Groupe symétrique et déterminant [MP2I]

GROUPE SYMÉTRIQUE

Définition, structure

Définition 1 : Permutation, groupe symétrique

Si E est un ensemble, on appelle **permutation** de E toute bijection de E dans E. On note $\mathfrak{S}(E)$ leur ensemble.

Si $E = [\![1,n]\!]$ où $n \in \mathbb{N}^*$, on note \mathfrak{S}_n appelé groupe symétrique d'ordre n (ou de degré n) cet ensemble.

Si
$$\sigma \in \mathfrak{S}_n$$
, on note $\sigma = \begin{pmatrix} 1 & 2 & 3 \cdots n \\ \sigma(1) & \sigma(2) & \sigma(3) \cdots \sigma(n) \end{pmatrix}$.

Remarque

- **R1** Attention! \mathfrak{S}_n n'est pas de cardinal n mais ...
- R2 Comme \mathfrak{S}_n est fini, toute permutation est d'ordre fini, divisant n! (théorème de Lagrange).

Propriété 1 : Structure

 (\mathfrak{S}_n, \circ) est un groupe d'ordre (ie de cardinal) n!, non abélien dès que $n \geqslant 3$.

Définition 2: Orbites

Soit $\sigma \in \mathfrak{S}_n$. La relation binaire définie sur $[\![1,n]\!]$ par

$$x \sim y \iff \exists k \in \mathbb{Z}, y = \sigma^k(x)$$

est une relation d'équivalence dont les classes d'équivalence sont les **orbites** de σ .

Si
$$x \in [1, n]$$
,

$$\mathcal{O}(x) = \left\{ \sigma^k(x), \ k \in \mathbb{Z} \right\}.$$

Propriété 2 : Description d'une orbite

Soit $\sigma \in \mathfrak{S}_n$, $x \in [1, n]$. Alors il existe $\ell \in \mathbb{N}$ tel que $\mathscr{O}(x) = \{x, \sigma(x), \dots, \sigma^{\ell-1}(x)\}$ (deux à deux distincts).

Remarque

R3 – $\ell \leqslant \text{ordre}(\sigma)$.

Définition 3: Support

Si $\sigma \in \mathfrak{S}_n$, son **support** est l'ensemble des éléments de $[\![1,n]\!]$ qui **ne sont pas** invariants par σ .

Remarque

R4 - C'est la réunion de toutes les orbites non réduites à un élément.

Propriété 3 : Commutation de permutations à supports disjoints

- (i) Le support d'une permutation est stable par cette permutation.
- (ii) Deux permutations à supports disjoints commutent.

Exercice 1 : Centre de \mathfrak{S}_n

- 1. Soit $n \in \mathbb{N}$ tel que $n \geqslant 2$, et $(i,j) \in [1,n]^2$ tel que $i \neq j$. Montrer que si $\sigma \in \mathfrak{S}_n$ et $(i\ j)$ commutent, $\{i,j\}$ est stable par σ . La réciproque est-elle vraie?
- 2. Montrer que, pour $n\in\mathbb{N}$ tel que $n\geqslant 3$ le centre de \mathfrak{S}_n , partie de \mathfrak{S}_n des permutations commutant avec toutes les permutations de \mathfrak{S}_n est $\mathcal{Z}(\mathfrak{S}_n)=\left\{\mathrm{id}_{\llbracket 1,n\rrbracket}\right\}$. Étudier le cas où n=2.

2 Cycles

Définition 4: Transposition, cycle

■ Une **transposition** τ est une permutation qui échange deux éléments i et j de [1, n], et laisse les autres invariants ie dont le support est $\{i, j\}$.

On la note $\tau = (i \ j)$ ou parfois $\tau_{i,j}$.

$$\tau_{i,j}(i)=j$$
 , $\tau_{i,j}(j)=i$ et si $k\notin\{i,j\}$, $\tau_{i,j}(k)=k$.

- Soit $p \in \mathbb{N}$ tel que $2 \leq p \leq n$.
- On appelle p-**cycle** une permutation c de \mathfrak{S}_n qui permute circulairement p éléments i_1, i_2, \ldots, i_n de $[\![1, n]\!]$ et laisse les autres invariants ie dont le support est $\{i_1, \ldots, i_p\}$ et telle que

$$c(i_1) = i_2$$
; $c(i_2) = i_3$; ...; $c(i_{p-1}) = i_p$; $c(i_p) = i_1$

p est la **longueur** du cycle c. On note $c = (i_1 \ i_2 \ \cdots \ i_p)$.

Exercice 2: Conjugaison de cycle (souvent utile)

Si $\sigma \in \mathfrak{S}_n$ et c un cycle, décrire $\sigma \circ c \circ \sigma^{-1}$.

Propriété 4 : Ordre d'un cycle

Un p-cycle est d'ordre p.

Théorème 1 : Unique décomposition en produit de cycles à supports disjoints

Toute permutation se décompose en produit (composée) de cycles à supports disjoints. La décomposition est unique à l'ordre des facteurs près.

Remarque

R5 – Donc les cycles de \mathfrak{S}_n engendrent \mathfrak{S}_n .

Remarque

R6 – Par commutativité des cycles à supports disjoints, on a facilement que si m est le ppcm des ordres des cycles, $\sigma^m = \mathrm{id}$. Voir TD : montrer que le ppcm est égal à l'ordre de σ .

Voir exercice du TD: 5

Corollaire 1 : Décomposition en produit de transpositions (non unique)

Toute permutation se décompose en produit (composée) de transpositions.

Remarque

R7 – Donc les transpositions de \mathfrak{S}_n engendrent \mathfrak{S}_n .

Démonstration

Se déduit du théorème précédent en sachant décomposer un cycle produit de transposition.

Voici deux propositions adaptables à tout cycle :

$$(1 \ 2 \ \cdots \ p) = (1 \ p) (1 \ p-1) \cdots (1 \ 2) = (1 \ 2) (2 \ 3) \cdots (p-1 \ p)$$

Mais savoir le démontrer directement n'est pas inintéressant (technique utile dans d'autres contextes.) Par récurrence sur $n \ge 2$.

- Initialisation: pour n = 2, $\mathfrak{S}_2 = \{id, (12)\}$ avec $id = (12)^2$.
- **Hérédité**: Supposons que, pour un $n \ge 2$, \mathfrak{S}_n est engendré par ses transpositions (HR). Soit $\sigma \in \mathfrak{S}_{n+1}$; on veut écrire σ comme un produit de transpositions. On va discuter suivant $\sigma(n+1)$:
 - * ler Cas : Si $\sigma(n+1)=(n+1)$, alors $[\![1,n]\!]$ est stable par σ , et celle-ci induit une permutation $\sigma'\in\mathfrak{S}_n$ de $[\![1,n]\!]$,

$$\sigma': \left| \begin{array}{ccc} \llbracket 1, n \rrbracket & \longrightarrow & \llbracket 1, n \rrbracket \\ k & \longmapsto & \sigma(k) \end{array} \right|.$$

Par (HR), on peut trouver des transpositions $\tau'_1, \tau'_2, \dots, \tau'_p \in \mathfrak{S}_n$ telles que $\sigma' = \tau'_1 \tau'_2 \cdots \tau'_p$.

On peut alors prolonger les τ_i' en des permutations τ_i de $[\![1,n+1]\!]$ en posant $\tau_i(n+1)=n+1$.

On obtient la décomposition en remarquant que σ et $\tau_1\tau_2\cdots\tau_p$ coı̈ncident sur $[\![1,n]\!]$ par définition des τ_i' et en n+1 qui est laissé invariant par toutes ces permutations. Donc

$$\sigma = \tau_1 \tau_2 \cdots \tau_n$$
.

 \star **2**^e Cas : Si $\sigma(n+1) \neq (n+1)$,

■ La récurrence est établie. Remarquons qu'à chaque étape, on ajoute au plus une transposition.

3 Signature

Définition 5: Inversions, signature

Soit $\sigma \in \mathfrak{S}_n$. On appelle **inversion** par σ tout couple (i, j) tell que i < j et $\sigma(i) > \sigma(j)$. On note $I(\sigma)$ le nombre d'inversions par σ .

On appelle **signature** de σ le nombre $\varepsilon(\sigma) = (-1)^{I(\sigma)} \in \{-1,1\}.$

On vérifie que $\varepsilon(\sigma) = \prod_{1 \leqslant i < j \leqslant n} \frac{\sigma(j) - \sigma(i)}{j - i}$.

Une permutation σ est dite **paire** lorsque $I(\sigma)$ est pair et donc $\varepsilon(\sigma)=1$. Elle est dite **impaire** dans le cas contraire.

Remarque

R8 – La définition avec les inversions peut être oubliée tout de suite. Ce n'est pas ce qui importe dans la signature : il vaut mieux savoir se ramener à des cycles ou à des transpositions (voir ci-après).

Théorème 2 : Morphisme de signature

Soit $n \ge 2$. L'application

$$\varepsilon: \left| \begin{array}{ccc} (\mathfrak{S}_n, \circ) & \longrightarrow & (\{-1, 1\}, \times) = (\mathbb{U}_2, \times) \\ \sigma & \longmapsto & \varepsilon(\sigma) \end{array} \right|$$

est un morphisme de groupe, ie si $\sigma, \sigma' \in \mathfrak{S}_n$, $\varepsilon(\sigma\sigma') = \varepsilon(\sigma)\varepsilon(\sigma')$.

Propriété 5 : de la signature

- (i) Si $\sigma \in \mathfrak{S}_n$ se décompose en produit de N transpositions, $\varepsilon(\sigma) = (-1)^N$. En particulier, cette décomposition n'est pas unique mais la parité du nombre de termes est toujours celle de la permutation.
- (ii) Si c est un p-cycle, $\varepsilon(c) = 0$.
- (iii) Si $\sigma \in \mathfrak{S}_n$, $\varepsilon(\sigma^{-1}) = \varepsilon(\sigma)$.

Voir exercice du TD: 4,

Exercice 3

Montrer que si $\sigma \in \mathfrak{S}_n$ et si p est le nombre d'orbites de σ , alors $\varepsilon(\sigma) = (-1)^{n-p}$.

Groupe alterné (HP)

Définition 6 : Groupe alterné

Le sous-groupe $\mathfrak{A}_n=\mathrm{Ker}(\varepsilon)$ des permutations paires de \mathfrak{S}_n est appelé **groupe** alterné d'ordre n (ou de degré n).

Propriété 6

Pour tout $n \ge 2$, $|\mathfrak{A}_n| = \frac{n!}{2}$.

Remarque

R9 – II y a donc autant de permutations paires que de permutations impaires dans \mathfrak{S}_n .

Exemple

E1 – Décrivons \mathfrak{S}_4 : il contient

et \mathfrak{A}_4 : il contient

Soit $G = \{id, \sigma_1 = (1\ 2) \circ (3\ 4), \sigma_2 = (1\ 3) \circ (2\ 4), \sigma_3 = (1\ 4) \circ (2\ 3)\}.$

Il s'agit d'un sous-groupe commutatif de \mathfrak{A}_4 comme l'atteste sa table cicontre, appelé groupe de Klein¹.

On peut montrer qu'il est isomorphe à (\mathbb{U}_2^2,\times) et que tout groupe d'ordre 4 est soif isomorphe au groupe de Klein, soit isomorphe à (\mathbb{U}_4,\times) (en examinant les différentes tables possibles pour la loi de groupe.)

-/).				
Image: Control of the	id	σ_1	σ_2	σ_3
id	id	σ_1	σ_2	σ_3
σ_1	σ_1	id	σ_3	σ_2
σ_2	σ_2	σ_3	id	σ_1
σ_3	σ_3	σ_2	σ_2	id

Remarque

R 10 – On peut facilement trouver des sous-groupes de \mathfrak{A}_4 d'ordre 1, 2, 3, 4, et 12 mais il n'y a pas de sous-groupe d'ordre 6. On peut démontrer que ceux-ci sont soit cycliques (mais \mathfrak{S}_4 ne contient pas d'élément d'ordre 6), soit isomorphes au groupe diédral D_6 des isométries laissant invariant un triangle équilatéral (contenant 3 rotations et 3 symétries, engendré par une des rotations et une des symétries).

Par contre, on en trouve dans \mathfrak{S}_4 engendrés par un 3-cycle et une transposition facilement isomorphe à D_6 (qui est aussi isomorphe à \mathfrak{S}_3 , par ailleurs!).

Voir exercice du TD : 8

Formes n-linéaires

Définition 7 : Application *n***-linéaire**

Soit $\mathbb K$ corps commutatif, $n \in \mathbb N^*$, E,F des $\mathbb K$ -espaces vectoriels. Une application $f:E^n \to F$ est dite n-linéaire lorsque pour tout $(x_1,\ldots,x_n) \in E^n$, et tout $i \in [\![1,n]\!]$,

$$f_i: \begin{bmatrix} E & \longrightarrow & F \\ x & \longmapsto & f(x_1, \dots, x_{i-1}, x, x_{i+1}, \dots, x_n) \end{bmatrix}$$

est linéaire. (Linéarité par rapport à la i^e variable.) c'est-à-dire $\forall (x_1,\ldots,x_n) \in E^n, \ \forall \ i \in [\![1,n]\!], \ \forall \ x,y \in E, \ \forall \ \lambda \in \mathbb{K},$

$$f(x_1,...,x_{i-1},x+\lambda y,x_{i+1},...,x_n)$$

$$= f(x_1,...,x_{i-1},x,x_{i+1},...,x_n)$$

$$+ \lambda f(x_1,...,x_{i-1},y,x_{i+1},...,x_n)$$

On note $\mathcal{L}_n(E,F)$ l'ensemble des formes n-linéaires. Lorsque $F = \mathbb{K}$, on parle de **forme n-linéaire**.

Propriété 7 : Espace vectoriel de applications n-linéaires

 $\mathcal{L}_n(E,F)$ est un \mathbb{K} -espace vectoriel.

Définition 8 : Symétrie, antisymétrie et caractère alterné

Soit $f \in \mathcal{L}_n(E, \mathbb{K})$.

• f est dite **symétrique** si et seulement si $\forall (x_1,...,x_n) \in E^n$, $\forall i \neq j$,

■ f est dite **antisymétrique** si et seulement si $\forall (x_1,...,x_n) \in E^n$, $\forall i \neq j$,

■ f est dite **alternée** si et seulement si $\forall (x_1,...,x_n) \in E^n$, $\forall i \neq j$,

Propriété 8 : Caractérisations

Soit $f \in \mathcal{L}_n(E, \mathbb{K})$.

(i) f est symétrique si et seulement $si \forall \sigma \in \mathfrak{S}_n, \forall (x_1,...,x_n) \in E^n$,

(ii) f est antisymétrique si et seulement si $\forall \sigma \in \mathfrak{S}_n, \ \forall (x_1, ..., x_n) \in E^n$,

(iii) f est alternée si et seulement si $\forall (x_1,...,x_n) \in E^n$,

Propriété 9 : Équivalence entre alternée et antisymétrique

Soit $f \in \mathcal{L}_n(E, \mathbb{K})$ une forme linéaire. Alors f est alternée si et seulement si f est antisymétrique.

Remarque

R 11 – Le sens réciproque n'est en réalité vrai que lorsque $\mathbb K$ n'est pas de caractéristique 2, c'est-à-dire lorsque $2_{\mathbb K} \neq 0_{\mathbb K}$.

Théorème 3: fondamental

Soit E un \mathbb{K} -espace vectoriel de dimension finie, $n = \dim E \in \mathbb{N}^*$.

Si $n = \dim E$, l'ensemble des formes n-linéaires alternées sur E est un \mathbb{K} -espace vectoriel de dimension 1.

Démonstration

L'ensemble $\Lambda_n(E)$ des formes n-linéaires alternées sur E est facilement un sous-espace vectoriel de $\mathscr{L}_n(E,\mathbb{K})$.

Soient $f \in \Lambda_n(E)$, $\mathscr{B} = (e_1, \ldots, e_n)$ une base de E. On a déjà vu que si on note $(x_{1,j}, \ldots, x_{n,j})$

les coordonnées de $x_j \in E$ dans la base \mathscr{B} , donc $x_j = \sum_{i=1}^n x_{i,j} e_i$, alors

$$f(x_1, \dots, x_n) = f\left(\sum_{i_1=1}^n x_{i_1, 1} e_{i_1}, \dots, \sum_{i_n=1}^n x_{i_n, n} e_{i_n}\right) = \sum_{1 \leq i_1, \dots, i_n \leq n} x_{i_1, 1} \dots x_{i_n, n} f(e_{i_1}, \dots, e_{i_n})$$

mais comme ici f est alternée, on peut indexer la somme par $1\leqslant i_1,...,i_n\leqslant n$ deux à deux distincts, ce qui revient à prendre une permutation $\sigma\in\mathfrak{S}_n$ telle que pour tout j, $i_j=\sigma(j)$. On obtient alors

$$f(x_1,\ldots,x_n) = \sum_{\sigma \in \mathfrak{S}_n} x_{\sigma(1),1} \ldots x_{\sigma(n),n} f(e_{\sigma(1)},\ldots,e_{\sigma(n)})$$

Comme f est aussi antisymétrique,

$$f(x_1, \dots, x_n) = \left(\sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) x_{\sigma(1), 1} \dots x_{\sigma(n), n}\right) f(e_1, \dots, e_n)$$

On pose
$$d: \begin{bmatrix} E^n & \longrightarrow & \mathbb{K} \\ (x_1, \dots, x_n) & \longmapsto & \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) x_{\sigma(1), 1} \dots x_{\sigma(n), n} \end{bmatrix}$$

On a que pour tout $f \in \Lambda_n(E)$, $f = f(\mathcal{B}) \cdot d$ et donc $\Lambda_n(E) \subset td$. Montrons que $d \in \Lambda_n(E)$.

- La n-linéarité vient de la linéarité l'application qui à un vecteur x associe sa i° coordonnées dans B.
- Pour montrer qu'elle est alternée, on montre qu'elle est antisymétrique :

$$d(x_1,...,x_i,...,x_i,...,x_n) = -d(x_1,...,x_i,...,x_i,...,x_n)$$

avec le changement d'indice $\sigma' = \sigma \circ (i \ j)$.

Donc $\Lambda_n(E) = td$.

Dernier point : $d \neq 0$: il suffit de vérifier que $d(\mathcal{B}) = 1$ en remarquant que les coordonnées du vecteur e_i de base sont les $\delta_{i,j}$ donc le seul terme non nul de la somme définissant $d(\mathcal{B})$ est celui pour $\sigma = \mathrm{id}$, et il vaut 1.

Remarque

- **R 12** Deux formes n-linéaires alternées sur E de dimension n (oui, c'est bien le même n les deux fois) sont donc toujours proportionnelles, c'est ce qui importe.
 - Plus précisément, une base \mathscr{B} de E étant donnée, il existe une unique forme n-linéaire alternée envoyant \mathscr{B} sur le scalaire 1. On va l'appeler déterminant dans la base \mathscr{B} , noté $\det_{\mathscr{B}}$, et toute forme n-linéaire alternée sur E est proportionnelle à $\det_{\mathscr{B}}$.

Voir exercice du TD: 1

DÉTERMINANT

Définitions

On fixe E un \mathbb{K} -espace vectoriel de dimension finie $n, \mathcal{B} = (e_1, ..., e_n)$ une base de E.

Définition 9 : Déterminant d'une famille de vecteurs dans une base

On appelle **déterminant dans la base** $\mathscr B$ l'unique forme n-linéaire alternée sur E notée $\det_{\mathscr B}$ telle que $\det_{\mathscr B}(\mathscr B)=1$.

Si pour $1 \le j \le n$, $x_j \in E$ de coordonnées $(x_{1,j},...,x_{n,j})$ dans \mathscr{B} , alors

$$\det_{\mathscr{B}}(x_1,\ldots,x_n) =$$

On note

$$\det_{\mathscr{B}}(x_1,\ldots,x_n) = \begin{vmatrix} x_{1,1} & \cdots & x_{1,n} \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ x_{n,1} & \cdots & x_{n,n} \end{vmatrix}.$$

Remarque

 ${\it R}$ 13 – Par définition, le déterminant est n-linéaire alterné. En particulier, le déterminant d'une famille liée est nul.

Propriété 10 : du déterminant

Soit E un \mathbb{K} -espace vectoriel de dimension finie n, \mathscr{B} , \mathscr{B}' des bases de E.

- (i) Formule de changement de base :
- (ii) $\det_{\mathscr{B}}(\mathscr{B}') \neq 0$ et $\det_{\mathscr{B}'}(\mathscr{B}) =$
- (iii) $(x_1,...,x_n)$ est libre/une base de E si et seulement si $\det_{\mathscr{B}}(x_1,...,x_n)\neq 0_{\mathbb{K}}$.

On montre que si $u \in \mathcal{L}(E)$, alors $\det_{\mathscr{B}}(u(\mathscr{B}))$ ne dépend pas de \mathscr{B} . On en déduit la définition :

Définition 10 : Déterminant d'un endomorphisme

Soit $u \in \mathcal{L}(E)$. On appelle **déterminant** de u le scalaire

$$\det u = \det_{\mathscr{B}}(u(\mathscr{B})) = \det_{(e_1,...,e_n)}(u(e_1),...,u(e_n))$$

où \mathcal{B} est une base quelconque de E.

Propriété 11 : du déterminant d'un endomorphisme

Soient $u, v \in \mathcal{L}(E)$.

- (i) $\forall (x_1, \dots, x_n) \in E$, $\det_{\mathscr{B}}(u(x_1), \dots, u(x_n)) =$
- (ii) $det(id_F) = 1$.
- (iii) $det(u \circ v) = det u \times det v$.
- (iv) \bigwedge $\forall \lambda \in \mathbb{K}$, $\det(\lambda u) =$
- (V) $u \in \mathcal{GL}(E) \iff \det u \neq 0$.
- (vi) $\det: (\mathscr{GL}(E), \circ) \to (\mathbb{K}^*, \times)$ est un morphisme de groupes.
- ($\forall ii$) Si $u \in \mathcal{GL}(E)$, $\det(u^{-1}) = (\det u)^{-1}$.

Remaraue

R14 – \bigwedge det n'est pas linéaire : $\det(u+v) \neq \det u + \det v$ en général.

Exercice 4

On note $\mathscr{SL}(E)$ (pour spécial linéaire) l'ensemble des endomorphismes de E de déterminant 1. Montrer qu'il a une structure de groupe.

Voir exercice du TD: 15

Définition 11 : du déterminant d'une matrice carrée

Soit $A \in \mathcal{M}_n(\mathbb{K})$, $A = (a_{i,j})_{i,j \in [\![1,n]\!]}$. On définit le **déterminant** de A par

$$\det A = \begin{vmatrix} a_{1,1} \cdot \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n,1} \cdot \cdots & a_{n,n} \end{vmatrix} =$$

Remarque

- **R 15** Dans chaque terme de la somme, on choisit exactement un terme par colonne et par ligne.
- R 16 Un définition alternative équivalente consisterait à faire agir la permutation sur le numéro de colonne : c'est l'égalité avec le déterminant de la transposée de la propriété suivante :

$$\det A = \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) a_{1,\sigma(1)} \dots a_{n,\sigma(n)}.$$

Propriété 12 : du déterminant d'une matrice carrée

- (i) Si $C_1,...,C_n$ sont les vecteurs colonnes de A et \mathcal{B} la base canonique de \mathbb{K}^n , det $A = \det_{\mathcal{B}}(C_1,...,C_n)$.
- (ii) Soit E un \mathbb{K} -espace vectoriel de dimension finie n, $u \in \mathcal{L}(E)$ représenté par A dans une base de E, alors $\det A = \det u$.
- (iii) $\det I_n = 1$.
- (iv) Si $A, B \in \mathcal{M}_n(\mathbb{K})$, det $AB = \det A \det B$.
- (V) \bigwedge Si $A \in \mathcal{M}_n(\mathbb{K})$ $\ominus f \lambda \in \mathbb{K}$, $\det(\lambda A) = \lambda^n \det A$.
- ($\forall i$) $\det A^{\mathsf{T}} = \det A$.
- ($\forall ii$) $\mathscr{GL}_n(\mathbb{K}) = \{A \in \mathcal{M}_n(\mathbb{K}), \det A \neq 0\}.$
- (viii) $\det: (\mathscr{GL}_n(\mathbb{K}), \times) \to (\mathbb{K}^*, \times)$ est un morphisme de groupes.
- (ix) Si A est inversible, $\det(A^{-1}) = (\det A)^{-1}$.
- (x) Des matrices semblables ont même déterminant : le déterminant est un invariant de similitude.

Remarque

R17 – \bigwedge det(A + B) \neq det A + det B en général : det n'est pas linéaire.

Exercice 5

On note $\mathscr{FL}_n(\mathbb{K})$ (pour spécial linéaire) l'ensemble des matrices de déterminant 1. Montrer qu'il a une structure de groupe.

2 Calcula

Propriété 13: Opérations sur un déterminant

- (i) Si une ligne ou une colonne est nulle, ou une combinaison linéaire des autres, le déterminant est nul.
- (ii) On ne change pas le déterminant avec les opérations

$$L_i \leftarrow L_i + \sum_{k \neq i} \lambda_k L_k$$
 ou $C_j \leftarrow C_j + \sum_{k \neq i} \lambda_k C_k$

(transvections successives.)

- (iii) En multipliant par λ une ligne ou une colonne, on multiplie par λ le déterminant.
- (iv) Si on échange deux lignes ou deux colonnes, on multiplie le déterminant par -1. Plus généralement, si on permute les lignes ou les colonnes avec une permutation $\sigma \in \mathfrak{S}_n$, on multiplie le déterminant par $\varepsilon(\sigma)$.
- (v) Le déterminant d'une matrice triangulaire est le produit de ses cœfficients diagonaux.

Définition 12: Mineurs, cofacteurs, comatrice

Soient $A \in \mathcal{M}_n(\mathbb{K})$, $i, j \in [1, n]$.

- On appelle **mineur** d'indice (i,j) le déterminant $\Delta_{i,j}$ obtenu en retirant L_i et C_j à A.
- On appelle **cofacteur** d'indice (i,j) le nombre $C_{i,j} = (-1)^{i+j} \Delta_{i,j}$.
- lacktriangle On appelle **comatrice** de A la matrice de ses cofacteurs :

Propriété 14 : Développement par rapport à une ligne ou une colonne

Soit $A \in \mathcal{M}_n(\mathbb{K})$.

- (i) Développement par rapport à $L_i \, \forall \, i \in [1, n]$,
- (ii) Développement par rapport à $C_i \forall j \in [1, n]$,

Remarque

R20 – $V(x_1,...,x_n) \neq 0$ si et seulement si les x_i sont deux à deux distincts.

R21 – Dans le problème d'interpolation de Lagrange, les cœfficients du polynôme inconnu $P=a_0+\cdots+a_nX^n$ tel que pour tout $i\in [\![0,n]\!]$, $P(x_i)=y_i$ sont solutions d'un système linéaire de matrice de Vandermonde associée à x_0,\ldots,x_n . Il y a bien une et une seule solution si les x_i dont deux à deux distincts.

Propriété 15 : Déterminant de matrice triangulaire par blocs

Soient $A \in \mathcal{M}_n(\mathbb{K})$ et $B \in \mathcal{M}_p(\mathbb{K})$, alors

$$\begin{vmatrix} A & (*) \\ (0) & B \end{vmatrix} = \begin{vmatrix} A & (0) \\ (*) & B \end{vmatrix} = \det A \cdot \det B.$$

Remarque

- R 18 \triangle même lorsque toutes les matrices sont carrées, $\begin{vmatrix} A & B \\ C & D \end{vmatrix} \neq \det A \det D \det B \det C$ ou autre $\det(AD BC)$ en général!
- R 19 Les opérations sur les déterminants peuvent aussi être effectuées par blocs.

\$

Voir exercice du TD : 9, 10, 12 à 14

Formule de la comatrice

Propriété 17 : Formule de la comatrice

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors

Si, de plus, A est inversible, alors

Propriété 16 : Déterminant de Vandermonde

Soient $x_1, ..., x_n \in \mathbb{K}$,

$$V(x_1,...,x_n) = \begin{vmatrix} 1 & x_1 & x_1^2 \cdot \dots \cdot x_1^{n-1} \\ 1 & x_2 & x_2^2 \cdot \dots \cdot x_2^{n-1} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 \cdot \dots \cdot x_n^{n-1} \end{vmatrix} = \begin{vmatrix} 1 & 1 \cdot \dots \cdot 1 \\ x_1 & x_2 \cdot \dots \cdot x_n \\ \vdots & \vdots & \vdots \\ x_1^{n-1} & x_2^{n-1} \cdot \dots \cdot x_n^{n-1} \end{vmatrix}$$

Remarque

R22 – Intérêt théorique. Utile en pratique seulement si n = 2 ou 3.

Voir exercice du TD: 17

Orientation d'un \mathbb{R} -espace vectoriel

Définition 13: Avoir même orientation qu'une base

On dit qu'une base 38 d'un R-espace vectoriel a même orientation qu'une autre base \mathcal{B}' lorsque

Remarque

R 23 - / Cela n'a aucun sens dans €!

Propriété 18: Relation d'équivalence

C'est une relation d'équivalence avec exactement deux classes d'équivalences.

Définition 14 : Orientation d'un \mathbb{R} -espace vectoriel

Orienter un R-espace vectoriel, c'est décider qu'une base est directe. Alors toutes les bases de même orientation sont dites directes.

Toutes les autres, qui ont même orientation entre elles, sont dites indirectes.

Propriété 19: Interprétation géométrique du déterminant

- (i) Si $\vec{u}, \vec{v} \in \mathbb{R}^2$, \mathscr{B} la base canonique de \mathbb{R}^2 , alors $\det_{\mathscr{B}}(\vec{u}, \vec{v})$ est l'aire orientée du parallélogramme construit sur \vec{u} et \vec{v} : il est nul si (\vec{u}, \vec{v}) est liée, positif si (\vec{u}, \vec{v}) a même orientation que B, négatif sinon.
- (ii) Si $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^2$, \mathscr{B} la base canonique de \mathbb{R}^3 , alors $\det_{\mathscr{B}}(\vec{u}, \vec{v}, \vec{w})$ est le volume orienté du parallélogramme construit sur $\vec{u}, \vec{v}, \vec{w}$: il est nul si $(\vec{u}, \vec{v}, \vec{w})$ est liée, positif si $(\vec{u}, \vec{v}, \vec{w})$ a même orientation que \mathscr{B} , négatif sinon.

Formules de Cramer (HP)

Propriété 20 : Formules de Cramer (HP)

Soit (S) un système de Cramer, c'est-à-dire à n équations et n inconnues et de matrice $A \in \mathscr{GL}_n(\mathbb{K})$. On sait que (S): Ax = b admet une unique solution $x = (x_1 \cdots x_n)^\mathsf{T} \in \mathcal{M}_{n,1}(\mathbb{K}).$

Soient C_1, \ldots, C_n les colonnes de A. Alors pour tout $j \in [1, n]$,

Remarque

R24 - De nouveau, un intérêt surtout théorique!

Exercice 6

Résoudre
$$\begin{cases} x + y + z = 1 \\ ax + by + cz = d & \text{lorsqu'il s'agit d'un système de Cramer.} \\ a^2x + b^2y + c^2z = d^2 \end{cases}$$