Groupe symétrique et déterminant [MP2I]

Extrait du programme officiel:

Contenus

CAPACITÉS & COMMENTAIRES

Compléments d'algèbre linéaire

Transvections par blocs. Invariance du déterminant.

Déterminant d'une matrice triangulaire par blocs.

Table des matières

3	Group	Groupe symétrique et déterminant [MP21]				
	1 (Groupe symétrique				
	1	Définition, structure				
	2	Cycles				
	3	Signature				
	4	Groupe alterné (HP)				
	II F	Formes n-linéaires				
	III C	Déterminant 12				
	1	Définitions				
	2	Calculs				
	3	Formule de la comatrice				
	4	Orientation d'un \mathbb{R} -espace vectoriel				
	5	Formules de Cramer (HP)				

GROUPE SYMÉTRIQUE

Définition, structure

<u>Définition 1</u>: Permutation, groupe symétrique

Si E est un ensemble, on appelle **permutation** de E toute bijection de E dans E. On note $\mathfrak{S}(E)$ leur ensemble.

Si E = [1, n] où $n \in \mathbb{N}^*$, on note \mathfrak{S}_n appelé groupe symétrique d'ordre n (ou de degré n) cet ensemble.

Si
$$\sigma \in \mathfrak{S}_n$$
, on note $\sigma = \begin{pmatrix} 1 & 2 & 3 \cdot \cdot \cdot \cdot \cdot \cdot \cdot n \\ \sigma(1) & \sigma(2) & \sigma(3) \cdot \cdot \cdot \cdot \cdot \cdot \sigma(n) \end{pmatrix}$.

Remarque

R1 – Attention! \mathfrak{S}_n n'est pas de cardinal n mais n! (!)

R2 – Comme \mathfrak{S}_n est fini, toute permutation est d'ordre fini, divisant n! (théorème de Lagrange).

Propriété 1 : Structure

 (\mathfrak{S}_n, \circ) est un groupe d'ordre (ie de cardinal) n!, non abélien dès que $n \ge 3$.

Définition 2: Orbites

Soit $\sigma \in \mathfrak{S}_n$. La relation binaire définie sur [1, n] par

$$x \sim y \iff \exists k \in \mathbb{Z}, y = \sigma^k(x)$$

est une relation d'équivalence dont les classes d'équivalence sont les **orbites** de σ .

Si
$$x \in [1, n]$$
,

$$\mathcal{O}(x) = \left\{ \sigma^k(x), \ k \in \mathbb{Z} \right\}.$$

Propriété 2 : Description d'une orbite

Soit $\sigma \in \mathfrak{S}_n$, $x \in [1, n]$. Alors il existe $\ell \in \mathbb{N}$ tel que $\mathscr{O}(x) = \{x, \sigma(x), \dots, \sigma^{\ell-1}(x)\}$ (deux à deux distincts).

Démonstration

 $\left\{k\in\mathbb{N}^*,\ \sigma^k(x)=x\right\}$ est une partie non vide de \mathbb{N} donc admet un minimum ℓ .

Il suffit ensuite, si $k\in\mathbb{Z}$, de poser la division euclidienne de k par ℓ . Les éléments sont bien distincts par minimalité e ℓ .

Remarque

R3 – $\ell \leqslant \text{ordre}(\sigma)$.

Définition 3: Support

Si $\sigma \in \mathfrak{S}_n$, son **support** est l'ensemble des éléments de [1,n] qui **ne sont pas** invariants par σ .

Remarque

R4 - C'est la réunion de toutes les orbites non réduites à un élément.

Propriété 3 : Commutation de permutations à supports disjoints

- (i) Le support d'une permutation est stable par cette permutation.
- (ii) Deux permutations à supports disjoints commutent.

Démonstration

On commence par vérifier que $\operatorname{Supp}(\sigma)$ est stable par σ : si $i \in \operatorname{Supp}(\sigma)$, $\sigma(i) \neq i$ donc $\sigma^2(i) \neq \sigma(i)$ par injectivité, donc $\sigma(i) \in \operatorname{Supp}(\sigma)$.

Soient σ et σ' à supports S et S' disjoints.

- $\blacksquare \ \ \mathsf{Si} \ i \notin S \sqcup S', \ \sigma \circ \sigma'(i) = i = \sigma' \circ \sigma(i).$
- Si $i \in S$, $i \notin S'$ donc $\sigma'(i) = i$ et $\sigma \circ \sigma'(i) = \sigma(i)$. Mais $\sigma(i) \in S$ donc $\sigma(i) \notin S'$ d'où $\sigma' \circ \sigma(i) = \sigma(i) = \sigma \circ \sigma'(i)$.
- Si $i \notin S$, $i \in S'$ et on conclut de la même manière.

On a donc bien $\sigma' \circ \sigma = \sigma \circ \sigma'$.

Exercice 1 : Centre de \mathfrak{S}_n

- 1. Soit $n \in \mathbb{N}$ tel que $n \geqslant 2$, et $(i, j) \in [1, n]^2$ tel que $i \neq j$. Montrer que si $\sigma \in \mathfrak{S}_n$ et (i, j) commutent, $\{i, j\}$ est stable par σ . La réciproque est-elle vraie?
- 2. Montrer que, pour $n \in \mathbb{N}$ tel que $n \geqslant 3$ le centre de \mathfrak{S}_n , partie de \mathfrak{S}_n des permutations commutant avec toutes les permutations de \mathfrak{S}_n est $\mathcal{Z}(\mathfrak{S}_n) = \left\{ \operatorname{id}_{\llbracket 1,n \rrbracket} \right\}$. Étudier le cas où n = 2.
- 1. Si $\sigma \circ (i \ j) = (i \ j) \circ \sigma$, en évaluant en i, $\sigma(j) = (i \ j)(\sigma(i)) \neq \sigma(i)$ par injectivité donc $\sigma(i)$ est dans le support de $(i \ j)$ donc dans $\{i, j\}$.

Par symétrie, c'est aussi le cas de $\sigma(j)$.

Pour la réciproque qui est bien vraie, il y a deux cas :

- Ou bien $\sigma(i) = i$ et $\sigma(j) = j$ et alors σ et $(i \ j)$ sont à supports disjoints donc commutent.
- Ou bien $\sigma(i) = j$ et $\sigma(j) = i$ et on vérifie que $\sigma \circ (i \ j)$ et $(i \ j) \circ \sigma$ envoient sur les mêmes images les nombres i, j et $k \notin \{i, j\}$.
- 2. Si $\sigma \in \mathcal{Z}(\mathfrak{S}_n)$ elle commute avec des transpositions $(i\ j)$ et $(i\ k)$ où i,j,k sont deux à deux distincts. Avec la question précédente, $\sigma(i) \in \{i,j\} \cap \{i,k\} = \{i\}$. Comme c'est vrai pour tout $i \in [\![1,n]\!]$, on en déduit que $\sigma = \mathrm{id}$. La réciproque est facile. $\mathcal{Z}(\mathfrak{S}_2) = \Big\{\mathrm{id}_{[\![1,2]\!]}, (1\ 2)\Big\} = \mathfrak{S}_2$

2 Cycles

Définition 4: Transposition, cycle

■ Une **transposition** τ est une permutation qui échange deux éléments i et j de [1, n], et laisse les autres invariants ie dont le support est $\{i, j\}$.

On la note $\tau = (i \ j)$ ou parfois $\tau_{i,j}$. $\tau_{i,j}(i) = j$, $\tau_{i,j}(j) = i$ et si $k \notin \{i,j\}$, $\tau_{i,j}(k) = k$.

■ Soit $p \in \mathbb{N}$ tel que $2 \leq p \leq n$.

On appelle p-cycle une permutation c de \mathfrak{S}_n qui permute circulairement p éléments $i_1, i_2, ..., i_n$ de [1, n] et laisse les autres invariants ie dont le support est $\{i_1, ..., i_p\}$ et telle que

$$c(i_1) = i_2$$
; $c(i_2) = i_3$; \cdots ; $c(i_{p-1}) = i_p$; $c(i_p) = i_1$

p est la **longueur** du cycle c. On note $c = (i_1 \ i_2 \ \cdots \ i_p)$.

Exercice 2: Conjugaison de cycle (souvent utile)

Si $\sigma \in \mathfrak{S}_n$ et c un cycle, décrire $\sigma \circ c \circ \sigma^{-1}$.

Propriété 4 : Ordre d'un cycle

Un p-cycle est d'ordre p.

Démonstration

Si $c = (i_1 \ i_2 \cdots i_p)$ est un p-cycle, on a bien $c^p = \mathrm{id}$ et pour tout $j \in [1, p-1]$, $c^j(i_1) = i_{j+1} \neq i_1$ donc $c^j \neq \mathrm{id}$.

Théorème 1 : Unique décomposition en produit de cycles à supports disjoints

Toute permutation se décompose en produit (composée) de cycles à supports disjoints. La décomposition est unique à l'ordre des facteurs près.

Remarque

R5 – Donc les cycles de \mathfrak{S}_n engendrent \mathfrak{S}_n .

Démonstration

- **Analyse**: Si on a une décomposition en produit de cycles à support disjoints, alors pour tout $x \in [1, n]$, soit x est invariant, soit x est un élément d'un et un seul des cycles qui s'écrit $\begin{pmatrix} x & \sigma(x) & \cdots & \sigma^{\ell-1}(x) \end{pmatrix}$ avec $\sigma^{\ell}(x) = x$ et correspond donc à l'orbite de x.
- **Synthèse** : Soient $x_1, ..., x_m$ un élément de chaque orbite non réduite à un point. Alors $\mathscr{O}(x_i) = \left\{x_i, \sigma(x_i), ..., \sigma^{\ell_i-1}(x_i)\right\}$ avec $\sigma^{\ell_i}(x_i) = x_i$ et

$$\varphi = \prod_{i=1}^{m} \left(x_i \quad \sigma(x_i) \cdot \dots \cdot \sigma^{\ell_i - 1}(x_i) \right)$$

est égale à σ car les images sont les mêmes pour tout élément de $[\![1,n]\!]$, chacun apparaissant dans exactement une orbite.

Remarque

R6 – Par commutativité des cycles à supports disjoints, on a facilement que si m est le ppcm des ordres des cycles, $\sigma^m = \mathrm{id}$. Voir TD : montrer que le ppcm est égal à l'ordre de σ .

Voir exercice du TD: 5

Corollaire 1 : Décomposition en produit de transpositions (non unique)

Toute permutation se décompose en produit (composée) de transpositions.

Remarque

R7 – Donc les transpositions de \mathfrak{S}_n engendrent \mathfrak{S}_n .

Démonstration

Se déduit du théorème précédent en sachant décomposer un cycle produit de transposition. Voici deux propositions adaptables à tout cycle :

$$(1 \quad 2 \quad \cdots \quad p) \quad = \quad (1 \quad p) \ (1 \quad p-1) \ \cdots \ (1 \quad 2) \quad = \quad (1 \quad 2) \ (2 \quad 3) \ \cdots \ (p-1 \quad p)$$

Mais savoir le démontrer directement n'est pas inintéressant (technique utile dans d'autres contextes.) Par récurrence sur $n \ge 2$.

- Initialisation: pour n = 2, $\mathfrak{S}_2 = \{id, (1\ 2)\}$ avec $id = (1\ 2)^2$.
- **Hérédité** : Supposons que, pour un $n \ge 2$, \mathfrak{S}_n est engendré par ses transpositions (HR). Soit $\sigma \in \mathfrak{S}_{n+1}$; on veut écrire σ comme un produit de transpositions. On va discuter suivant $\sigma(n+1)$:
 - * 1er Cas: Si $\sigma(n+1) = (n+1)$, alors [1, n] est stable par σ , et celle-ci induit une permutation $\sigma' \in \mathfrak{S}_n$ de [1, n],

$$\sigma': \begin{bmatrix} \llbracket 1, n \rrbracket & \longrightarrow & \llbracket 1, n \rrbracket \\ k & \longmapsto & \sigma(k) \end{bmatrix}.$$

Par (HR), on peut trouver des transpositions $\tau_1', \tau_2', \dots, \tau_p' \in \mathfrak{S}_n$ telles que $\sigma' = \tau_1' \tau_2' \cdots \tau_p'$. On peut alors prolonger les τ_i' en des permutations τ_i de $[\![1,n+1]\!]$ en posant $\tau_i(n+1)=n+1$.

•

$$\sigma = \tau_1 \tau_2 \cdots \tau_p$$
.

★ **2° Cas**: Si $\sigma(n+1) \neq (n+1)$, on se ramène au premier cas en remarquant posant

$$\rho = (\sigma(n+1) \quad n+1)\sigma.$$

 $ho \in \mathfrak{S}_{n+1}$ et ho(n+1) = n+1: d'après ce qui précède, on peut trouver au_1, au_2, \ldots, au_p des transpositions de $[\![1,n+1]\!]$ telles que $ho = au_1 au_2 \cdots au_p$.

Alors $(\sigma(n+1) \ n+1)\sigma = \tau_1\tau_2\cdots\tau_p$ et donc

$$\sigma = (\sigma(n+1) \ n+1)\tau_1\tau_2\cdots\tau_p$$

ce qui prouve le résultat dans ce cas.

La récurrence est établie. Remarquons qu'à chaque étape, on ajoute au plus une transposition.

3 Signature

Définition 5 : Inversions, signature

Soit $\sigma \in \mathfrak{S}_n$. On appelle **inversion** par σ tout couple (i,j) tel que i < j et $\sigma(i) > \sigma(j)$.

On note $I(\sigma)$ le nombre d'inversions par σ .

On appelle **signature** de σ le nombre $\varepsilon(\sigma) = (-1)^{I(\sigma)} \in \{-1,1\}.$

On vérifie que $\varepsilon(\sigma) = \prod_{1 \le i < j \le n} \frac{\sigma(j) - \sigma(i)}{j - i}$

Une permutation σ est dite **paire** lorsque $I(\sigma)$ est pair et donc $\varepsilon(\sigma) = 1$. Elle est dite **impaire** dans le cas contraire.

Démonstration

Par définition,

$$\varepsilon(\sigma) = \prod_{1 \leqslant i < j \leqslant n} \operatorname{sgn}(\sigma(j) - \sigma(i)) = \prod_{1 \leqslant i < j \leqslant n} \frac{\sigma(j) - \sigma(i)}{\left|\sigma(j) - \sigma(i)\right|} = \frac{\prod\limits_{1 \leqslant i < j \leqslant n} \left|\sigma(j) - \sigma(i)\right|}{\prod\limits_{1 \leqslant i < j \leqslant n} \left|\sigma(j) - \sigma(i)\right|}$$

et l'on peut transformer le dénominateur en utilisant la bijectivité de σ

$$\prod_{1\leqslant i < j \leqslant n} \left| \sigma(j) - \sigma(i) \right| = \prod_{\{i,j\} \in \mathscr{P}} \left| \sigma(j) - \sigma(i) \right| = \prod_{\{k,l\} \in \mathscr{P}} |k-l| = \prod_{1\leqslant i < j \leqslant n} (j-i). \quad \blacksquare$$

Remarque

R8 – La définition avec les inversions peut être oubliée tout de suite. Ce n'est pas ce qui importe dans la signature : il vaut mieux savoir se ramener à des cycles ou à des transpositions (voir ci-après).

Théorème 2 : Morphisme de signature

Soit $n \geqslant 2$. L'application

$$\varepsilon: \left| \begin{array}{ccc} (\mathfrak{S}_n, \circ) & \longrightarrow & (\{-1,1\}, \times) = (\mathbb{U}_2, \times) \\ \sigma & \longmapsto & \varepsilon(\sigma) \end{array} \right|$$

est un morphisme de groupe, ie si $\sigma, \sigma' \in \mathfrak{S}_n$, $\varepsilon(\sigma\sigma') = \varepsilon(\sigma)\varepsilon(\sigma')$.

Démonstration : (Non exigible)

1re méthode

$$\begin{split} \varepsilon \left(\sigma \circ \sigma'\right) &= \prod_{\{i,j\} \in \mathcal{P}} \frac{\left(\sigma \circ \sigma'\right)(j) - \left(\sigma \circ \sigma'\right)(i)}{j-i} \\ &= \prod_{\{i,j\} \in \mathcal{P}} \frac{\sigma \left(\sigma'(j)\right) - \sigma \left(\sigma'(i)\right)}{\sigma'(j) - \sigma'(i)} \prod_{\{i,j\} \in \mathcal{P}} \frac{\sigma'(j) - \sigma'(i)}{j-i}. \end{split}$$

Dans le deuxième facteur de la dernière expression, on reconnaît directement $\varepsilon(\sigma')$. Pour le premier, il faut au préalable réindexer (grâce à la bijectivité de σ') en posant

$$\{k,\ell\} = \left\{\sigma'(i), \sigma'(j)\right\}$$

$$\prod_{\{i,j\}\in\mathcal{P}}\frac{\sigma\left(\sigma'(j)\right)-\sigma\left(\sigma'(i)\right)}{\sigma'(j)-\sigma'(i)}=\prod_{\{k,\ell\}\in\mathcal{P}}\frac{\sigma(k)-\sigma(\ell)}{k-\ell}=\varepsilon(\sigma).$$

2º méthode Il s'agit de comparer les nombres d'inversions de $\sigma \circ \sigma'$ aux nombres d'inversions de σ et de σ' .

Les couples $(i, j) \in [1, n]$ tels que i < j, se classent en quatre cas distincts :

- $\sigma'(i) < \sigma'(j)$ et $\sigma \circ \sigma'(i) < \sigma \circ \sigma'(j)$ (on note N_1 le nombre de tels couples.)
- $\sigma'(i) < \sigma'(j)$ et $\sigma \circ \sigma'(i) > \sigma \circ \sigma'(j)$ (on note N_2 le nombre de tels couples.)
- $\sigma'(i) > \sigma'(j)$ et $\sigma \circ \sigma'(i) < \sigma \circ \sigma'(j)$ (on note N_3 le nombre de tels couples.)
- $\sigma'(i) > \sigma'(j)$ et $\sigma \circ \sigma'(i) > \sigma \circ \sigma'(j)$ (on note N_4 le nombre de tels couples.)

Le nombre d'inversion $I(\sigma')$ de σ' est le nombres de couples $(i,j) \in [1,n]$ tels que i < j tels que $\sigma'(i) > \sigma'(j)$:

$$I(\sigma') = N_3 + N_4.$$

Le nombre d'inversion $I(\sigma \circ \sigma')$ de $\sigma \circ \sigma'$ est le nombres de couples $(i,j) \in [1,n]$ tels que i < j tels que $\sigma \circ \sigma'(i) > \sigma \circ \sigma'(j)$:

$$I(\sigma \circ \sigma') = N_2 + N_4.$$

Pour le nombre d'inversions de σ , il y a un peu plus de travail : remarquons que $(i,j)\mapsto \{\sigma'(i),\sigma'(j)\}$ est une bijection de l'ensemble des couples (i,j) de $[\![1,n]\!]$ tels que i< j dans l'ensemble des paires de $[\![1,n]\!]$ par bijectivité de σ' .

Or compter les couples (k, l), k < l tels que $\sigma(k) > \sigma(\ell)$ revient

— à compter les paires $\{k,\ell\}$ distinctes telles que

$$\begin{cases} k < \ell \\ \sigma(k) > \sigma(\ell) \end{cases} \quad \text{ou} \begin{cases} k > \ell \\ \sigma(k) < \sigma(\ell) \end{cases}$$

— ou encore, par la bijection précédente, à compter les couples (i,j) de [1,n] tels que i < j et

Ainsi,

$$I(\sigma) = N_2 + N_3$$

Finalement, $\varepsilon(\sigma)\varepsilon(\sigma') = (-1)^{2N_3+N_2+N_4} = (-1)^{N_2+N_4} = \varepsilon(\sigma\sigma')$.

Propriété 5 : de la signature

- (i) Si $\sigma \in \mathfrak{S}_n$ se décompose en produit de N transpositions, $\varepsilon(\sigma) = (-1)^N$. En particulier, cette décomposition n'est pas unique mais la parité du nombre de termes est toujours celle de la permutation.
- (ii) Si c est un p-cycle, $\varepsilon(c) = (-1)^{p-1}$.
- (iii) Si $\sigma \in \mathfrak{S}_n$, $\varepsilon(\sigma^{-1}) = \varepsilon(\sigma)$.

Groupe symétrique et déterminant [MP21] - page 7 sur 19

Voir exercice du TD: 4.6

Exercice 3

Montrer que si $\sigma \in \mathfrak{S}_n$ et si p est le nombre d'orbites de σ , alors $\varepsilon(\sigma) = (-1)^{n-p}$.

4 Groupe alterné (HP)

Définition 6 : Groupe alterné

Le sous-groupe $\mathfrak{A}_n = \operatorname{Ker}(\varepsilon)$ des permutations paires de \mathfrak{S}_n est appelé **groupe alterné d'ordre** n (ou de degré n).

Démonstration

On a bien $\mathfrak{A}_n = \operatorname{Ker}(\varepsilon) = \varepsilon^{-1}(\{1\}) = \{\sigma \in \mathfrak{S}_n, \ \varepsilon(\sigma) = 1\}$ sous-groupe de \mathfrak{S}_n .

Propriété 6

Pour tout $n \geqslant 2$, $|\mathfrak{A}_n| = \frac{n!}{2}$.

Démonstration

Soit
$$\tau$$
 une transposition (ou n'importe quelle autre permutation impaire),
$$\varphi: \begin{vmatrix} \mathfrak{A}_n & \longrightarrow & \mathfrak{S}_n \setminus \mathfrak{A}_n \\ \sigma & \longmapsto & \tau \circ \sigma \end{vmatrix} \text{ est bijective, d'inverse } \psi: \begin{vmatrix} \mathfrak{S}_n \setminus \mathfrak{A}_n & \longrightarrow & \mathfrak{A}_n \\ \rho & \longmapsto & \tau^{-1} \circ \rho \end{vmatrix}.$$

Ainsi, ces sous-ensembles de \mathfrak{S}_n (donc finis) vérifient $|\mathfrak{A}_n| = |\mathfrak{S}_n \setminus \mathfrak{A}_n|$ et $|\mathfrak{A}_n| + |\mathfrak{S}_n \setminus \mathfrak{A}_n| = |\mathfrak{S}_n| = n!$ donc $|\mathfrak{A}_n| = \frac{n!}{2}$.

Remarque

R9 – II y a donc autant de permutations paires que de permutations impaires dans \mathfrak{S}_n .

Exemple

E1 – Décrivons \mathfrak{S}_4 : il contient 4! = 24 permutations.

$$\mathfrak{S}_4 = \left\{ \begin{aligned} &\mathrm{id}, (1\ 2), (1\ 3), (1\ 4), (2\ 3), (2\ 4), (3\ 4), (1\ 2) \circ (3\ 4), (1\ 3) \circ (2\ 4), (1\ 4) \circ (2\ 3) \\ &(1\ 2\ 3), (1\ 3\ 2), (1\ 2\ 4), (1\ 4\ 2), (1\ 3\ 4), (1\ 4\ 3), (2\ 3\ 4), (2\ 4\ 3), \\ &(1\ 2\ 3\ 4), (1\ 2\ 4\ 3), (1\ 3\ 2\ 4), (1\ 3\ 4\ 2), (1\ 4\ 2\ 3), (1\ 4\ 3\ 2) \right\} \end{aligned}$$

et \mathfrak{A}_4 : il contient 24/2 = 12 permutations.

$$\mathfrak{A}_4 = \big\{ \mathrm{id}, (1\ 2\ 3), (1\ 3\ 2), (1\ 2\ 4), (1\ 4\ 2), (1\ 3\ 4), (1\ 4\ 3), (2\ 3\ 4), (2\ 4\ 3), \\ (1\ 2) \circ (3\ 4), (1\ 3) \circ (2\ 4), (1\ 4) \circ (2\ 3) \big\}$$

Soit $G = \{ id, \sigma_1 = (1\ 2) \circ (3\ 4), \sigma_2 = (1\ 3) \circ (2\ 4), \sigma_3 = (1\ 4) \circ (2\ 3) \}.$

Il s'agit d'un sous-groupe commutatif de \mathfrak{A}_4 comme l'atteste sa table ci-contre, appelé groupe de Klein¹.

On peut montrer qu'il est isomorphe à (\mathbb{U}_2^2, \times) et que tout groupe d'ordre 4 est soit isomorphe au groupe de Klein, soit isomorphe à (\mathbb{U}_4, \times) (en examinant les différentes tables possibles pour la loi de groupe.)

0	id	σ_1	σ_2	σ_3
id	id	σ_1	σ_2	σ_3
σ_1	σ_1	id	σ_3	σ_2
σ_2	σ_2	σ_3	id	σ_1
σ_3	σ_3	σ_2	σ_2	id

Remarque

R 10 – On peut facilement trouver des sous-groupes de \mathfrak{A}_4 d'ordre 1, 2, 3, 4, et 12 mais il n'y a pas de sous-groupe d'ordre 6. On peut démontrer que ceux-ci sont soit cycliques (mais \mathfrak{S}_4 ne contient pas d'élément d'ordre 6), soit isomorphes au groupe diédral \mathcal{D}_6 des isométries laissant invariant un triangle équilatéral (contenant 3 rotations et 3 symétries, engendré par une des rotations et une des symétries).

Par contre, on en trouve dans \mathfrak{S}_4 engendrés par un 3-cycle et une transposition facilement isomorphe à D_6 (qui est aussi isomorphe à \mathfrak{S}_3 , par ailleurs!).

Voir exercice du TD: 8

FORMES *n*-LINÉAIRES

Définition 7 : Application *n***-linéaire**

Soit \mathbb{K} corps commutatif, $n \in \mathbb{N}^*$, E, F des \mathbb{K} -espaces vectoriels. Une application $f: E^n \to F$ est dite *n*-linéaire lorsque pour tout $(x_1, ..., x_n) \in E^n$, et tout $i \in [1, n]$,

$$f_i: \left| egin{array}{cccc} E & \longrightarrow & F \\ x & \longmapsto & f(x_1,\dots,x_{i-1},x,x_{i+1},\dots,x_n) \end{array}
ight.$$
 est linéaire.

(Linéarité par rapport à la i^e variable.) c'est-à-dire $\forall (x_1, \dots, x_n) \in E^n$, $\forall i \in [1, n]$, $\forall x, y \in E$, $\forall \lambda \in \mathbb{K}$,

$$f(x_1,...,x_{i-1},x+\lambda y,x_{i+1},...,x_n) = f(x_1,...,x_{i-1},x,x_{i+1},...,x_n) + \lambda f(x_1,...,x_{i-1},y,x_{i+1},...,x_n)$$

On note $\mathcal{L}_n(E,F)$ l'ensemble des formes n-linéaires. Lorsque $F = \mathbb{K}$, on parle de **forme n-linéaire**.

Propriété 7 : Espace vectoriel de applications n-linéaires

 $\mathcal{L}_n(E,F)$ est un \mathbb{K} -espace vectoriel.

Définition 8 : Symétrie, antisymétrie et caractère alterné

Soit $f \in \mathcal{L}_n(E, \mathbb{K})$.

• f est dite **symétrique** si et seulement si $\forall (x_1,...,x_n) \in E^n, \forall i \neq j$,

$$f(x_1,...,x_i,...,x_i,...,x_n) = f(x_1,...,x_i,...,x_i,...,x_n).$$

• f est dite **antisymétrique** si et seulement si $\forall (x_1,...,x_n) \in E^n, \forall i \neq j$

$$f(x_1,...,x_i,...,x_j,...,x_n) = -f(x_1,...,x_j,...,x_i,...,x_n).$$

■ f est dite **alternée** si et seulement si $\forall (x_1,...,x_n) \in E^n$, $\forall i \neq j$,

$$f(x_1,\ldots,x_i,\ldots,x_i,\ldots,x_n)=0_{\mathbb{K}}.$$

Propriété 8 : Caractérisations

Soit $f \in \mathcal{L}_n(E, \mathbb{K})$.

(i) f est symétrique si et seulement si $\forall \sigma \in \mathfrak{S}_n$, $\forall (x_1,...,x_n) \in E^n$,

$$f(x_{\sigma(1)},...,x_{\sigma(n)}) = f(x_1,...,x_n).$$

(ii) f est antisymétrique si et seulement $si \ \forall \ \sigma \in \mathfrak{S}_n, \ \ \forall \ (x_1, \dots, x_n) \in E^n$,

$$f(x_{\sigma(1)},...,x_{\sigma(n)}) = \varepsilon(\sigma)f(x_1,...,x_n).$$

(iii) f est alternée si et seulement $si \forall (x_1, ..., x_n) \in E^n$,

$$(x_1,\ldots,x_n)$$
 liée $\Longrightarrow f(x_1,\ldots,x_n)=0_{\mathbb{K}}.$

Démonstration

=: facile avec une transposition ou une famille contenant le vecteur nul.

 \Rightarrow : σ se décompose en produit de transpositions: $\sigma = \tau_1 \cdots \tau_p$. Chaque τ_i ne change pas f si elle est symétrique, et sort un signe moins si f est antisymétrique.

Ainsi, par récurrence, l'action de σ ne change pas f et fait sortir $(-1)^p = \varepsilon(\sigma)$ si f est antisymétrique.

Finalement, si f est alternée et $(x_1,...,x_n)$ liée, on a i tel que $x_i = \sum_{j \neq i} \lambda_j x_j$, alors

$$f(x_1,\ldots,x_n)=\sum_{j\neq i}\lambda_jf(x_1,\ldots,x_j,\ldots,x_j,\ldots,x_n)=0.$$

Propriété 9 : Équivalence entre alternée et antisymétrique

Soit $f \in \mathcal{L}_n(E, \mathbb{K})$ une forme linéaire. Alors f est alternée si et seulement si f est antisymétrique.

Démonstration

Si f est alternée, $i \neq j$,

$$\begin{split} f(x_1, \dots, x_i + x_j, \dots, x_i + x_j, \dots, x_n) &= 0_{\mathbb{K}} \\ &= f(x_1, \dots, x_i, \dots, x_i, \dots, x_n) + f(x_1, \dots, x_j, \dots, x_j, \dots, x_n) \\ &\quad + f(x_1, \dots, x_j, \dots, x_i, \dots, x_n) + f(x_1, \dots, x_j, \dots, x_j, \dots, x_n) \\ &= f(x_1, \dots, x_i, \dots, x_j, \dots, x_n) \\ &\quad + f(x_1, \dots, x_j, \dots, x_j, \dots, x_n). \end{split}$$

Donc f est antisymétrique.

Si f est antisymétrique, en permutant, $f(x_1,...,x_i,...,x_n) = -f(x_1,...,x_i,...,x_n)$ donc

 $2\mathbb{K}f(x_1,\ldots,x_i,\ldots,x_i,\ldots,x_n)=0\mathbb{K} \text{ et donc si } 2_K\neq 0_K, \ f(x_1,\ldots,x_i,\ldots,x_i,\ldots,x_n)=0\mathbb{K} \text{ et } f \text{ est altern\'ee}.$

Remarque

R11 – Le sens réciproque n'est en réalité vrai que lorsque 🛚 n'est pas de caractéristique 2, c'est-à-dire lorsque

Théorème 3: fondamental

Soit E un \mathbb{K} -espace vectoriel de dimension finie, $n = \dim E \in \mathbb{N}^*$.

Si $n = \dim E$, l'ensemble des formes n-linéaires alternées sur E est un \mathbb{K} -espace vectoriel de dimension 1.

Démonstration

L'ensemble $\Lambda_n(E)$ des formes n-linéaires alternées sur E est facilement un sous-espace vectoriel de $\mathscr{L}_n(E,\mathbb{K})$. Soient $f \in \Lambda_n(E)$, $\mathscr{B} = (e_1, \dots, e_n)$ une base de E. On a déjà vu que si on note $(x_{1,j}, \dots, x_{n,j})$ les coordonnées de

 $x_j \in E$ dans la base \mathscr{B} , donc $x_j = \sum_{i=1}^n x_{i,j} e_i$, alors

$$f(x_1, \dots, x_n) = f\left(\sum_{i_1=1}^n x_{i_1, 1} e_{i_1}, \dots, \sum_{i_n=1}^n x_{i_n, n} e_{i_n}\right) = \sum_{1 \le i_1, \dots, i_n \le n} x_{i_1, 1} \dots x_{i_n, n} f(e_{i_1}, \dots, e_{i_n})$$

mais comme ici f est alternée, on peut indexer la somme par $1 \le i_1, ..., i_n \le n$ deux à deux distincts, ce qui revient à prendre une permutation $\sigma \in \mathfrak{S}_n$ telle que pour tout j, $i_j = \sigma(j)$. On obtient alors

$$f(x_1,\ldots,x_n) = \sum_{\sigma \in \mathfrak{S}_n} x_{\sigma(1),1} \ldots x_{\sigma(n),n} f(e_{\sigma(1)},\ldots,e_{\sigma(n)})$$

Comme f est aussi antisymétrique,

$$f(x_1, \dots, x_n) = \left(\sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) x_{\sigma(1), 1} \dots x_{\sigma(n), n}\right) f(e_1, \dots, e_n)$$

On pose
$$d$$
:
$$E^{n} \longrightarrow \mathbb{K}$$

$$(x_{1},...,x_{n}) \longmapsto \sum_{\sigma \in \mathfrak{S}_{n}} \varepsilon(\sigma)x_{\sigma(1),1}...x_{\sigma(n),n}$$
On a que pour tout $f \in A$ (F) $f = f(\mathscr{P})$, d et donc A (F)

Montrons que $d \in \Lambda_n(E)$.

- La *n*-linéarité vient de la linéarité l'application qui à un vecteur *x* associe sa *i*° coordonnées dans *B*.
- Pour montrer qu'elle est alternée, on montre qu'elle est antisymétrique :

$$d(x_1,...,x_j,...,x_i,...,x_n) = -d(x_1,...,x_j,...,x_j,...,x_n)$$

avec le changement d'indice $\sigma' = \sigma \circ (i \ j)$.

Donc $\Lambda_n(E) = td$.

Dernier point : $d \neq 0$: il suffit de vérifier que $d(\mathcal{B}) = 1$ en remarquant que les coordonnées du vecteur e_i de base sont les $\delta_{i,j}$ donc le seul terme non nul de la somme définissant $d(\mathcal{B})$ est celui pour $\sigma=\mathrm{id}$, et il vaut 1.

Remarque

R 12 – Deux formes n-linéaires alternées sur E de dimension n (oui, c'est bien le même n les deux fois) sont donc toujours proportionnelles, c'est ce qui importe.

Plus précisément, une base \mathscr{B} de E étant donnée, il existe une unique forme n-linéaire alternée envoyant \mathscr{B} sur le scalaire 1. On va l'appeler déterminant dans la base \mathcal{B} , noté $\det_{\mathcal{B}}$, et toute forme n-linéaire alternée sur E est proportionnelle à det@

Voir exercice du TD: 11

Définitions

On fixe E un \mathbb{K} -espace vectoriel de dimension finie $n, \mathcal{B} = (e_1, \dots, e_n)$ une base de E.

Définition 9 : Déterminant d'une famille de vecteurs dans une base

On appelle **déterminant dans la base** \mathcal{B} l'unique forme n-linéaire alternée sur E notée $\det_{\mathcal{B}}$ telle que $\det_{\mathcal{B}}(\mathcal{B}) = 1$.

Si pour $1 \le j \le n$, $x_j \in E$ de coordonnées $(x_{1,j},...,x_{n,j})$ dans \mathscr{B} , alors

$$\det_{\mathscr{B}}(x_1,\ldots,x_n) = \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) x_{\sigma(1),1} \ldots x_{\sigma(n),n}$$

On note

$$\det_{\mathscr{B}}(x_1,\ldots,x_n) = \begin{vmatrix} x_{1,1} \cdot \cdots \cdot x_{1,n} \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ x_{n,1} \cdot \cdots \cdot x_{n,n} \end{vmatrix}$$

Remarque

R 13 – Par définition, le déterminant est n-linéaire alterné. En particulier, le déterminant d'une famille liée est nul.

Propriété 10 : du déterminant

Soit E un \mathbb{K} -espace vectoriel de dimension finie n, $\mathscr{B}, \mathscr{B}'$ des bases de E.

- (i) Formule de changement de base : $\det_{\mathscr{B}'} = \det_{\mathscr{B}'}(\mathscr{B}) \det_{\mathscr{B}}$.
- (ii) $\det_{\mathscr{B}}(\mathscr{B}') \neq 0 \in \det_{\mathscr{B}'}(\mathscr{B}) = \left(\det_{\mathscr{B}}(\mathscr{B}')\right)^{-1}$.
- (iii) $(x_1,...,x_n)$ est libre/une base de E si et seulement si $\det_{\mathscr{B}}(x_1,...,x_n)\neq 0_{\mathbb{K}}$.

Démonstration

- (i) $\det_{\mathscr{B}'} \in \Lambda_n(E)$.
- (ii) On applique (i) à B.
- (iii) Un sens déjà vu. Pour l'autre, c'est le caractère alterné du déterminant.

On montre que si $u \in \mathcal{L}(E)$, alors $\det_{\mathcal{B}}(u(\mathcal{B}))$ ne dépend pas de \mathcal{B} . On en déduit la définition :

Démonstration

Soit $f(x_1,...,x_n) = \det_{\mathscr{B}}(u(x_1),...,u(x_n))$. Alors $f \in \Lambda_n(E)$ car u est linéaire et $\det_{\mathscr{B}}$ est n-linéaire alterné. Donc $f = f(\mathscr{B}) \det_{\mathscr{B}} = \det_{\mathscr{B}}(u(\mathscr{B})) \det_{\mathscr{B}}$ et donc

$$\det_{\mathscr{B}}(u(\mathscr{B}))\det_{\mathscr{B}}(\mathscr{B}') = f(\mathscr{B}') = \det_{\mathscr{B}}(u(\mathscr{B}')) = \det_{\mathscr{B}}(\mathscr{B}')\det_{\mathscr{B}'}(u(\mathscr{B}'))$$

et on conclut car $\det_{\mathscr{B}}(\mathscr{B}') \neq 0$.

Définition 10 : Déterminant d'un endomorphisme

Soit $u \in \mathcal{L}(E)$. On appelle **déterminant** de u le scalaire

$$\det u = \det_{\mathscr{B}}(u(\mathscr{B})) = \det_{(e_1,...,e_n)}(u(e_1),...,u(e_n))$$

où \mathcal{B} est une base quelconque de E.

Propriété 11: du déterminant d'un endomorphisme

Soient $u, v \in \mathcal{L}(E)$.

- (i) $\forall (x_1,\ldots,x_n) \in E$, $\det_{\mathscr{B}}(u(x_1),\ldots,u(x_n)) = \det u \times \det_{\mathscr{B}}(x_1,\ldots,x_n).$
- (ii) $det(id_E) = 1$.
- (iii) $\det(u \circ v) = \det u \times \det v$.
- (iv) \bigwedge $\forall \lambda \in \mathbb{K}$, $\det(\lambda u) = \lambda^{n} \det u$.
- (V) $u \in \mathcal{GL}(E) \iff \det u \neq 0$.
- (vi) $\det: (\mathscr{GL}(E), \circ) \to (\mathbb{K}^*, \times)$ est un morphisme de groupes.
- ($\forall ii$) Si $u \in \mathcal{GL}(E)$, $\det(u^{-1}) = (\det u)^{-1}$.

Démonstration

- (i) f dans la preuve précédente.
- (ii) $\det(\mathrm{id}_E) = \det_{\mathscr{B}}(\mathscr{B}) = 1$.
- (iii) découle de (i).
- (iv) n-linéarité.
- (v) $u \in \mathcal{GL}(E) \iff u(\mathcal{B})$ base de $E \iff \det u \neq 0$.
- (vi) Conséquence de (iii).
- (vii) Propriété de morphisme de groupes.

Remarque

R14 – \bigwedge det n'est pas linéaire : $\det(u+v) \neq \det u + \det v$ en général.

Exercice 4

On note $\mathscr{SL}(E)$ (pour spécial linéaire) l'ensemble des endomorphismes de E de déterminant 1. Montrer qu'il a une structure de groupe.

Définition 11 : du déterminant d'une matrice carrée

Soit $A \in \mathcal{M}_n(\mathbb{K})$, $A = (a_{i,j})_{i,j \in [1,n]}$. On définit le **déterminant** de A par

$$\det A = \begin{vmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,n} \end{vmatrix} = \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) a_{\sigma(1),1} \dots a_{\sigma(n),n}.$$

Remarque

R 15 - Dans chaque terme de la somme, on choisit exactement un terme par colonne et par ligne.

R16 – Un définition alternative équivalente consisterait à faire agir la permutation sur le numéro de colonne : c'est l'égalité avec le déterminant de la transposée de la propriété suivante :

$$\det A = \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) a_{1,\sigma(1)} \dots a_{n,\sigma(n)}.$$

Propriété 12 : du déterminant d'une matrice carrée

- (i) Si $C_1,...,C_n$ sont les vecteurs colonnes de A et $\mathscr B$ la base canonique de $\mathbb K^n$, $\det A = \det_{\mathscr B}(C_1,...,C_n)$.
- (ii) Soit E un \mathbb{K} -espace vectoriel de dimension finie n, $u \in \mathcal{L}(E)$ représenté par A dans une base de E, alors $\det A = \det u$.
- (iii) $\det I_n = 1$.
- (iv) Si $A, B \in \mathcal{M}_n(\mathbb{K})$, det $AB = \det A \det B$.
- (V) \bigwedge Si $A \in \mathcal{M}_n(\mathbb{K})$ $e^{\dagger} \lambda \in \mathbb{K}$, $\det(\lambda A) = \lambda^n \det A$.
- (VI) $\det A^{\mathsf{T}} = \det A$.
- ($\forall ii$) $\mathscr{GL}_n(\mathbb{K}) = \{A \in \mathscr{M}_n(\mathbb{K}), \det A \neq 0\}.$
- (viii) $\det: (\mathscr{GL}_n(\mathbb{K}), \times) \to (\mathbb{K}^*, \times)$ est un morphisme de groupes.
- (ix) Si A est inversible, $det(A^{-1}) = (det A)^{-1}$.
- (x) Des matrices semblables ont même déterminant : le déterminant est un invariant de similitude.

Démonstration

(i) à (v) définitions puis conséquences des propriétés du déterminant d'un endomorphisme. (vi) :

$$\begin{split} \det \left(A^{\mathsf{T}} \right) &= \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) \, a_{1,\sigma(1)} \dots a_{n,\sigma(n)} = \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) \prod_{i=1}^n a_{i,\sigma(i)} \\ &= \sum_{j=\sigma(i)} \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) \prod_{j=1}^n a_{\sigma^{-1}(j),j} = \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) a_{\sigma^{-1}(1),1} \dots a_{\sigma^{-1}(n),n} \\ &= \sum_{\sigma' = \sigma^{-1}} \sum_{\sigma' \in \mathfrak{S}_n} \varepsilon(\sigma) a_{\sigma'(1),1} \dots a_{\sigma'(n),n} = \det A. \end{split}$$

Le dernier changement d'indice étant licite car $\begin{vmatrix} \mathfrak{S}_n & \longrightarrow & \mathfrak{S}_n \\ \sigma & \longmapsto & \sigma^{-1} \end{vmatrix}$ est bijective.

(viii): par (iv).

- (ix): par morphisme de groupe ou $\det(A^{-1}) \times \det A = \det(A^{-1} \times A) = \det I_n = 1$.
- (x) Deux matrices semblables représentent un même endomorphisme dans deux bases différentes ou $\det(P^{-1}AP) = \det P^{-1} \det A \det P = \det A$.

Remarque

R17 – \bigwedge $\det(A+B) \neq \det A + \det B$ en général : \det n'est pas linéaire.

Exercice 5

On note $\mathscr{PL}_n(\mathbb{K})$ (pour spécial linéaire) l'ensemble des matrices de déterminant 1. Montrer qu'il a une structure de groupe.

2 Calculs

Propriété 13 : Opérations sur un déterminant

- (i) Si une ligne ou une colonne est nulle, ou une combinaison linéaire des autres, le déterminant est nul.
- (ii) On ne change pas le déterminant avec les opérations

$$L_i \leftarrow L_i + \sum_{k \neq i} \lambda_k L_k$$
 ou $C_j \leftarrow C_j + \sum_{k \neq i} \lambda_k C_k$

(transvections successives.)

- (iii) En multipliant par λ une ligne ou une colonne, on multiplie par λ le déterminant.
- (iv) Si on échange deux lignes ou deux colonnes, on multiplie le déterminant par -1. Plus généralement, si on permute les lignes ou les colonnes avec une permutation $\sigma \in \mathfrak{S}_n$, on multiplie le déterminant par $\varepsilon(\sigma)$.
- (v) Le déterminant d'une matrice triangulaire est le produit de ses cœfficients diagonaux.

Définition 12: Mineurs, cofacteurs, comatrice

Soient $A \in \mathcal{M}_n(\mathbb{K})$, $i, j \in [1, n]$.

- On appelle **mineur** d'indice (i,j) le déterminant $\Delta_{i,j}$ obtenu en retirant L_i et C_j à A.
- On appelle **cofacteur** d'indice (i, j) le nombre $C_{i,j} = (-1)^{i+j} \Delta_{i,j}$.
- On appelle **comatrice** de *A* la matrice de ses cofacteurs :

$$\tilde{A} = \operatorname{Com} A = (C_{i,j})_{i,j} = \left((-1)^{i+j} \Delta_{i,j} \right)_{i,j}.$$

Propriété 14 : Développement par rapport à une ligne ou une colonne

Soit $A \in \mathcal{M}_n(\mathbb{K})$.

- (i) Développement par rapport à $L_i \,\, \forall \,\, i \in [\![1,n]\!], \quad \det A = \sum_{j=1}^n (-1)^{i+j} \Delta_{i,j} \, a_{i,j}.$
- (ii) Développement par rapport à $C_j \ \forall \ j \in [1, n], \ \det A = \sum_{i=1}^n (-1)^{i+j} \Delta_{i,j} a_{i,j}$.

Propriété 15 : Déterminant de matrice triangulaire par blocs

Soient $A \in \mathcal{M}_n(\mathbb{K})$ et $B \in \mathcal{M}_p(\mathbb{K})$, alors

$$\begin{vmatrix} A & (*) \\ (0) & B \end{vmatrix} = \begin{vmatrix} A & (0) \\ (*) & B \end{vmatrix} = \det A \cdot \det B.$$

Remarque

- R 18 \bigwedge même lorsque toutes les matrices sont carrées, $\begin{vmatrix} A & B \\ C & D \end{vmatrix} \neq \det A \det D \det B \det C$ ou autre $\det(AD BC)$ en général!
- R 19 Les opérations sur les déterminants peuvent aussi être effectuées par blocs.

Démonstration

■ **Première méthode** : Soit la forme *n*-linéaire alternée

$$d: (C_1, \ldots, C_n) \mapsto \begin{vmatrix} C_1 & \cdots & C_n & (*) \\ (0) & B \end{vmatrix}.$$

On a alors $d = d(\mathcal{B}) \det_{\mathcal{B}} \text{ où } \mathcal{B} \text{ est la base canonique de } \mathbb{K}^n$.

Donc, en appliquant d aux colonnes de A, $\begin{vmatrix} A & (*) \\ (0) & B \end{vmatrix} = d(\mathcal{B}) \det A$.

Or $d(\mathcal{B}) = \begin{vmatrix} I_n & (*) \\ (0) & B \end{vmatrix} = \det B$ en effectuant n développement successifs par rapport à la première colonne.

■ **Deuxième méthode**: On remarque que (multiplier à gauche par une matrice diagonale (par blocs) revient à multiplier les blocs-lignes par les blocs diagonaux correspondants)

$$\begin{pmatrix} A & C \\ (0) & B \end{pmatrix} = \begin{pmatrix} I_n & (0) \\ (0) & B \end{pmatrix} \times \begin{pmatrix} A & C \\ (0) & I_p \end{pmatrix},$$

les déterminants des deux matrices se calculant facilement par développement successifs par rapport à c_1 /dernière ligne.

Propriété 16 : Déterminant de Vandermonde

Soient $x_1,...,x_n \in \mathbb{K}$,

$$V(x_{1},...,x_{n}) = \begin{vmatrix} 1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n-1} \\ 1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{n-1} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n-1} \end{vmatrix} = \begin{vmatrix} 1 & 1 & \cdots & \cdots & 1 \\ x_{1} & x_{2} & \cdots & x_{n} \\ \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ x_{1}^{n-1} & x_{2}^{n-1} & \cdots & x_{n}^{n-1} \end{vmatrix}$$

$$= \prod_{1 \leq i < j \leq n} (x_{j} - x_{i}).$$

Remarque

R20 – $V(x_1,...,x_n) \neq 0$ si et seulement si les x_i sont deux à deux distincts.

R21 – Dans le problème d'interpolation de Lagrange, les cœfficients du polynôme inconnu $P = a_0 + \cdots + a_n X^n$ tel que pour tout $i \in [0,n]$, $P(x_i) = y_i$ sont solutions d'un système linéaire de matrice de Vandermonde associée à x_0, \ldots, x_n . Il y a bien une et une seule solution si les x_i dont deux à deux distincts.

Démonstration

■ **Première méthode** : Soit P le polynôme $P = V(x_1, ..., x_{n-1}, X)$ (c'en est bien un!).

En développant par rapport à L_n (première expression), on a alors $P = \sum_{j=1}^n (-1)^{i+j} D_{n,j} X^{j-1}$ où les $D_{n,j}$ ne contiennent pas X, donc $P \in \mathbb{K}_{n-1}[X]$. De plus, x_1, \ldots, x_{n-1} sont racines de P.

Donc on a $\lambda \in \mathbb{K}$ tel que $P = \lambda(X - x_1) \cdots (X - x_{n-1})$ où λ est le coefficient en X^{n-1} : c'est le mineur égal à $V(x_1, \dots, x_{n-1})$. Ainsi,

$$V(x_1,...,x_n) = V(x_1,...,x_{n-1}) \prod_{1 \le i < n} (x_n - x_i).$$

On conclut alors par récurrence (facilement initialisée).

■ **Deuxième méthode** : Avec $C_i \leftarrow C_i - x_n C_{i-1}$ en commençant par la dernière :

$$V(x_1,...,x_n) = \begin{vmatrix} 1 & x_1 & x_1^2 \cdot \dots \cdot x_1^{n-1} \\ 1 & x_2 & x_2^2 \cdot \dots \cdot x_2^{n-1} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 \cdot \dots \cdot x_n^{n-1} \end{vmatrix} = \begin{vmatrix} 1 & x_1 - x_n & x_1(x_1 - x_n) \cdot \dots \cdot x_1^{n-2}(x_1 - x_n) \\ 1 & x_2 - x_n & x_2(x_2 - x_n) \cdot \dots \cdot x_2^{n-2}(x_1 - x_n) \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 0 \cdot \dots \cdot \dots \cdot 0 \end{vmatrix}$$

Donc, en développant par rapport à L_n et factorisant,

$$V(x_1,...,x_n) = (-1)^{n-1} \prod_{i=1}^{n-1} (x_i - x_n) V(x_1,...,x_{n-1})$$

et on conclut par récurrence.

Voir exercice du TD: 9, 10, 12 à 14

Formule de la comatrice

Propriété 17 : Formule de la comatrice

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors

$$A \times (\operatorname{Com} A)^{\mathsf{T}} = (\operatorname{Com} A)^{\mathsf{T}} \times A = \det(A) \cdot I_n.$$

Si, de plus, A est inversible, alors

$$A^{-1} = \frac{1}{\det A} (\operatorname{Com} A)^{\mathsf{T}}.$$

Démonstration

Si
$$j, k \in [1, n]$$
, $((\operatorname{Com} A)^{\mathsf{T}} \times A)_{j,k} = \sum_{i=1}^{n} ((\operatorname{Com} A)^{\mathsf{T}})_{j,i} a_{i,k} = \sum_{i=1}^{n} (-1)^{i+j} \Delta_{i,j} a_{i,k}$.

Ainsi, si k = j, on reconnaît le développement par rapport à C_j du déterminant de A, donc les cœfficients diagonaux de $(\operatorname{Com} A)^{\mathsf{T}} \times A$ valent tous $\det A$.

Sinon, cela ressemble au développement d'une matrice A' dont toutes les colonnes sont celles de A sauf C_j qui a été remplacée par C_k .

On a alors $\det A' = 0$ par caractère alterné du déterminant.

Le développement par rapport à C_j' s'écrit $0 = \sum_{i=1}^n (-1)^{i+j} \Delta_{i,j}' a_{i,j}'$

Or dans $\Delta'_{i,j}$, on a supprimé la colonne C'_j , donc les cœfficients correspondent exactement à ceux de A, donc $\Delta'_{i,j} = \Delta_{i,j}$.

De plus, pour tout k, $a'_{i,j} = a_{i,k}$.

Finalement, si $j \neq k$, $\sum\limits_{i=1}^{n} (-1)^{i+j} \Delta_{i,j} \, a_{i,k} = 0$.

Ainsi, $(\operatorname{Com} A)^{\mathsf{T}} \times A = \det(A) \cdot I_n$.

Pour l'autre relation, il suffit de raisonner sur les lignes plutôt que sur les colonnes.

Remarque

R22 - Intérêt théorique. Utile en pratique seulement si n=2 ou 3.

Voir exercice du TD: 17

Orientation d'un \mathbb{R} -espace vectoriel

Définition 13 : Avoir même orientation qu'une base

On dit qu'une base \mathscr{B} d'un \mathbb{R} -espace vectoriel **a même orientation** qu'une autre base \mathscr{B}' lorsque

$$\det_{\mathscr{B}}\left(\mathscr{B}'\right) = \det\left(P_{\mathscr{B}}^{\mathscr{B}'}\right) > 0.$$

Remarque

Propriété 18 : Relation d'équivalence

C'est une relation d'équivalence avec exactement deux classes d'équivalences.

Définition 14 : Orientation d'un \mathbb{R} -espace vectoriel

Orienter un R-espace vectoriel, c'est décider qu'une base est directe. Alors toutes les bases de même orientation sont dites directes.

Toutes les autres, qui ont même orientation entre elles, sont dites indirectes.

Propriété 19: Interprétation géométrique du déterminant

- (i) Si $\vec{u}, \vec{v} \in \mathbb{R}^2$, \mathscr{B} la base canonique de \mathbb{R}^2 , alors $\det_{\mathscr{B}}(\vec{u}, \vec{v})$ est l'aire orientée du parallélogramme construit sur \vec{u} et \vec{v} : il est nul si (\vec{u}, \vec{v}) est liée, positif si (\vec{u}, \vec{v}) a même orientation que \mathscr{B} , négatif sinon.
- (ii) Si $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^2$, \mathscr{B} la base canonique de \mathbb{R}^3 , alors $\det_{\mathscr{B}}(\vec{u}, \vec{v}, \vec{w})$ est le volume orienté du parallélogramme construit sur $\vec{u}, \vec{v}, \vec{w}$: il est nul si $(\vec{u}, \vec{v}, \vec{w})$ est liée, positif si $(\vec{u}, \vec{v}, \vec{w})$ a même orientation que 38, négatif sinon.

Formules de Cramer (HP)

Propriété 20 : Formules de Cramer (HP)

Soit (S) un système de Cramer, c'est-à-dire à n équations et n inconnues et de matrice $A \in \mathscr{GL}_n(\mathbb{K})$. On sait que (S): Ax = b admet une unique solution $x = (x_1 \cdots x_n)^{\mathsf{T}} \in \mathcal{M}_{n,1}(\mathbb{K})$. Soient $C_1, ..., C_n$ les colonnes de A. Alors pour tout $j \in [1, n]$,

$$x_{j} = \frac{\det\left(C_{1} \middle| \cdots \middle| C_{j-1} \middle| b \middle| C_{j+1} \middle| \cdots \middle| C_{n}\right)}{\det A}.$$

Démonstration

Donc $\det(C_1|\cdots|C_{j-1}|b|C_{j+1}|\cdots|C_n) = \sum_{k=1}^n x_k \det(C_1|\cdots|C_{j-1}|C_k|C_{j+1}|\cdots|C_n) = x_j \det A$ par caractère n-linéaire alterné du déterminant par rapport aux colonnes.

Remarque

R24 - De nouveau, un intérêt surtout théorique!

Exercice 6

Résoudre
$$\begin{cases} x + y + z = 1 \\ ax + by + cz = d \text{ lorsqu'il s'agit d'un système de Cramer.} \\ a^2x + b^2y + c^2z = d^2 \end{cases}$$