
7
Polynômes et fractions rationnelles

K désigne un sous-corps de C.
En fait tout corps convient, mais pour certaines propriétés, on a besoin qu’il soit de caracté-

ristique nulle, c’est-à-dire tel que nK = n ·1K = 1K+·· ·+1K 6= 0K si n ∈N∗.

I L’ALGÈBRE DES POLYNÔMES

1 Polynômes formels à une indéterminée
Sedonner unpolynômeàcœfficents dansK, c’est se donner la suite (a0, a1, . . . , ad ,0,0, . . . ) ∈K(N)

de ses cœfficients ayant un nombre fini de termes non nuls (nulle à partir d’un certain rang). On
parle alors de suite presque nulle.

On note alors, pour tout k ∈N, X k la suite presque nulle (0, . . . ,0 ,1,︸︷︷︸
ke

0,0, . . . ).

Cela permet de transformer la notation (a0, a1, . . . , ad ,0,0, . . . ) en

P = a0 +a1 X +·· ·+ad X d +0+0+·· · =
+∞∑
k=0

ak X k

︸ ︷︷ ︸
somme finie

=
d∑

k=0
ak X k .

On note parfois P (X ) pour P .
■ X est appelée indéterminée. L’indéterminée n’est pas un nombre ! Elle n’a pas de valeur.

Elle représente la suite presque nulle (0,1,0,0, . . . ).
■ L’ensemble des polynômes à une indéterminée à cœfficients dans K est noté K[X ].
■ Par définition, P = ∑

ak X k = Q = ∑
bk X k ⇐⇒∀k, ak = bk (égalité de deux suites). Les cœffi-

cients d’un polynôme formel sont uniques.
■ Le polynôme nul est le polynôme dont tous les cœfficients sont nuls, noté 0K[X ] ou plus

simplement 0.
■ On appelle monôme tout polynôme de la forme aX k avec k ∈N et a 6= 0.
■ On appelle polynôme constant tout polynôme P = a où a ∈K.
■ Si P ∈K[X ] \ {0}, on appelle degré de P, noté degP , le plus grand k ∈N tel que ak 6= 0 (qui

existe bien).
degP = max{k ∈N, ak 6= 0}

adegP est appelé cœfficient dominant de P , noté cdP .
Si cdP = 1, P est dit unitaire ou normalisé.
On pose deg0 =−∞.

■ On note Kn [X ] = {P ∈K[X ] | degP ⩽ n} l’ensemble des polynômes de degré au plus n.

Kn [X ] =
{

a0 +a1 X +·· ·+an X n , (a0, . . . , an ) ∈Kn+1
}
= Vect

(
1, X , . . . , X n)

.

2 Opérations sur les polynômes

Pour P =
+∞∑
k=0

ak X k , Q =
+∞∑
k=0

bk X k ∈K[X ] et λ ∈K, on définit les lois +, ×, ·, ◦ par

■ P +Q =
+∞∑
k=0

(ak +bk )X k

■ λP =
+∞∑
k=0

(λak )X k

■ P ×Q =
+∞∑
k=0

ak X k ×
+∞∑
ℓ=0

bℓX ℓ =
+∞∑

m=0
(m=k+ℓ)

cm X m

en faisant une sommation par diagonales, c’est-à-dire avec

cm = ∑
m=k+ℓ

ak bℓ =
m∑

k=0
ak bm−k =

m∑
ℓ=0

am−ℓbℓ.

■ P ◦Q = P (Q) =
+∞∑
k=0

akQk .

Propriété 1 : Opérations algébriques et degré

Si P,Q ∈K[X ] et λ ∈K, P +Q, P ×Q et λP sont des polynômes et

■ deg(P +Q) ⩽ max(degP,degQ) avec égalité si et seulement si degP 6= degQ ou
(degP = degQ et cdP +cdQ 6= 0)

■ deg(λP ) = degP et cd(λP ) =λcdP si λ 6= 0, sinon λP = 0.

■ deg(PQ) = degP +degQ et cd(PQ) = cdP cdQ.

■ Si Q non constant, alors
deg(P ◦Q) = degP degQ

et
cd(P ◦Q)) = cdP × (cdQ)degP .
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Remarque
R 1 – En général, on a deg(αP +βQ)⩽max(degP,degQ).

Propriété 2 : Structure d’algèbre commutative intègre

(K[X ],+,×, ·) est une K-algèbre commutative intègre d’élément unité le po-
lynôme constant 1 et dont le groupe des inversible est K0[X ] \ {0} (polynômes
constants non nuls.)

Remarque
R 2 – L’isomorphisme d’algèbres trivial K→K0[X ] permet de confondre K et K0[X ], c’est-

à-dire les constantes λ et les polynômes constants P =λ.

3 Dérivation formelle

Définition 1 : Polynôme dérivé

Si P = a0 +a1 X +·· ·+an X n ∈K[X ], on appelle polynôme dérivé de P , noté P ′, le
polynôme défini par

P ′ =
n∑

k=1
kak X k−1 =

n−1∑
k=0

(k +1)ak+1 X k

= a1 +2a2 X +·· ·+nan X n−1.

et 0′ = 0.
Plus généralement, on note P (0) = P , P (1) = P ′, P (2) = P ′′ = (

P ′)′ et pour tout k ∈N∗,
P (k) =

(
P (k−1)

)′
.

Remarque
R 3 – Il n’est pas question ici de dérivabilité : la dérivation est une simple opération algé-

brique sur les polynômes.

Propriété 3 : de la dérivation

Soient P,Q ∈K[X ], α,β ∈K.
(i) degP ′ = degP −1 si P non constant, −∞ sinon.

Plus généralement, degP (n) = degP −n si degP ⩾ n, −∞ sinon.
En général, degP (n) ⩽ degP −n.

(ii) Linéarité : (αP +βQ)′ =αP ′+βQ ′.
(iii) Formule de Leibniz

(PQ)′ = P ′Q +PQ ′ et plus généralement, (PQ)(n) =
n∑

k=0

(
n

k

)
P (k)Q(n−k).

(iv) (P ◦Q)′ =Q ′×P ′ ◦Q.

Remarque

R 4 – P (n) = 0 si n ⩾ degP +1 et si d = degP , P (d) = d !cdP .

R 5 – degP = min
{

n ∈N | P (n) = 0
}
−1 si P 6= 0.

R 6 – Si n ∈N,

(
(X −a)k

)(n) =


0 si n ⩾ k +1

k ! si n = k

k(k −1) · · · (k −n +1)(X −a)k−n = k !

(k −n)!
(X −a)k−n sinon.

R 7 – Si P =
d∑

k=0
ak X k , alors pour tout n ∈N, P (n) =


0 si n ⩾ d +1

d !ad si n = d
d∑

k=n
k(k −1) · · · (k −n +1)ak X k−n sinon.

II FONCTIONS POLYNOMIALES, RACINES

1 Fonctions polynomiales

Définition 2 : Fonction polynôme associée

Si P = ∑
k⩾0

ak X k ∈K[X ], on note P̃ :
K −→ K

x 7−→ P̃ (x) = ∑
k⩾0

ak xk appelée fonction

polynomiale associée à P .

POLYNÔMES ET FRACTIONS RATIONNELLES - PAGE 2 SUR 12

https://mpi.lecontedelisle.re


J. Larochette VERSION DU 11 JANVIER 2026

Remarque
R 8 – Mathématiquement, P et P̃ sont des objets fondamentalement différents. Cepen-

dant, sous certaines conditions, on peut les identifier (cf plus loin). Ainsi, on fait sou-
vent l’abus de notation P (x) pour P̃ (x).

R 9 – On peut en fait définir un polynôme pour autre chose qu’un élément de K : il suffit
de pouvoir élever à une puissance k et faire des combinaisons linéaires (matrices,
fonctions, polynômes, etc.) : la structure de K-algèbre est adaptée.

R 10 – Si P,Q ∈K[X ], P ◦Q = P̃ (Q) (on applique la fonction polynomiale à un polynôme au lieu
d’un élément de K.)

Propriété 4 : Fonction polynôme et opérations

Si P,Q ∈K[X ] et λ ∈K
(i) �P +Q = P̃ +Q̃.
(ii) �P ×Q = P̃ ×Q̃.

(iii) λ̃P =λP̃ .
(iv) �P ◦Q = P̃ ◦Q̃.
(v) Sur R, P̃ est dérivable et P̃ ′ = P̃ ′.

Remarque
R 11 – L’application P 7→ P̃ est un morphisme deK-algèbres deK[X ] vers l’algèbre des fonc-

tions de K dans K.

2 Formule de Taylor

Théorème 1 : Formule de Taylor

Soient P ∈K[X ] et a ∈K.

P (X ) =
+∞∑
n=0

P̃ (n)(a)

n!
(X −a)n

la somme étant finie, c’est-à-dire

P (X +a) =
+∞∑
n=0

P̃ (n)(a)

n!
X n .

Corollaire 1 : Formule de Mac Laurin

P =
+∞∑
n=0

P̃ (n)(0)

n!
X n c’est-à-dire les cœfficients de P sont les an = P̃ (n)(0)

n!
.

3 Racines

Définition 3 : Racine
a ∈K est un zéro ou une racine de P ∈K[X ] lorsque P̃ (a) = 0.

Remarque
R 12 – Cela dépend du corps K.
R 13 – Un polynôme réel de degré impair a toujours une racine réelle (conséquence du

théorème des valeurs intermédiaires.)

Propriété 5 : Racine et division

Soit P ∈K[X ].
(i) a est racine de P si et seulement si (X −a)|P .
(ii) x1, . . . , xn sont racines deux à deux distinctes de P si et seulement si

(X −x1) · · · (X −xn )|P .

Remarque
R 14 – Si P |Q, toute racine de P est racine de Q. La réciproque est fausse en général.

Corollaire 2 : Nombre de racines

Soit P ∈K[X ].
(i) Si P 6= 0, P admet au plus degP racines.
(ii) Si P admet strictement plus de degP racines, P = 0.
(iii) Si P admet une infinité de racines, P = 0.

Corollaire 3 : Identification polynôme et fonction polynôme

Si K est infini et P̃ = Q̃, alors P =Q. On peut alors confondre P et P̃ .

Remarque

R 15 – Si K = {x1, . . . , xn } fini (par exemple Z/pZ avec p premier), P =
n∏

k=1
(X −xk ) 6= 0 (il est uni-

taire) et pourtant P̃ ≡ 0 (pas plus de racines que le degré !).
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Exercice 1

Si K=R ou C, P (X +a) = ∑
n⩾0

an

n!
P (n)(X ).

Définition 4 : Multiplicité

Soient P ∈K[X ] tel que P 6= 0, a ∈K.
On appelle ordre de multiplicité de a en tant que racine de P l’entier

m = max
{

k ∈N, (X −a)k
∣∣∣P}

Ainsi, a est racine d’ordre m si et seulement si (X −a)m
∣∣∣P et (X −a)m+1 6

∣∣∣P si et seule-
ment si on a Q ∈K[X ] tel que P = (X −a)mQ et Q(a) 6= 0.

■ Si m = 0, a n’est pas racine de P .
■ Si m ⩾ 1, a est racine de P .
■ Si m = 1, a est racine simple de P .
■ Si m = 2, a est racine double de P .
■ Si m = 3, a est racine triple de P .
■ Si m ⩾ 2, a est racine multiple de P .

Remarque

R 16 – Si (X −a)n
∣∣∣P alors a est racine de P d’ordre au moins n.

R 17 – L’ordre est toujours au plus égal au degré du polynôme.

Propriété 6

x1, . . . , xn deux à deux distincts sont racines d’ordre au moins m1, . . . ,mn respec-
tivement si et seulement si (X −x1)m1 · · · (X −xn )mn

∣∣∣P .

Propriété 7 : Caractérisation de l’ordre

Soient P ∈K[X ], a ∈K, m ∈N.
a est racine d’ordre m de P si et seulement si ∀ k ∈ J0,m − 1K, P̃ (k)(a) = 0 et

P̃ (m)(a) 6= 0.

Exercice 2 : CCINP 85

Corollaire 4 : Multiplicité des racines de P vs P ′

Si a est racine d’ordre m ⩾ 2 de P , a racine d’ordre m −1 de P ′. La réciproque
est fausse si on ne suppose pas a racine de P .

Exemple
E 1 – P = X (X −2) et P ′ = 2X −2 : 1 est racine simple de P ′, mais n’est pas racine double de

P .

Exercice 3

Montrer que (X −1)3
∣∣∣nX n+2 − (n +2)X n+1 + (n +2)X −n.

Voir exercice du TD : 10, 11, 15, 18

4 Polynômes scindés

Définition 5 : Polynôme scindé

P ∈K[X ] est dit scindé sur K s’il peut s’écrire comme produit de polynômes de
degré 1 de K[X ], c’est-à-dire si on a λ ∈K∗, n ∈N∗ et y1, . . . , yn ∈K tels que

P =λ(X − y1) · · · (X − yn ),

c’est-à-dire si on a λ ∈ K∗, p ∈ N∗ et x1, . . . , xp ∈ K deux à deux distincts et
m1, . . . ,mp ∈N∗ tels que

P =λ(X −x1)m1 · · · (X −xp )mp .

Alors degP ⩾ 1, λ = cdP , x1, . . . , xp sont les racines de P deux à deux distinctes de
multiplicités respectives m1, . . . ,mp .
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Remarque
R 18 – " Scindé sur C⇐=x scindé sur R.

P = X 2 −1 est scindé sur C mais pas sur R.
P = X 2 −2 est scindé sur R, C mais pas sur Q.

Propriété 8 : Caractérisation avec les racines

Soit P un polynôme non constant admettant exactement p racines d’ordres
respectifs m1, . . . ,mp dans K. P est scindé si et seulement si

m1 +·· ·+mp = degP.

Théorème 2 : Théorème de d’Alembert-Gauß (Théorème fondamental de l’al-
gèbre)

Tout polynôme non constant de C[X ] admet une racine.
On dit que le corps C est algébriquement clos.

Corollaire 5 : Version alternative équivalente

Tout polynôme à cœfficients complexes non constant est scindé.

Corollaire 6 : Divisibilité et racines

Si P est scindé, alors P |Q si et seulement si toutes les racines de P sont racines
de Q avec des multiplicités au moins égales à celles pour P .

Remarque
R 19 – C’est donc toujours vrai dans C.

Voir exercice du TD : 12, 13, 16, 17

5 Relations cœfficients-racines

Définition 6 : Fonctions symétriques élémentaires

Soient n ∈N∗, x1, . . . , xn ∈K.
On appelle fonctions symétriques élémentaires de x1, . . . , xn les nombres

σ1 =
n∑

i=1
xi = x1 +x2 +·· ·+xn . (n termes)

σ2 = ∑
1⩽i1<i2⩽n

xi1 xi2 (n(n−1)
2 termes)

= x1x2 +x1x3 +·· ·+x1xn +·· ·+xn−1xn .

...

σk = ∑
1⩽i1<i2<···<ik⩽n

xi1 xi2 · · ·xik
. (

(n
k

)
termes)

...

σn = x1x2 · · ·xn . (1 terme)

Exemple
E 2 – Si n = 3, les fonctions symétriques élémentaires en x, y, z sont σ1 = x+y+z, σ2 = x y+y z+xz

et σ3 = x y z.

Remarque
R 20 – On peut montrer que toute fonction polynomiale en x1, . . . , xn symétrique en x1, . . . , xn

s’exprime comme un polynôme en σ1, . . . ,σn .

Exemple
E 3 – S1 = x1 +·· ·+xn =σ1 et S2 = x2

1 +·· ·+x2
n =σ2

1 −2σ2.
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Propriété 9 : Relations cœfficients-racines

Soient n ∈N∗, a0, · · · , an ∈K tel que an 6= 0, P = a0+·· ·+an X n , scindé surK, x1, . . . , xn
ses racines comptées avec leur multiplicité, donc P = an (X −x1) · · · (X −xn ). En notant
σk les fonctions symétriques élémentaires en x1, . . . , xn ,

■ σ1 =−an−1

an
. (somme)

■
...

■ σk = (−1)k an−k

an
.

■
...

■ σn = (−1)n a0

an
. (produit)

Ainsi,
P = an

(
X n − σ1︸︷︷︸

somme

X n−1 +σ2 X n−2 +·· ·+ (−1)n σn︸︷︷︸
produit

)
.

Remarque
R 21 – En particulier, si P est unitaire, P = X n −σ1 X n−1 +σ2 X n−2 +·· ·+ (−1)nσn .
R 22 – Si n = 2, on retrouve que les racines complexes de aX 2 +bX +c ont une somme égale

à −b/a et un produit égal à c/a.

Voir exercice du TD : 14, 20

III INTERPOLATION DE LAGRANGE
■ Problématique : Étant donné n ∈ N, n + 1 scalaires x0, . . . , xn ∈ K deux à deux distincts, et

y0, . . . , yn ∈ K fixés (par exemple pour tout k, yk = f (xk ) où f est une fonction connue ou
non).

On cherche des polynômes P ∈K[X ] tels que
∀k ∈ J0,nK, P (xk ) = yk .

C’est un problème d’interpolation.

■ Principe : C’est un problème linéaire.

L’application u :
Kn [X ] −→ Kn+1

P 7−→ (
P (xk )

)
k∈J0,nK est une application linéaire injective entre

deux espaces de dimension n +1.
En effet, son noyau est réduit aux polynômes de degré au plus n admettent les n+1 racines
distinctes x0, . . . , xn , c’est-à-dire au polynôme nul.
Il s’agit donc d’un isomorphisme.
On peut aussi remarquer que sa matrice dans les bases canoniques est la matrice de
Vandermonde associée à x0, . . . , xn .
L’unique solution au problème est donc, par linéarité,

u−1 (
y0, . . . , yn

)= n∑
i=0

yi ·u−1
(
0, . . . , 1︸︷︷︸, . . . ,0

)
ie

.

On cherche donc le polynôme Li = u−1
(
0, . . . , 1︸︷︷︸, . . . ,0

)
ie

tel que Li (xi ) = 1 et Li (x j ) = 0 si j 6= i ,

c’est-à-dire Li (x j ) = δi , j .

Alors les x j pour j 6= i sont racines de Li . Donc Li =
∏
j 6=i

(X −x j )Q.

Comme degLi = 1, alors Q est constant : Q =λ et Li (xi ) = 1 = ∏
j 6=i

(xi −x j ).

Définition 7 : Polynômes de Lagrange

Si n ∈N∗ et x0, . . . , xn deux à deux distincts, on appelle ie polynôme de Lagrange
associé à (x0, . . . , xn ) le polynôme

Li =

∏
j 6=i

(X −x j )

∏
j 6=i

(xi −x j )
.

Propriété 10 : Polynôme d’interpolation de Lagrange

Étant donné x0, . . . , xn ∈Kdeux àdeux distincts et y0, . . . , yn ∈K, il existe un unique
polynôme P de degré au plus n tel que ∀ i , P (xi ) = yi .

Il s’agit de P =
n∑

i=0
yi ·Li .
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Comme le problème est linéaire (en fait affine), on peut le résoudre sur K[X ] en passant par
solution particulière et solution du problème homogène associé.

Propriété 11

Les polynômes d’interpolation associés aux points ((x0, y0), . . . , (xn , yn )) sont les

polynômes P +
(

n∏
i=0

(X −xi )

)
Q où Q ∈K[X ] et P =

n∑
i=0

yi Li .

Exercice 4 : CCINP 87, 90

IV ARITHMÉTIQUE SUR K[X ] (MPI)
Dans cette partie, K désigne un sous-corps de C, comme, Q, R ou C.

1 L’anneau K[X ]

Propriété 12 : Description des polynômes associés

Si P,Q ∈K[X ], P et Q sont associés si et seulement s’il existe λ ∈K∗ tel que P =λQ.

Théorème 3 : Division euclidienne polynomiale

Soient A,B ∈K[X ] avec B 6= 0. Alors il existe un unique couple (Q,R) ∈K[X ] tel que
A = BQ +R et degR < degB .

Remarque : Algorithme
R 23 – C’est celui que l’on utilise en posant la division. On s’intéresse au terme de plus haut

degré dans A que l’on compense en multipliant B par un monôme, et on recom-
mence en soustrayant.

Théorème 4 : K[X ] est principal

L’anneau K[X ] est principal.
En particulier, tout idéal de K[X ] s’écrit sous la forme PK[X ] avec P ∈K[X ]. Si

l’idéal est non nul, on peut choisir P de manière unique en le supposant unitaire.

2 PGCD de deux polynômes

Définition 8 : PGCD
Soient A,B ∈K[X ] non tous les deux nuls.

Remarque
R 24 – La définition s’étend au cas où A = B = 0 en posant A ∧B = 0 car (0)+ (0) = (0) même si

alors, on ne peut plus dire que A∧B est unitaire.

Propriété 13 : Relation de Bézout

Si A,B ∈K[X ], on peut trouver U ,V ∈K[X ] tels que AU +BV = A∧B .

Méthode 1 : Trouver une relation de Bézout
■ On peut trouver une relation de Bézout en appliquant l’algorithme d’Euclide étendu,

donc en remontant les divisions euclidiennes de l’algorithme d’Euclide en élimant
tous les restes successifs (sauf le dernier, bien sur, qui est le PGCD), comme pour les
entiers.

■ Une méthode plus inattendue consiste à calculer la décomposition en éléments
simples de A∧B

AB
et à multiplier par AB cette décomposition.

Par exemple, (X −1)∧ (X −2)2 = 1 et on calcule facilement la décomposition en élé-
ments simples

1

(X −1)(X −2)2
= 1

X −1
− 1

X −2
+ 1

(X −2)2

de laquelle on déduit

1 = (X −2)2 − (X −1)(X −2)− (X −1) = (X −2)2 + (3−X )(X −1)

qui est une relation de Bézout entre X −1 et (X −2)2.
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Propriété 14 : Caractérisation du PGCD

Soit (A,B) 6= (0,0).

D = A∧B ⇐⇒


D est unitaire
D|A et D|B
∀C ∈K[X ], (C |A et C |B) =⇒C |D

Il s’agit donc du plus grand diviseur unitaire au sens de la division.

Remarque
R 25 – Les diviseurs de D sont alors exactement les diviseurs communs à A et à B .
R 26 – Les racines des pgcd sont exactement les racines communes de A et B , de multipli-

cité le minimum des multiplicités.

Définition 9 : Polynômes premiers entre eux

A,B ∈K[X ] sont dits premiers entre eux lorsque A∧B = 1, c’est-à-dire lorsque les
seuls diviseurs communs sont les polynômes constants non nuls.

Remarque
R 27 – Lorsque c’est le cas, ils n’ont pas de racine commune dans K. La réciproque est

fausse.

Théorème 5 : de Bézout

Soit A,B ∈K[X ].

A∧B = 1 ⇐⇒∃U ,V ∈K[X ], AU +BV = 1

Corollaire 7

Soient A,B ,C ∈K[X ].
(i) A∧BC = 1 ⇐⇒ A∧B = A∧C = 1

(ii) Si D = A∧B , on a A1,B1 ∈K[X ] tels que A = D A1, B = DB1 et A1 ∧B1 = 1.

Remarque
R 28 – (i) s’étend à un produit quelconque (fini) de polynômes.

Théorème 6 : Lemme de Gauß

Soient A,B ,C ∈K[X ].
Si A|BC et A∧B = 1, alors A|C .

Propriété 15 : Cas des polynômes scindés

Si A ou B est scindé, A∧B = 1 ⇐⇒ A et B n’ont pas de racine commune.

Remarque
R 29 – C’est toujours vrai si K=C.

Voir exercice du TD : 21, 22

3 PGCD d’une famille finie de polynômes
Soit n ∈N\ {0,1}.

Définition 10 : pgcd de n polynômes

Soient (A1, . . . , An ) ∈ (K[X ])n \ {(0, . . . ,0)}.
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Remarque
R 30 – Comme pour deux polynômes, il s’agit du plus grand diviseur commun unitaire au

sens de la division (et aussi du degré).
R 31 – La définition s’étend à 0∧·· ·∧0 = 0.

Propriété 16

(i) Associativité : A∧B ∧C = (A∧B)∧C = A∧ (B ∧C ).

(ii) Les diviseurs communs à A1, . . . , An sont exactement les diviseurs de
n∧

k=1
Ak .

(iii) Relation de Bézout : On a U1, . . . ,Un ∈K[X ] tels que A1U1 +·· · AnUn =
n∧

k=1
Ak .

Définition 11 : Polynômes premiers entre eux dans leur ensemble

A1, . . . , An sont dits premiers entre eux dans leur ensemble lorsque
n∧

k=1
Ak = 1,

c’est-à-dire que le seul diviseur unitaire commun à tous les Ak est 1.
A1, . . . , An sont dits premiers entre eux deux à deux lorsque ∀ i 6= j , Ai ∧ A j = 1.

Propriété 17

Premiers entre eux deux à deux =⇒ premiers entre eux dans leur ensemble,
mais la réciproque est fausse pour plus de deux polynômes.

Théorème 7 : de Bézout

A1, . . . , An sont premiers entre eux dans leur ensemble si et seulement si on a
U1, . . . ,Un tels que A1U1 +·· ·+ AnUn = 1.

Propriété 18 : Diviseurs deux à deux premiers entre eux

Si A1, . . . , An sont premiers entre eux deux à deux et divisent B , alors A1 · · · An |B .

Remarque : Application
R 32 – Si x1, . . . , xn sont racines de P d’ordre au moins m1, . . . ,mn alors (X −x1)m1 · · · (X −xn )mn |P

car les (X −xi )mi sont premiers entre eux deux à deux (scindés sans racine commune).

4 Polynômes irréductibles

Définition 12 : Polynôme irréductible

On appelle polynôme irréductible tout polynôme P ∈K[X ] non constant dont
les seuls diviseurs sont les λ et λP pour λ ∈K∗, c’est-à-dire tels que P =UV =⇒U ou V
inversible.

Les autres polynômes sont dits réductibles.

Remarque
R 33 – Si P est irréductible dans K et degP ⩾ 2, P n’a pas de racine dans K. La réciproque

est fausse.
R 34 – P est réductible dans K[X ] ss’il admet un diviseur Q tel que 0 < degQ < degP .

Propriété 19 : des polynômes irréductibles

Soit P un polynôme irréductible, et A, A1, . . . , An ∈K[X ].
(i) Soit P |A, soit P ∧ A = 1.
(ii) P |A1 · · · An ⇐⇒∃i tel que P |Ai .

Théorème 8 : Décomposition en produit d’irréductibles

Tout A ∈K[X ] \ {0} s’écrit de manière unique à l’ordre des facteurs près sous la
forme

A =λPα1
1 · · ·Pαk

k

où k ∈N, λ ∈K∗, P1, . . . ,Pk irréductibles deux à deux distincts unitaires, α1, . . . ,αk ∈N∗.
Alors λ= cd A, P1, . . . ,Pk sont les diviseurs irréductibles unitaires de A.
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Remarque
R 35 – On dit que l’anneau K[X ] est factoriel.

Propriété 20 : Expression du PGCD en produit d’irréductibles

Si A =λPα1
1 · · ·Pαk

k et B =µP
β1
1 · · ·Pβk

k décompositions en irréductibles (avec expo-
sants éventuellement nuls), alors

A∧B = P
min(α1,β1)
1 · · ·P min(αk ,βk )

k .

Voir exercice du TD : 19

5 Irréductibles sur C[X ]

Propriété 21 : Irréductibles de C[X ]

Les irréductibles de C[X ] sont les polynômes de degré 1.

6 Irréductibles sur R[X ]

Propriété 22 : Racine complexe de polynôme réel

Soit P ∈R[X ]. alors si α ∈C est racine de P , α l’est aussi, de même ordre.

Propriété 23 : Irréductibles de R[X ]

Les polynômes irréductibles de R[X ] sont les polynômes de degré 1 et les poly-
nômes de degré 2 sans racine réelle (à discriminant strictement négatif).

Remarque
R 36 – La décomposition en irréductibles dans C redonne le fait que tout polynôme à cœf-

ficient complexe est constant ou scindé. Elle est de la forme
P =λ(X −x1)m1 · · · (X −xn )mn .

R 37 – Les décompositions en irréductibles dans R[X ] sont donc de la forme

P =λ(X −x1)m1 · · · (X −xn )mn
(

X 2 +a1 X +b1

)ℓ1 · · ·
(

X 2 +ak X +bk

)ℓk

avec pour tout i , ∆k = a2
k −4bk < 0.

R 38 – Pour décomposer en irréductibles dans R[X ], on peut décomposer dans C[X ] puis
rassembler les X −α et X −α si α ∈C\R.

Exemple
E 4 – Décomposition en irréductibles de X n −1.
E 5 – Décomposition en irréductibles de X 4 +1.

7 PPCM (Complément)

Définition 13 : PPCM

Propriété 24 : du PPCM

(i) Il s’agit du plus petit multiple unitaire commun à A et à B au sens de la division.

(ii) Si A = λPα1
1 · · ·Pαk

k et B = µP
β1
1 · · ·Pβk

k décompositions en irréductibles (avec ex-
posant éventuellement nuls), alors A∨B = P

max(α1,β1)
1 · · ·P max(αk ,βk )

k .

(iii) On a toujours que AB et (A∧B)(A∨B) sont associés (donc égaux à normalisa-
tion près).
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V DÉCOMPOSITION EN ÉLÉMENTS SIMPLES

1 Partie entière

Définition – Propriété 1 : Partie entière

Soit F ∈K(X ).
On note K−(X ) = {F ∈K(X ) | degF < 0}.
Il existe un unique couple (Q,G) ∈K[X ]×K−(X ) tel que F = Q +G. Q est appelé

partie entière de F .

Remarque
R 39 – La partie entière est le quotient de la division euclidienne du numérateur par la dé-

nominateur.
R 40 – C’est l’analogue de la partie entière sur Q.
R 41 – Si degF < 0, alors sa partie entière est nulle.
R 42 – Si F ∈K[X ], sa partie entière est F elle-même.
R 43 – K[X ] et K−(X ) sont supplémentaires dans K(X ).

2 Décomposition en éléments simples dans C(X )

Théorème 9 : Décomposition en éléments simples dans C(X )

Soit F ∈ C(X ), F = A

B
sous forme irréductible, α1, . . . ,αn pôles de F d’ordre

m1, . . . ,mn :
F = A

n∏
k=1

(X −αk )mk

et Q ∈C[X ] la partie entière de F .
Alors il existe une unique famille

(
λk, j

)
1⩽k⩽n

1⩽ j⩽mk

de complexes telle que

F = Q︸︷︷︸
partie entière

+ λ1,1

X −α1
+·· ·+ λ1,m1

(X −α1)m1︸ ︷︷ ︸
partie polaire associée à α1

+·· ·+ λn,1

X −αn
+·· ·+ λn,mn

(X −αn )mn︸ ︷︷ ︸
partie polaire associée à αn

Remarque

R 44 – Les
(

1

(X −a)n

)
(a,n)∈C×N∗

est une base de C−(X ).

Propriété 25 : Partie polaire relative à un pôle simple

Si α pôle simple de F = A

B
sous forme irréductible, λ

X −α
avec λ ∈ C la partie

polaire associée à α. Alors F = A

(X −α)B1
avec B1(α) 6= 0 et

λ= ã[(X −α)F ](α) = A(α)

B1(α)
=

Exemple : Le « cache »

E 6 – F = 1

(X −1)(X +2)

Exemple : Très classique

E 7 – F = 1

X n −1

Propriété 26 : Partie polaire relative à un pôle d’ordre ⩾ 2

Si α pôle d’ordre m ⩾ 2 de F = A

B
sous forme irréductible,

F = A

B
= A

(X −α)m B1
= λ1

X −α
+·· ·+ λm

(X −α)m +G

où B1(α) 6= 0 et α n’est pas pôle de G.
Alors λm = ã[(X −α)m F ](α) = A(α)

B1(α)
et F − λm

(X −α)m admet α comme pôle d’ordre
au plus m −1 ce qui permet de réitérer le processus.

Méthode 2 : Décomposer en éléments simples dans C[X ]

Les deux propriétés précédentes permettent de trouver les cœfficients de la décom-
position.

Lorsqu’il reste peu de cœfficients à calculer, on peut aussi essayer d’évaluer la fraction
rationnelle en des points bien choisis ou utiliser des méthodes d’analyse réelle (limite en ∞
de xm F (x)...)

Penser à exploiter la parité avec l’unicité des cœfficients !
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Exemple

E 8 – F = 2X +1

X 3 −2X 2 +X

Exemple

E 9 – F = X(
X 2 −1

)2

Voir exercice du TD : 23, 24, 25, 26, 27

3 Décomposition en éléments simples dans R(X )

Théorème 10 : Décomposition en éléments simples dans R(X )

Soit F ∈ R(X ), F = A

B
sous forme irréductible, avec la décomposition de B en

facteur irréductibles dans R : F = A
p∏

k=1
(X −xk )mk

r∏
i=1

(
X 2 +pi X +qi

)ni

et Q ∈ R[X ] la

partie entière de F .
Alors il existe d’uniques familles

(
λk, j

)
1⩽k⩽p

1⩽ j⩽mk

,
(
µi ,ℓ

)
1⩽i⩽r

1⩽ℓ⩽ni

et
(
νi ,ℓ

)
1⩽i⩽r

1⩽ℓ⩽ni

de

réels tels que

F = Q︸︷︷︸
partie entière

+
p∑

k=1


mk∑
j=1

élément simple
de 1e espèce︷ ︸︸ ︷

λk, j

(X −xk ) j


︸ ︷︷ ︸

partie polaire associée à xk

+
r∑

i=1


ni∑
ℓ=1

élément simple
de 2e espèce︷ ︸︸ ︷
µi ,ℓX +νi ,ℓ(

X 2 +pi X +qi
)ℓ


︸ ︷︷ ︸

partie polaire associée à X 2+pi X+qi

.

Méthode 3 : Décomposer en éléments simples dans R[X ]

Les méthodes vues dans C s’appliquent pour les pôles réels. Pour les µ et ν, on peut
appliquer la méthode « du cache » en α racine complexe de X 2 +p X +q.

On peut aussi décomposer dans C et rassembler les pôles complexes non réels et leur
conjugué. L’écriture F = F et l’unicité des cœfficients donne des relations entre ceux-ci
(comme avec la parité).

Remarque

R 45 – Les 1
(X−a)n pour a ∈R et n ∈N∗ et les 1

(X 2+p X+q)n et X
(X 2+p X+q)n pour p, q ∈R tels que

p2 < 4q et n ∈N∗ forment une base de R−(X ).

Exemple

E 10 – F = X 3 −1

X 3 +X

Exemple
E 11 –

F = X 3

(X −1)3(X +2)

Exemple

E 12 – F = 2X 2

(X 2 +1)3

4 Décomposition en éléments simples de P ′/P

Propriété 27 : Décomposition en éléments simples de P ′/P

Soit P ∈ K[X ] scindé, P = λ
p∏

k=1
(X −xk )mk . Alors la décomposition en éléments

simples de P ′
P

est donnée par

Variante : si P =λ
n∏

k=1
(X − yk ) où les yk sont les racinescomptées avecmultiplicité,

alors

Remarque

R 46 – En considérant les ordres, on voit facilement que P ′
P

n’a que des pôles simples.

Exemple

E 13 –
∑

ω∈Un

1

2−ω
=?

Voir exercice du TD : 28
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