

où \mathcal{B} est une base quelconque de E.

Propriété 11 : du déterminant d'un endomorphisme

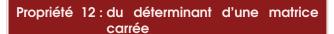
Soient $u, v \in \mathcal{L}(E)$.

- (i) $\forall (x_1, ..., x_n) \in E$, $\det_{\mathscr{B}}(u(x_1), ..., u(x_n)) = \det u \times \det_{\mathscr{B}}(x_1, ..., x_n)$.
- (ii) $det(id_E) = 1$.
- (iii) $\det(u \circ v) = \det u \times \det v$.
- (iv) \bigwedge $\forall \lambda \in \mathbb{K}$, $\det(\lambda u) = \lambda^n \det u$.
- (V) $u \in \mathcal{GL}(E) \iff \det u \neq 0$.
- (vi) $\det: (\mathscr{GL}(E), \circ) \to (\mathbb{K}^*, \times)$ est un morphisme de groupes.
- ($\forall ii$) Si $u \in \mathcal{GL}(E)$, $\det(u^{-1}) = (\det u)^{-1}$.

Définition 11 : du déterminant d'une matrice carrée

Soit $A \in \mathcal{M}_n(\mathbb{K})$, $A = (a_{i,j})_{i,j \in [\![1,n]\!]}$. On définit le **déterminant** de A par

$$\det A = \begin{vmatrix} a_{1,1} \cdot \dots \cdot a_{1,n} \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ a_{n,1} \cdot \dots \cdot a_{n,n} \end{vmatrix} = \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) a_{\sigma(1),1} \dots a_{\sigma(n),n}.$$



- (i) Si $C_1,...,C_n$ sont les vecteurs colonnes de A et \mathscr{B} la base canonique de \mathbb{K}^n , $\det A = \det_{\mathscr{B}}(C_1,...,C_n)$.
- (ii) Soit E un \mathbb{K} -espace vectoriel de dimension finie n, $u \in \mathcal{L}(E)$ représenté par A dans une base de E, alors $\det A = \det u$.
- (iii) $\det I_n = 1$.
- (iv) Si $A, B \in \mathcal{M}_n(\mathbb{K})$, det $AB = \det A \det B$.
- (V) \bigwedge Si $A \in \mathcal{M}_n(\mathbb{K})$ $et \lambda \in \mathbb{K}$, $\det(\lambda A) = \lambda^n \det A$.
- ($\forall i$) $\det A^{\mathsf{T}} = \det A$.
- ($\forall ii$) $\mathscr{GL}_n(\mathbb{K}) = \{A \in \mathscr{M}_n(\mathbb{K}), \det A \neq 0\}.$
- (viii) det: $(\mathscr{GL}_n(\mathbb{K}), \times) \to (\mathbb{K}^*, \times)$ est un morphisme de groupes.
- (ix) Si A est inversible, $det(A^{-1}) = (det A)^{-1}$.
- (x) Des matrices semblables ont même déterminant : le déterminant est un invariant de similitude.

Définition 12 : Mineurs, cofacteurs, comatrice

Soient $A \in \mathcal{M}_n(\mathbb{K})$, $i, j \in [1, n]$.

- On appelle **mineur** d'indice (i, j) le déterminant $\Delta_{i,j}$ obtenu en retirant L_i et C_j à A.
- On appelle **cofacteur** d'indice (i,j) le nombre $C_{i,j} = (-1)^{i+j} \Delta_{i,j}$.
- On appelle comatrice de A la matrice de ses cofacteurs :

$$\tilde{A} = \operatorname{Com} A = (C_{i,j})_{i,j} = \left((-1)^{i+j} \Delta_{i,j} \right)_{i,j}.$$

Propriété 14 : Développement par rapport à une ligne ou une colonne

Soit $A \in \mathcal{M}_n(\mathbb{K})$.

- (i) **Développement par rapport à** $L_i \, \forall \, i \in [1, n],$ $\det A = \sum_{j=1}^{n} (-1)^{i+j} \Delta_{i,j} \, a_{i,j}.$
- (ii) Développement par rapport à $C_j \ \forall j \in [\![1,n]\!]$, $\det A = \sum_{i=1}^n (-1)^{i+j} \Delta_{i,j} \, a_{i,j}.$

2 Calculs

Propriété 13 : Opérations sur un déterminant

- (i) Si une ligne ou une colonne est nulle, ou une combinaison linéaire des autres, le déterminant est nul.
- (ii) On ne change pas le déterminant avec les opérations

$$L_i \leftarrow L_i + \sum_{k \neq i} \lambda_k L_k$$
 ou $C_j \leftarrow C_j + \sum_{k \neq i} \lambda_k C_k$

(transvections successives.)

- (iii) En multipliant par λ une ligne ou une colonne, on multiplie par λ le déterminant.
- (iv) Si on échange deux lignes ou deux colonnes, on multiplie le déterminant par -1. Plus généralement, si on permute les lignes ou les colonnes avec une permutation $\sigma \in \mathfrak{S}_n$, on multiplie le déterminant par $\varepsilon(\sigma)$.
- (v) Le déterminant d'une matrice triangulaire est le produit de ses cœfficients diagonaux.

Propriété 15 : Déterminant de matrice triangulaire par blocs

Soient $A \in \mathcal{M}_n(\mathbb{K})$ et $B \in \mathcal{M}_p(\mathbb{K})$, alors

$$\begin{vmatrix} A & (*) \\ (0) & B \end{vmatrix} = \begin{vmatrix} A & (0) \\ (*) & B \end{vmatrix} = \det A \cdot \det B.$$

Propriété 16 : Déterminant de Vandermonde

Soient $x_1, ..., x_n \in \mathbb{K}$,

$$V(x_1,...,x_n) = \begin{vmatrix} 1 & x_1 & x_1^2 & x_1^{n-1} \\ 1 & x_2 & x_2^2 & x_2^{n-1} \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_n \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_n \end{vmatrix}$$

$$= \prod_{1 \le i \le n} (x_j - x_i).$$

Formule de la comatrice

Propriété 17 : Formule de la comatrice

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors

$$A \times (\operatorname{Com} A)^{\mathsf{T}} = (\operatorname{Com} A)^{\mathsf{T}} \times A = \det(A) \cdot I_n.$$

Si, de plus, A est inversible, alors

$$A^{-1} = \frac{1}{\det A} (\operatorname{Com} A)^{\mathsf{T}}.$$

Orientation d'un \mathbb{R} -espace vectoriel

Définition 13 : Avoir même orientation qu'une base

On dit qu'une base \mathscr{B} d'un \mathbb{R} -espace vectoriel **a même orientation** qu'une autre base \mathscr{B}' lorsque

$$\det_{\mathscr{B}}(\mathscr{B}') = \det\left(P_{\mathscr{B}}^{\mathscr{B}'}\right) > 0.$$

Propriété 18 : Relation d'équivalence

C'est une relation d'équivalence avec exactement deux classes d'équivalences.

Définition 14 : Orientation d'un \mathbb{R} -espace vectoriel

Orienter un \mathbb{R} -espace vectoriel, c'est décider qu'une base est **directe**. Alors toutes les bases de même orientation sont dites directes.

Toutes les autres, qui ont même orientation entre elles, sont dites **indirectes**.

Propriété 19 : Interprétation géométrique du déterminant

- (i) Si $\vec{u}, \vec{v} \in \mathbb{R}^2$, \mathscr{B} la base canonique de \mathbb{R}^2 , alors $\det_{\mathscr{B}}(\vec{u}, \vec{v})$ est l'aire orientée du parallélogramme construit sur \vec{u} et \vec{v} : il est nul si (\vec{u}, \vec{v}) est liée, positif si (\vec{u}, \vec{v}) a même orientation que \mathscr{B} , négatif sinon.
- (ii) Si $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^2$, \mathscr{B} la base canonique de \mathbb{R}^3 , alors $\det_{\mathscr{B}}(\vec{u}, \vec{v}, \vec{w})$ est le volume orienté du parallélogramme construit sur $\vec{u}, \vec{v}, \vec{w}$: il est nul si $(\vec{u}, \vec{v}, \vec{w})$ est liée, positif si $(\vec{u}, \vec{v}, \vec{w})$ a même orientation que \mathscr{B} , négatif sinon.

Formules de Cramer (HP)

Propriété 20 : Formules de Cramer (HP)

Soit (S) un système de Cramer, c'est-à-dire à n équations et n inconnues et de matrice $A \in \mathscr{GL}_n(\mathbb{K})$. On sait que (S) : Ax = b admet une unique solution $x = (x_1 \cdots x_n)^{\mathsf{T}} \in \mathcal{M}_{n,1}(\mathbb{K})$.

Soient $C_1,...,C_n$ les colonnes de A. Alors pour tout $j \in [1,n]$,

$$x_{j} = \frac{\det(C_{1} | \cdots | C_{j-1} | b | C_{j+1} | \cdots | C_{n})}{\det A}.$$