
7
Polynômes et fractions rationnelles

K désigne un sous-corps de C.
En fait tout corps convient, mais pour cer-

taines propriétés, on a besoin qu’il soit de
caractéristique nulle, c’est-à-dire tel que
nK = n ·1K = 1K+·· ·+1K 6= 0K si n ∈N∗.

I L’ALGÈBRE DES POLYNÔMES

1 Polynômes formels à une in-
déterminée

Se donner un polynôme à cœfficents dans K, c’est
se donner la suite (a0, a1, . . . , ad ,0,0, . . . ) ∈K(N) de ses cœf-
ficients ayant un nombre fini de termes non nuls (nulle à
partir d’un certain rang). On parle alors de suite presque
nulle.

On note alors, pour tout k ∈N, X k la suite presque nulle
(0, . . . ,0 ,1,︸︷︷︸

ke

0,0, . . . ).

Cela permet de transformer la notation
(a0, a1, . . . , ad ,0,0, . . . ) en

P = a0 +a1 X +·· ·+ad X d +0+0+·· · =
+∞∑
k=0

ak X k

︸ ︷︷ ︸
somme finie

=
d∑

k=0
ak X k .

On note parfois P (X ) pour P .
■ X est appelée indéterminée. L’indéterminée n’est

pas un nombre ! Elle n’a pas de valeur. Elle repré-
sente la suite presque nulle (0,1,0,0, . . . ).

■ L’ensemble des polynômes à une indéterminée à
cœfficients dans K est noté K[X ].

■ Par définition, P =∑
ak X k =Q =∑

bk X k ⇐⇒∀k, ak = bk
(égalité de deux suites). Les cœfficients d’un poly-
nôme formel sont uniques.

■ Le polynôme nul est le polynôme dont tous les cœf-
ficients sont nuls, noté 0K[X ] ou plus simplement 0.

■ On appelle monôme tout polynôme de la forme
aX k avec k ∈N et a 6= 0.

■ Onappelle polynôme constant tout polynôme P = a
où a ∈K.

■ Si P ∈K[X ] \ {0}, on appelle degré de P, noté degP , le
plus grand k ∈N tel que ak 6= 0 (qui existe bien).

degP = max{k ∈N, ak 6= 0}

adegP est appelé cœfficient dominant de P , noté
cdP .
Si cdP = 1, P est dit unitaire ou normalisé.
On pose deg0 =−∞.

■ On noteKn [X ] = {P ∈K[X ] | degP ⩽ n} l’ensemble des
polynômes de degré au plus n.

Kn [X ] =
{

a0 +a1 X +·· ·+an X n , (a0, . . . , an ) ∈Kn+1
}

= Vect
(
1, X , . . . , X n)

.

2 Opérations sur les polynômes

Pour P =
+∞∑
k=0

ak X k , Q =
+∞∑
k=0

bk X k ∈K[X ] et λ ∈K, on

définit les lois +, ×, ·, ◦ par

■ P +Q =
+∞∑
k=0

(ak +bk )X k

■ λP =
+∞∑
k=0

(λak )X k

■ P ×Q =
+∞∑
k=0

ak X k ×
+∞∑
ℓ=0

bℓX ℓ =
+∞∑

m=0
(m=k+ℓ)

cm X m

en faisant une sommation par diagonales,
c’est-à-dire avec

cm = ∑
m=k+ℓ

ak bℓ =
m∑

k=0
ak bm−k =

m∑
ℓ=0

am−ℓbℓ.

■ P ◦Q = P (Q) =
+∞∑
k=0

akQk .

Propriété 1 : Opérations algébriques et degré

Si P,Q ∈ K[X ] et λ ∈ K, P +Q, P ×Q et λP sont
des polynômes et

■ deg(P+Q)⩽max(degP,degQ) avec égalité si et
seulement si degP 6= degQ ou (degP = degQ et
cdP +cdQ 6= 0)

■ deg(λP ) = degP et cd(λP ) =λcdP si λ 6= 0, sinon
λP = 0.

■ deg(PQ) = degP +degQ et cd(PQ) = cdP cdQ.

■ Si Q non constant, alors

deg(P ◦Q) = degP degQ

et
cd(P ◦Q)) = cdP × (cdQ)degP .

Propriété 2 : Structure d’algèbre commutative
intègre

(K[X ],+,×, ·) est une K-algèbre commutative
intègre d’élément unité le polynôme constant
1 et dont le groupe des inversible est K0[X ] \ {0}
(polynômes constants non nuls.)
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3 Dérivation formelle

Définition 1 : Polynôme dérivé

Si P = a0+a1X +·· ·+an X n ∈K[X ], on appelle po-
lynôme dérivé de P , noté P ′, le polynôme défini
par

P ′ =
n∑

k=1
kak X k−1 =

n−1∑
k=0

(k +1)ak+1X k

= a1 +2a2X +·· ·+nan X n−1.

et 0′ = 0.
Plus généralement, on note P (0) = P , P (1) = P ′,

P (2) = P ′′ = (
P ′)′ et pour tout k ∈N∗, P (k) = (

P (k−1)
)′.

Propriété 3 : de la dérivation

Soient P,Q ∈K[X ], α,β ∈K.
(i) degP ′ = degP −1 si P non constant, −∞ sinon.

Plus généralement, degP (n) = degP − n si
degP ⩾ n, −∞ sinon.
En général, degP (n) ⩽ degP −n.

(ii) Linéarité : (αP +βQ)′ =αP ′+βQ ′.
(iii) Formule de Leibniz

(PQ)′ = P ′Q + PQ ′ et plus généralement,

(PQ)(n) =
n∑

k=0

(
n

k

)
P (k)Q(n−k).

(iv) (P ◦Q)′ =Q ′×P ′ ◦Q.

II FONCTIONS POLYNOMIALES,
RACINES

1 Fonctions polynomiales

Définition 2 : Fonction polynôme associée

Si P = ∑
k⩾0

ak X k ∈ K[X ], on note

P̃ :
K −→ K

x 7−→ P̃ (x) = ∑
k⩾0

ak xk appelée fonction

polynomiale associée à P .

Propriété 4 : Fonction polynôme et opérations

Si P,Q ∈ K[X ] et
λ ∈K
(i) �P +Q = P̃ +Q̃.
(ii) �P ×Q = P̃ ×Q̃.

(iii) λ̃P =λP̃ .
(iv) �P ◦Q = P̃ ◦Q̃.
(v) Sur R, P̃ est déri-

vable et P̃ ′ = P̃ ′.

2 Formule de Taylor

Théorème 1 : Formule de Taylor

Soient P ∈K[X ] et a ∈K.

P (X ) =
+∞∑
n=0

P̃ (n)(a)

n!
(X −a)n

la somme étant finie, c’est-à-dire

P (X +a) =
+∞∑
n=0

P̃ (n)(a)

n!
X n .

Corollaire 1 : Formule de Mac Laurin

P =
+∞∑
n=0

P̃ (n)(0)

n!
X n c’est-à-dire les cœfficients

de P sont les an = P̃ (n)(0)

n!
.

3 Racines

Définition 3 : Racine
a ∈K est un zéro ou une racine de P ∈K[X ]

lorsque P̃ (a) = 0.

Propriété 5 : Racine et division

Soit P ∈K[X ].
(i) a est racine de P si et seulement si (X −a)|P .
(ii) x1, . . . , xn sont racines deux à deux distinctes

de P si et seulement si (X −x1) · · · (X −xn)|P .

Corollaire 2 : Nombre de racines
Soit P ∈K[X ].

(i) Si P 6= 0, P admet au plus degP racines.
(ii) Si P admet strictement plus de degP racines,

P = 0.
(iii) Si P admet une infinité de racines, P = 0.

Corollaire 3 : Identification polynôme et fonc-
tion polynôme

Si K est infini et P̃ = Q̃, alors P = Q. On peut
alors confondre P et P̃ .
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Définition 4 : Multiplicité

Soient P ∈K[X ] tel que P 6= 0, a ∈K.
On appelle ordre de multiplicité de a en tant

que racine de P l’entier

m = max
{

k ∈N, (X −a)k
∣∣∣P}

Ainsi, a est racine d’ordre m si et seulement si
(X − a)m

∣∣∣P et (X − a)m+1 6
∣∣∣P si et seulement si on

a Q ∈K[X ] tel que P = (X −a)mQ et Q(a) 6= 0.
■ Si m = 0, a n’est pas racine de P .
■ Si m ⩾ 1, a est racine de P .
■ Si m = 1, a est racine simple de P .
■ Si m = 2, a est racine double de P .
■ Si m = 3, a est racine triple de P .
■ Si m ⩾ 2, a est racine multiple de P .

Propriété 6

x1, . . . , xn deux à deux distincts sont racines
d’ordre au moins m1, . . . ,mn respectivement si et
seulement si (X −x1)m1 · · · (X −xn)mn

∣∣∣P .
Propriété 7 : Caractérisation de l’ordre

Soient P ∈K[X ], a ∈K, m ∈N.
a est racine d’ordre m de P si et seulement si

∀k ∈ J0,m −1K, P̃ (k)(a) = 0 et P̃ (m)(a) 6= 0.

Corollaire 4 : Multiplicité des racines de P vs P ′

Si a est racine d’ordre m ⩾ 2 de P , a racine
d’ordre m − 1 de P ′. La réciproque est fausse si
on ne suppose pas a racine de P .

4 Polynômes scindés

Définition 5 : Polynôme scindé

P ∈K[X ] est dit scindé sur K s’il peut s’écrire
comme produit de polynômes de degré 1 de
K[X ], c’est-à-dire si on a λ ∈ K∗, n ∈ N∗ et
y1, . . . , yn ∈K tels que

P =λ(X − y1) · · · (X − yn),

c’est-à-dire si on a λ ∈ K∗, p ∈ N∗
et x1, . . . , xp ∈ K deux à deux distincts et
m1, . . . ,mp ∈N∗ tels que

P =λ(X −x1)m1 · · · (X −xp )mp .

Alors degP ⩾ 1, λ = cdP , x1, . . . , xp sont les racines
de P deux à deux distinctes de multiplicités res-
pectives m1, . . . ,mp .

Propriété 8 : Caractérisation avec les racines

Soit P un polynôme non constant admet-
tant exactement p racines d’ordres respectifs
m1, . . . ,mp dans K. P est scindé si et seulement
si

m1 +·· ·+mp = degP.

Théorème 2 : Théorème de d’Alembert-Gauß
(Théorème fondamental de l’al-
gèbre)

Tout polynôme non constant de C[X ] admet
une racine.

On dit que le corps C est algébriquement
clos.

Corollaire 5 : Version alternative équivalente

Tout polynôme à cœfficients complexes non
constant est scindé.

Corollaire 6 : Divisibilité et racines
Si P est scindé, alors P |Q si et seulement si

toutes les racines de P sont racines de Q avec
des multiplicités au moins égales à celles pour
P .

5 Relations cœfficients-racines

Définition 6 : Fonctions symétriques élémen-
taires

Soient n ∈N∗, x1, . . . , xn ∈K.
On appelle fonctions symétriques élémen-

taires de x1, . . . , xn les nombres

σ1 =
n∑

i=1
xi = x1 +x2 +·· ·+xn . (n termes)

σ2 =
∑

1⩽i1<i2⩽n
xi1 xi2 (n(n−1)

2 termes)

= x1x2 +x1x3 +·· ·+x1xn +·· ·+ xn−1xn .

...

σk = ∑
1⩽i1<i2<···<ik⩽n

xi1 xi2 · · ·xik . (
(n

k

)
termes)

...

σn = x1x2 · · ·xn . (1 terme)

POLYNÔMES ET FRACTIONS RATIONNELLES - PAGE 3 SUR 8



LYCÉE LECONTE DE LISLE – LA RÉUNION https://mpi.lecontedelisle.re Π

Propriété 9 : Relations cœfficients-racines

Soient n ∈ N∗, a0, · · · , an ∈ K tel que an 6= 0,
P = a0 + ·· · + an X n , scindé sur K, x1, . . . , xn ses
racines comptées avec leur multiplicité, donc
P = an(X −x1) · · · (X −xn). En notant σk les fonctions
symétriques élémentaires en x1, . . . , xn ,

■ σ1 =−an−1

an
. (somme)

■
...

■ σk = (−1)k an−k

an
.

■
...

■ σn = (−1)n a0

an
. (produit)

Ainsi,

P = an
(
X n − σ1︸︷︷︸

somme

X n−1 +σ2X n−2 +·· ·+ (−1)n σn︸︷︷︸
produit

)
.

III INTERPOLATION DE LA-
GRANGE

■ Problématique : Étant donné n ∈ N, n + 1 scalaires
x0, . . . , xn ∈ K deux à deux distincts, et y0, . . . , yn ∈ K

fixés (par exemple pour tout k, yk = f (xk ) où f est
une fonction connue ou non).

On cherche des polynômes P ∈K[X ] tels que

∀k ∈ J0,nK, P (xk ) = yk .

C’est un problème d’interpolation.

■ Principe : C’est un problème linéaire.

L’application u :
Kn [X ] −→ Kn+1

P 7−→ (
P (xk )

)
k∈J0,nK est

une application linéaire injective entre deux es-
paces de dimension n +1.
En effet, son noyau est réduit aux polynômes de de-
gré au plus n admettent les n + 1 racines distinctes
x0, . . . , xn , c’est-à-dire au polynôme nul.
Il s’agit donc d’un isomorphisme.
On peut aussi remarquer que sa matrice dans les
bases canoniques est la matrice de Vandermonde
associée à x0, . . . , xn .

Définition 7 : Polynômes de Lagrange

Si n ∈ N∗ et x0, . . . , xn deux à deux distincts,
on appelle ie polynôme de Lagrange associé à
(x0, . . . , xn) le polynôme

Li =

∏
j 6=i

(X −x j )

∏
j 6=i

(xi −x j )
.

Propriété 10 : Polynôme d’interpolation de La-
grange

Étant donné x0, . . . , xn ∈ K deux à deux dis-
tincts et y0, . . . , yn ∈ K, il existe un unique poly-
nôme P de degré au plus n tel que ∀i , P (xi ) = yi .

Il s’agit de P =
n∑

i=0
yi ·Li .

Comme le problème est linéaire (en fait affine), on
peut le résoudre sur K[X ] en passant par solution parti-
culière et solution du problème homogène associé.

Propriété 11

Les polynômes d’interpolation associés aux
points ((x0, y0), . . . , (xn , yn)) sont les polynômes

P +
(

n∏
i=0

(X −xi )

)
Q où Q ∈K[X ] et P =

n∑
i=0

yi Li .

IV ARITHMÉTIQUE SUR K[X ]
(MPI)

Dans cette partie, K désigne un sous-corps de C,
comme, Q, R ou C.

1 L’anneau K[X ]

Propriété 12 : Description des polynômes asso-
ciés

Si P,Q ∈K[X ], P et Q sont associés si et seule-
ment s’il existe λ ∈K∗ tel que P =λQ.

Théorème 3 : Division euclidienne polynomiale

Soient A,B ∈K[X ] avec B 6= 0. Alors il existe un
unique couple (Q,R) ∈K[X ] tel que A = BQ +R et
degR < degB .

Théorème 4 : K[X ] est principal

L’anneau K[X ] est principal.
En particulier, tout idéal de K[X ] s’écrit sous

la forme PK[X ] avec P ∈K[X ]. Si l’idéal est non
nul, on peut choisir P de manière unique en le
supposant unitaire.
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2 PGCD de deux polynômes

Définition 8 : PGCD
Soient A,B ∈K[X ] non tous les deux nuls.

I = AK[X ]+BK[X ] = {AU +BV , U ,V ∈K[X ]}

est un idéal non réduit à zéro de K[X ].
Son unique générateur unitaire est appelé

pgcd de A et B , noté A∧B .

Propriété 13 : Relation de Bézout

Si A,B ∈K[X ], on peut trouver U ,V ∈K[X ] tels
que AU +BV = A∧B .

Méthode 1 : Trouver une relation de Bé-
zout

■ On peut trouver une relation de Bézout en ap-
pliquant l’algorithme d’Euclide étendu, donc
en remontant les divisions euclidiennes de l’al-
gorithme d’Euclide en élimant tous les restes
successifs (sauf le dernier, bien sur, qui est le
PGCD), comme pour les entiers.

■ Uneméthode plus inattendue consiste à calcu-
ler la décomposition en éléments simples de
A∧B

AB
et à multiplier par AB cette décomposi-

tion.
Par exemple, (X − 1) ∧ (X − 2)2 = 1 et on cal-
cule facilement la décomposition en éléments
simples

1

(X −1)(X −2)2
= 1

X −1
− 1

X −2
+ 1

(X −2)2

de laquelle on déduit

1 = (X−2)2−(X−1)(X−2)−(X−1) = (X−2)2+(3−X )(X−1)

qui est une relation de Bézout entre X − 1 et
(X −2)2.

Propriété 14 : Caractérisation du PGCD

Soit (A,B) 6= (0,0).

D = A∧B ⇐⇒


D est unitaire
D|A et D|B
∀C ∈K[X ], (C |A et C |B) =⇒C |D

Il s’agit donc du plus grand diviseur unitaire
au sens de la division.

Définition 9 : Polynômes premiers entre eux

A,B ∈ K[X ] sont dits premiers entre eux
lorsque A ∧B = 1, c’est-à-dire lorsque les seuls di-
viseurs communs sont les polynômes constants
non nuls.

Théorème 5 : de Bézout
Soit A,B ∈K[X ].

A∧B = 1 ⇐⇒∃U ,V ∈K[X ], AU +BV = 1

Corollaire 7
Soient A,B ,C ∈K[X ].

(i) A∧BC = 1 ⇐⇒ A∧B = A∧C = 1

(ii) Si D = A ∧ B , on a A1,B1 ∈ K[X ] tels que
A = D A1, B = DB1 et A1 ∧B1 = 1.

Théorème 6 : Lemme de Gauß
Soient A,B ,C ∈K[X ].
Si A|BC et A∧B = 1, alors A|C .

Propriété 15 : Cas des polynômes scindés

Si A ou B est scindé, A∧B = 1 ⇐⇒ A et B n’ont
pas de racine commune.

3 PGCD d’une famille finie de
polynômes

Soit n ∈N\ {0,1}.

Définition 10 : pgcd de n polynômes

Soient (A1, . . . , An) ∈ (K[X ])n \ {(0, . . . ,0)}. On note
D = A1∧A2∧·· ·∧An =

n∧
k=1

Ak l’unique polynôme uni-

taire tel que A1K[X ]+·· ·+ AnK[X ] = DK[X ].

Propriété 16

(i) Associativité : A∧B∧C = (A∧B)∧C = A∧(B∧C ).
(ii) Les diviseurs communs à A1, . . . , An sont exac-

tement les diviseurs de
n∧

k=1
Ak .

(iii) Relation de Bézout : On a U1, . . . ,Un ∈ K[X ]

tels que A1U1 +·· · AnUn =
n∧

k=1
Ak .
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Définition 11 : Polynômes premiers entre eux
dans leur ensemble

A1, . . . , An sont dits premiers entre eux dans
leur ensemble lorsque

n∧
k=1

Ak = 1, c’est-à-dire que

le seul diviseur unitaire commun à tous les Ak est
1.

A1, . . . , An sont dits premiers entre eux deux à
deux lorsque ∀ i 6= j , Ai ∧ A j = 1.

Propriété 17

Premiers entre eux deux à deux =⇒ pre-
miers entre eux dans leur ensemble, mais la réci-
proque est fausse pour plus de deux polynômes.

Théorème 7 : de Bézout
A1, . . . , An sont premiers entre eux dans leur en-

semble si et seulement si on a U1, . . . ,Un tels que
A1U1 +·· ·+ AnUn = 1.

Propriété 18 : Diviseurs deux à deux premiers
entre eux

Si A1, . . . , An sont premiers entre eux deux à
deux et divisent B , alors A1 · · · An |B .

4 Polynômes irréductibles

Définition 12 : Polynôme irréductible

On appelle polynôme irréductible tout poly-
nôme P ∈ K[X ] non constant dont les seuls divi-
seurs sont les λ et λP pour λ ∈K∗, c’est-à-dire tels
que P =UV =⇒U ou V inversible.

Les autres polynômes sont dits réductibles.

Propriété 19 : des polynômes irréductibles

Soit P un polynôme irréductible, et
A, A1, . . . , An ∈K[X ].
(i) Soit P |A, soit P ∧ A = 1.
(ii) P |A1 · · · An ⇐⇒∃i tel que P |Ai .

Théorème 8 : Décomposition en produit d’irré-
ductibles

Tout A ∈K[X ]\{0} s’écrit de manière unique à
l’ordre des facteurs près sous la forme

A =λPα1
1 · · ·Pαk

k

où k ∈ N, λ ∈ K∗, P1, . . . ,Pk irréductibles deux à
deux distincts unitaires, α1, . . . ,αk ∈N∗.

Alors λ = cd A, P1, . . . ,Pk sont les diviseurs irré-
ductibles unitaires de A.

Propriété 20 : Expression du PGCD en produit
d’irréductibles

Si A =λPα1
1 · · ·Pαk

k et B =µPβ1
1 · · ·Pβk

k décomposi-
tions en irréductibles (avec exposants éventuel-
lement nuls), alors

A∧B = P min(α1,β1)
1 · · ·P min(αk ,βk )

k .

5 Irréductibles sur C[X ]

Propriété 21 : Irréductibles de C[X ]

Les irréductibles de C[X ] sont les polynômes
de degré 1.

6 Irréductibles sur R[X ]

Propriété 22 : Racine complexe de polynôme
réel

Soit P ∈R[X ]. alors si α ∈ C est racine de P , α
l’est aussi, de même ordre.

Propriété 23 : Irréductibles de R[X ]

Les polynômes irréductibles de R[X ] sont les
polynômes de degré 1 et les polynômes de de-
gré 2 sans racine réelle (à discriminant stricte-
ment négatif).
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7 PPCM (Complément)

Définition 13 : PPCM
Le PPCM de deux polynômes A,B non nuls

est l’unique générateur unitaire A ∨B de l’idéal
AK[X ]∩BK[X ] des multiples communs à A et à
B .

On a donc AK[X ]∩BK[X ] = (A∨B)K[X ].
On peut poser 0∨0 = 0.

Propriété 24 : du PPCM

(i) Il s’agit du plus petit multiple unitaire com-
mun à A et à B au sens de la division.

(ii) Si A = λPα1
1 · · ·Pαk

k et B = µPβ1
1 · · ·Pβk

k dé-
compositions en irréductibles (avec
exposant éventuellement nuls), alors
A∨B = P max(α1,β1)

1 · · ·P max(αk ,βk )
k .

(iii) On a toujours que AB et (A∧B)(A∨B) sont as-
sociés (donc égaux à normalisation près).

V DÉCOMPOSITION EN ÉLÉMENTS
SIMPLES

1 Partie entière

Définition – Propriété 1 : Partie entière

Soit F ∈K(X ).
On note K−(X ) = {F ∈K(X ) | degF < 0}.
Il existe un unique couple (Q,G) ∈K[X ]×K−(X )

tel que F =Q +G. Q est appelé partie entière de
F .

2 Décomposition en éléments
simples dans C(X )

Théorème 9 : Décomposition en éléments
simples dans C(X )

Soit F ∈ C(X ), F = A

B
sous forme irréductible,

α1, . . . ,αn pôles de F d’ordre m1, . . . ,mn :

F = A
n∏

k=1
(X −αk )mk

et Q ∈C[X ] la partie entière de F .
Alors il existe une unique famille

(
λk, j

)
1⩽k⩽n

1⩽ j⩽mk

de complexes telle que

F = Q︸︷︷︸
partie entière

+ λ1,1

X −α1
+·· ·+ λ1,m1

(X −α1)m1︸ ︷︷ ︸
partie polaire associée à α1

+·· ·+ λn,1

X −αn
+·· ·+ λn,mn

(X −αn)mn︸ ︷︷ ︸
partie polaire associée à αn

Propriété 25 : Partie polaire relative à un pôle
simple

Si α pôle simple de F = A

B
sous forme irréduc-

tible, λ

X −α
avec λ ∈C la partie polaire associée

à α. Alors F = A

(X −α)B1
avec B1(α) 6= 0 et

λ= ã[(X −α)F ](α) = A(α)

B1(α)
= A(α)

B ′(α)
.

Propriété 26 : Partie polaire relative à un pôle
d’ordre ⩾ 2

Si α pôle d’ordre m ⩾ 2 de F = A

B
sous forme

irréductible,

F = A

B
= A

(X −α)mB1
= λ1

X −α
+·· ·+ λm

(X −α)m +G

où B1(α) 6= 0 et α n’est pas pôle de G.
Alors λm = ã[(X −α)mF ](α) = A(α)

B1(α)
et F− λm

(X −α)m

admet α comme pôle d’ordre au plus m −1 ce
qui permet de réitérer le processus.
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Méthode 2 : Décomposer en éléments
simples dans C[X ]

Les deux propriétés précédentes permettent de
trouver les cœfficients de la décomposition.

Lorsqu’il reste peu de cœfficients à calculer, on
peut aussi essayer d’évaluer la fraction rationnelle
en des points bien choisis ou utiliser des méthodes
d’analyse réelle (limite en ∞ de xm F (x)...)

Penser à exploiter la parité avec l’unicité des
cœfficients !

3 Décomposition en éléments
simples dans R(X )

Théorème 10 : Décomposition en éléments
simples dans R(X )

Soit F ∈ R(X ), F = A

B
sous forme ir-

réductible, avec la décomposition de
B en facteur irréductibles dans R :
F = A

p∏
k=1

(X −xk )mk
r∏

i=1

(
X 2 +pi X +qi

)ni

et Q ∈R[X ] la

partie entière de F .
Alors il existe d’uniques familles

(
λk, j

)
1⩽k⩽p

1⩽ j⩽mk

,(
µi ,ℓ

)
1⩽i⩽r

1⩽ℓ⩽ni

et
(
νi ,ℓ

)
1⩽i⩽r

1⩽ℓ⩽ni

de réels tels que

F = Q︸︷︷︸
partie entière

+
p∑

k=1


mk∑
j=1

élément simple
de 1e espèce︷ ︸︸ ︷

λk, j

(X −xk ) j


︸ ︷︷ ︸

partie polaire associée à xk

+
r∑

i=1


ni∑
ℓ=1

élément simple
de 2e espèce︷ ︸︸ ︷
µi ,ℓX +νi ,ℓ(

X 2 +pi X +qi
)ℓ


︸ ︷︷ ︸

partie polaire associée à X 2+pi X+qi

.

Méthode 3 : Décomposer en éléments
simples dans R[X ]

Les méthodes vues dans C s’appliquent pour les
pôles réels. Pour les µ et ν, on peut appliquer la
méthode « du cache » en α racine complexe de
X 2 +p X +q.

On peut aussi décomposer dans C et rassem-
bler les pôles complexes non réels et leur conjugué.
L’écriture F = F et l’unicité des cœfficients donne
des relations entre ceux-ci (comme avec la parité).

4 Décomposition en éléments
simples de P ′/P

Propriété 27 : Décomposition en éléments
simples de P ′/P

Soit P ∈K[X ] scindé, P = λ
p∏

k=1
(X −xk )mk . Alors

la décomposition en éléments simples de P ′

P
est

donnée par
P ′

P
=

p∑
k=1

mk

X −xk
.

Variante : si P = λ
n∏

k=1
(X − yk ) où les yk sont les

racines comptées avec multiplicité, alors

P ′

P
=

n∑
k=1

1

X − yk
.
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