Polynomes et fractions rationnelles

Extrait du programme officiel :

CONTENUS

CAPACITES & COMMENTAIRES

Anneaux K[X]
Dans ce paragraphe, K est un sous-corps de C.

ldéaux de K[X].

Définition du PGCD de n > 2 polynédmes en termes d’idéaux, re-
lation de Bézout.

Iréductibles de K[X]. Existence et unicité de la décomposition
en facteurs irréductibles unitaires.

Irréductibles de C[X] et R[X].

Par convention, le PGCD est unitaire.

La démonstration du théoréme de d’Alembert-Gauss est hors
programme.

L'étude des irréductibles de K[X] pour un corps autre que R ou
C n’est pas un objectif du programme.
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KK désigne un sous-corps de C.
En fait tout corps convient, mais pour certaines propriétés, on a besoin qu’il soit de caractéristique nulle, c’est-a-dire
felque ng=n-1gx =1+ -+ 1 #0K Si ne N*,

“ L’ALGEBRE DES POLYNOMES

Il Polynémes formels & une indéterminée

Se donner un polynéme & cecefficents dans KK, c’est se donner la suite (ag, a1, ..., a4,0,0,...) € K™ de ses coefficients
ayant un nombre fini de termes non nuls (nulle & partir d’un certain rang). On parle alors de suite presque nulle.
On note alors, pour tout ke IN, X* la suite presque nulle (0,...,0,1, 0,0,...).
~~

ke
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Cela permet de fransformer la notation (ag, ay,...,a4,0,0,...) en

+00 d
P=ag+m X+ +agX+0+0+--= Y arxt =Y axk

k=0 k=0

N————’

somme finie

On note parfois P(X) pour P.

m X est appelée indéterminée. L'indéterminée n’est pas un nombre! Elle n'a pas de valeur. Elle représente la suite
presque nulle (0,1,0,0,...).

m L'ensemble des polyndmes & une indéterminée a ceefficients dans K est noté K[ X].

m Par définition, P = Y a; Xk = Q =Y b Xk <= Vk, a; = b (égalité de deux suites). Les coefficients d’un polynéme
formel sont uniques.

m Le polynéme nul est le polyndme dont fous les coefficients sont nuls, noté 0 x; ou plus simplement 0.

= On appelle mondme tout polynéme de la forme ax* avec ke N et a#0.
m On appelle polynédme constant fout polyndbme P=a ol a€ K.
m Si PeK[X]\{0}, on appelle degré de P, noté degP, le plus grand ke IN tel que a; # 0 (qui existe bien).

degP =max{ke N, a; #0}

agegp €St appelé coefficient dominant de P, noté cd P.
SicdP =1, P est dit unitaire ou normalisé.
On pose deg0 = —oo.
m Onnote K, [X]={PeK[X] | degP < n} I'ensemble des polyndmes de degré au plus 7.

K, [X] :{a0+a1X+---+anX", (ao,...,an) e]K”“}:Vect(l,X,...,X”).

E Opérations sur les polynébmes

+o00 +00
Pour P=Y arX*. Q=Y b x*eK(X] et 1e K, on définit les lois +, x, -, o par

k=0 k=0
+00

" P+Q=Y (ar+bpXF
k=0

+00
AP=Y (Aap)x*

k=0
+00 +00 +00
lPxQ:Zakabengz Y emX™
k=0 =0 m=
(m=k+0)

en faisant une sornmation par diagonales, c’est-a-dire avec

m m
cm= Y. akby=) akbpy_ =) am_¢by.
m=k+¢ k=0 =

+00
PoQ=PQ =) arQ*.
k=0
Propriété 1 : Opérations algébriques et degré
SibQeK(X] etAeK, P+Q, PxQ et AP sont des polynémes et

deg(P + Q) < max(degP degQ) avec égalite si et seulement si degP # degQ ou (degP = degQ et
cdP+cdQ #0)

deg(AP) =degP ef cd(AP) = AcdP si A #0, Sihon AP =0.

deg(PQ) =degP +degQ et cd(PQ) =cdPcdQ.

m Si Q non constant, alors
deg(PoQ) =degPdegQ
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et
cd(PoQ)) = cd P x (cdQ)4e8”.

Remarque
R1- En général, on a deg(aP + Q) < max(deg P, degQ).

Propriété 2 : Structure d’algébre commutative intégre

(K[X],+, x,-) est une K-algéebre commutative infegre d’élément unité le polynébme constant 1 et dont
le groupe des inversible est IKy[X]1\ {0} (polyndmes constants non nuls.)

Remarque

R2 — Lisomorphisme d’algébres trivial K — Ko[X] permet de confondre K et KKy[X], ¢’est-O-dire les constantes A et
les polyndmes constants P = A.

Dérivation formelle

Définition 1 : Polynéme dérivé
SiP=ay+a X+--+a,X"eK[X], on appelle polyndbme dérivé de P, noté P/, le polyndme défini par

n n—1
P'=Y karX* ' =Y (k+Dag, XF
k=1 k=0

=@ +2a X+ +na, X" L.

et0'=0.
Plus généralement, on note P© = p, p® = p', p@ = p" = (P} et pour tout ke N*, K = (p*-DY',

Remarque
R3 — lln‘est pas question ici de dérivabilité : la dérivation est une simple opération algébrique sur les polyndmes.

Propriété 3 : de la dérivation
Soient BQeK[X], a,fe K.
() degP'=degP -1 si P non constant, —oo sinon.
Plus généralement, deg P = degP — n si deg P > n, —oo sinon.
En général, degP"™ < degP — n.
(i Linéarité : (aP+ Q) =aP' +BQ’.
(i Formule de Leibniz

n
(PQ)' = P'Q+ PQ' et plus généralement, (PQ)™ = Y (Z)P(k)Q(”_k).
k=0

(V) (PoQ)=Q xP'oQ.

Remarque
Ra— PM =0sin>degP+1etsid=degP, P4 =dlcdP.
R5 — degp:min{ne]N | PV :0}—lsi P#0.
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R6— SineNN,
0 Sin>k+1
((X—a)k)(n): k! sin=k
k! .
kk-1--(k-n+ D)X -a)k "= X-ak"  sinon.
(k—n)!
0 sin>d+1
d ! in=d
R7- SiP=Y arxk, alors pour fout ne N, pt ={ d'da SO
k=0

da
Y k(k—=1)---(k—n+1Dap X" sinon.
k=n

m FONCTIONS POLYNOMIALES, RACINES

I'.l Fonctions polynomiales

Définition 2 : Fonction polyndme associée

K — K
SiP=Y arx*eK[X], onnote P: _ « appelée fonction polynomiale associée a
k>0 x — Px)= Z agXx
k>0
P.
Remarque

R8 — Mathématiquement, P et P sont des objets fondamentalement différents. Cependant, sous certaines condi-
tions, on peut les identifier (cf plus loin). Ainsi, on fait souvent |I’albus de notation P(x) pour P(x).

R9 — On peut en fait définir un polyndme pour autre chose qu’un élément de K : il suffit de pouvoir élever &

une puissance k et faire des combinaisons linéaires (matrices, fonctions, polyndmes, etc.) : la structure de
K-algebre est adaptée.

R10- Si RQeK[X], PoQ=P(Q) (on appligue la fonction polynomiale & un polynéme au lieu d’un élément de K.)

Propriété 4 : Fonction polynéme et opérations

SipQeK[X] et A e K (i AP =AP.
() PrQ=P+Q. (iv) PoQ=PoQ.
(i PxQ=Px0Q. (V) SurR, P est dérivable et P' = P'.
Remarque
R11 - L'application P — P est un morphisme deK-algébres de K[X] vers |'algébre des fonctions de K dans K.
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E Formule de Taylor

Théoréeme 1 : Formule de Taylor

Soient PeK[X] et ac K.

+00 p(n) a
PX)=) @ x—ar
n=0 n!
la somme éfant finie, ¢ est-a-dire
+00 p(n)(a)
PX+a)=) X"
— n!
n=0
Corollaire 1: Formule de Mac Laurin
+oo p(n) _ . P (0
pP= Z '( )X " c’est-a-dire les ccefficients de P sont les a,, = '( ) }
n. n.

n=0

Racines

Définition 3 : Racine
a€K est un zéro ou une racine de P € K[X] lorsque P(a) = 0.

Remarque
R12 - Cela dépend du corps K.

R13 — Un polyndme réel de degré impair a toujours une racine réelle (conséquence du théoreme des valeurs inter-
médiaires.)

Propriété 5 : Racine et division
Soit P e K[X].
() a est racine de P si ef seulement si (X — a)|P.
@i x1,...,x, SONt racines deux & deux distinctes de P si et seulement si (X — x1) -+ (X — x,)|P.

Remarque
R14— Si P|Q, toute racine de P est racine de Q. La réciproque est fausse en général.

Corollaire 2 : Nombre de racines

Soit P e K[X].
() Si P#0, P admet au plus degP racines.
(i Si P admet strictement plus de degP racines, P =0.
(i) Si P admet une infinité de racines, P = 0.
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Corollaire 3 : Identification polynéome et fonction polynéme

Si K est infini et P = Q, alors P = Q. On peut alors confondre P et P.

Démonstration

Si P =Q et K infini, alors P— Q a une infinité de racines, donc est nul. [

Remarque
n
R15— SiK ={xy,..., x5} fini (oar exemple Z/pz avec p premier), P = ]_[ (X - x3) # 0 (il est unitaire) et pourtant P =0 (pas

k=1
plus de racines que le degrél).

Exercice 1

A a” (n) . ) P . ~ ~ P(n) (.X') n a” (n)
SiK=RouC, P(X+a)= ) —P"(X).En effet, il suffit d'écrire P(x+a)=Pla+x) =}, —a"=|3Y —P" |
n>0 = nso n>o M
(on applique Taylor au point x, évalué en a...) d'ou I'égalité des polyndmes sur le corps infini.

Définition 4 : Multiplicité

Soient Pe K[X] tfel que P#0, ac K.
On appelle ordre de multiplicité de a en tant que racine de P I'entier

m=max{keN, (X-a)k|P
fkem, o-af|p}

Ainsi, a est racine d'ordre m si et seulement si (X — a)’”)P et (X—a)m! J(P si et seulement sion a Q e K[X] tel
que P=(X-a)"Q et Q(a) #0.

m Sim=0, an’est pasracine de P.

m Sim>1, a estracine de P.

m Sim=1, a est racine simple de P.

m Sim=2, a est racine double de P.

m Si m =3, a est racine triple de P.

m Si m > 2, a est racine multiple de P.

Remarque
R16 - Si (X —a)|P alors a est racine de P d’ordre au moins 7.

R17 — L'ordre est toujours au plus égal au degré du polyndme.

Propriété 6
x1,..., %X, deux a deux distincts sont racines d’ordre au moins my, ..., m, respectivement si et seulement
ST (X = x7)™ -+ (X — x)™ ‘P.
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Propriété 7 : Caractérisation de I'ordre

Soient Pe K[X], ac K, me N,
a est racine d’ordre m de P si et seulement siV ke [0,m—1], P®(a)=0 et P (a) #0.

Exercice 2: CCINP 85
1. Soient neIN*, Pe R, [X] et aeR.
(a) Donner sans démonstration, en utilisant la formule de Taylor, la décomposition de P(X) dans la base
(LX-aX-a?,(X-am).
(b) Soit r e IN*. En déduire que :
a est une racine de P d’ordre de multiplicité r si et seulement si P\ (@) #0 et Vke [0,r - 1], P®) (a) = 0.

2. Déterminer deux réels a« e b pour que 1 soit racine double du polynébme
P=X%+aX?+bX et factoriser alors ce polynéme dans R [X].

Corollaire 4 : Multiplicité des racines de P vs P’

Sia estracine d’ordre m > 2 de P, aracine d’ordre m—1 de P'. La réciproque est fausse si on ne suppose
pPas a racine de P.

Exemple

E1- P=X(X-2) et P =2X-2:1 estracine simple de P/, mais n’est pas racine double de P.

Exercice 3
Montrer que (X - 13 |nX"2 - (n+2) X" + (n+2)X - n.

g Voir exercice duTD : 10, 11, 15, 18

ﬂ Polynémes scindés

Définition 5 : Polynéme scindé

P e K[X] est dit scindé sur K s'il peut s’écrire comme produit de polyndmes de degré 1 de K[X], c’est-
a-diresiona AeK*, ne N* et y,...,y, e K tels que

P=AX=-y1)(X—-yn),
c’est-G-dire sion a A e K*, pe N* ef xy,...,x, € K deux & deux distincts et my,...,m, e N* fels que
P=AX-x))"™ - (X—xp)".

Alors degP > 1, A =cdP, xi,...,x, sont les racines de P deux a deux distinctes de multiplicités respectives
Wl pooon mp.

Remarque

R18 — A Scindé sur C << scindé sur R.
P = X2 -1 est scindé sur € mais pas sur RR.
P =X?%-2 est scindé sur R, C mais pas sur Q.
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Propriété 8 : Caractérisation avec les racines

Soit P un polynéme non constant admettant exactement p racines d’ordres respectifs my, ..., m, dans
K. P est scindé si et seulement si
my +---+mp=degP.

Théoréeme 2 : Théoréme de d’Alembert-GauB (Théoréme fondamental de I'algébre)

Tout polynébme non constant de C[X] admet une racine.
On dit que le corps C est algébriquement clos.

Corollaire 5 : Version alternative équivalente

Tout polynéme & coefficients complexes non constant est scinde.

Corollaire 6 : Divisibilité et racines

Si P est scindé, alors P|Q si et seulement si toutes les racines de P sont racines de Q avec des multiplicités
au moins égales a celles pour P.

Remarque
R19 — C’est donc toujours vrai dans C.

A o exercice auo - 12,13, 16, 17

H Relations ccefficients-racines

Définition 6 : Fonctions symétriques élémentaires

Soient ne IN*, x1,...,x, € K.
On appelle fonctions symétriques élémentaires de x;, ..., x, les nombres

n

O1=) Xi=X1+Xo+-+Xp. (n termes)
i=1

2= Y. XyXp (2= termes)
1<i1<i2<n

=X1 X2+ X1 X3+ -+ X1 X5+ 0+ Xp—1Xp.

O = Z Xiy Xip * o Xy - ((Z) Termes)

1<i1<i2<---<ik<n
Op=X1X2 " Xp. (1 ferme)

Exemple
E2 - Si n=3, les fonctions symétriques élémentaires en x,y,zsont o1 =x+y+z, 02 =xy+yz+xz et o3 =xyz.
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Remarque
R20 — On peut montrer que foute fonction polynomiale en xi,...,x, symétrique en xi,...,x, s'exprime comme un
polynbme en oy,...,04.

Exemple

2 2)

E3— Sj=x1+--+xp,=0 €t ngx%+~~-+xn=01—202.

Propriété 9 : Relations ccefficients-racines

Soient ne IN*, ag,---,a, € K fel que a, #0, P = ay+---+ a, X", scindé sur K, xi,...,x, ses racines comptées
avec leur multiplicité, donc P = a,(X — x1)--- (X — x,). En notant o} les fonctions symétriques élémentaires
en xiy,..., Xn,

an-1

"o =- . (somme)

Ap

a,—
Ok = (_1)k"_k,

n

on=(1"2L (produit)
an

Ainsi,
P=ay(X"- o1 X" 40, X" 24+ (-D" 0, ).
~— —~—~
somme produit

Remarque

R21 - En particulier, si P est unitaire, P= X" —o1 X" 1+ 02 X" 2 + -+ (-1)" 0.

R22 — Si n =2, on retfrouve que les racines complexes de aX?+bX +c ont une somme égale & —b/a et un produit égall
acla.

g Voir exercice duTD : 14, 20

m INTERPOLATION DE LAGRANGE

m Problématique : Etant donné n e IN, n+1 scalaires xo, ..., x, € K deux & deux distincts, et y,...,yn € K fixés (par
exemple pour tout k, yi = f(x;) ou f est une fonction connue ou non).

On cherche des polyndmes P € K[X] tels que

Vke[o,n], P(xg)=yg.
C’est un probleme d’interpolation.

m Principe : C’est un probleme linéaire.

K [X] _ ]:K}'l+l
L'application u: " est une application linéaire injective entre deux espaces de dimen-

P — (P(xk))ke[[o,n]]
sion n+1.
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En effet, son noyau est réduit aux polyndmes de degré au plus n admettent les n + 1 racines distinctes xy, ..., xn,
c’est-a-dire au polynédme nul.

Il s"agit donc d’un isomorphisme.

On peut aussi remarquer que sa matrice dans les bases canoniques est la matrice de Vandermonde associée a
X0y--r»Xn.

L'unique solution au probléme est donc, par linéarité,

n
-1 -1
u ™ (o, yn)= Y yivu (0,..., 1 ,...,0).
! i=0 '

i

On cherche donc le polynéme L; = u~! (0,...,\1’_‘,...,0) tel que L;(x;) =1 et L;i(x;) =05si j #i, c'est-O-dire L;(x;) =4; ;.
i€
Alors les x; pour j # i sonf racines de L;. Donc L; = ITx- x)Q.
j#i
Comme degL; =1, alors Q est constant: Q=1 et L;(x)) =1=[] (x; - Xj).
j#i

Définition 7 : Polynémes de Lagrange

SineIN* et xo,...,x, deux & deux distincts, on appelle i® polyndme de Lagrange associé a (xo, ..., x,) le
polynéme

[Tx-xp
Y
= :

ITi-x)

j#i

Propriété 10 : Polynéme d’interpolation de Lagrange
Etant donné xy,..., x, € IK deux & deux distincts et Yo0,-.-, ¥n € K, il €xiste un unique polynéme P de degré
au plus n tel que Vi, P(x;)=y;.
n
lls’agitde P=)" y;-Li.

i=0

Comme le probléme est linéaire (en fait affine), on peut le résoudre sur IK[X] en passant par solution particuliere et
solution du probléeme homogéne associé.

Propriété 11

Les polynébmes d’inferpolation associés aux points ((xg, yo),.-.,(Xn, ¥n)) Sont les polynémes

n n
P+|]] (X—xi)) QolQeK[x]etP=) yiL;.
i=0 i=0
Démonstration
n
lls conviennent et si A convient, xo,...,x, sont racines de A— P qui s’écrit donc (H (X - xi)) Q. [ |
i=0

Exercice 4 : CCINP 87
Soient ag,ay,---,a, n+1réels deux a deux distincts.

1. Montrer que si by, b1,---,b, sont n+1 réels quelconques, alors il existe un unique polynéme P vérifiant
degP<netVvie{0,---,n} P(a;)=b;.
2. Soit k€ [o,...,n].
L. R osii#k
Expliciter ce polynéme P, que I'on notera L, lorsque Vi€ [0,...,n] b; =
1si i=k
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n
3. Prouver que Ype(o,...,n], Y asz:X"’.
k=0

Exercice 5: CCINP 90

KK désigne le corps des réels ou celui des complexes.
Soient a;, ay, as trois scalaires distincts donnés de K.

1. Montrerque ©: K)[X] — K3 est un isomorphisme d’espaces vectoriels.
P —  (P(a1),P(ap),P(az))
2. On note (e1, ez, e3) la base canonique de K3 et on pose
Vke{1,2,3}, L =D ep).

(a) Justifier que (L1, Ly, L3) est une base de K;[X].
(b) Exprimer les polynébmes L}, L, et L3 en fonction de a;, a, et as.

3. Soit P e K, [X]. Déterminer les coordonnées de P dans la base (L;, Ly, L3).

4. Application : On se place dans R?> muni d’un repére orthonormé et on considére les trois points
A(0,1),B(1,3),C(2,1).

Déterminer une fonction polynomiale de degré 2 dont la courbe passe par les points A, B et C.

m ARITHMETIQUE SUR IK[X] (MPI)

Dans cefte partie, K désigne un sous-corps de C, comme, Q, R ou C.

Il Lanneau K[X]

Propriété 12 : Description des polynédmes associés

SiPLQeIK[X], P et Q sont associés si et seulement s’il existe 1 € IK* fel que P = Q.

Théoréme 3 : Division euclidienne polynomiale

Soient A,B € K[X] avec B # 0. Alors il existe un unique couple (Q,R) € K[X] fel que A= BQ+R et
degR < degB.

Remarque : Algorithme

R23 — C’est celui que I'on utilise en posant la division. On s’inféresse au terme de plus haut degré dans A que |I'on
compense en multipliant B par un monéme, et on recommence en soustrayant.

Démonstration
m Existence : Soit d =degB, B=by+---+by X% avec b, #0. Si d =0, le couple (A/by,0) convient. Sinon, on raisonne
par récurrence forte sur n=degA, A=ag+---+apX".
= Sin<d, (0,A) convient.
* Si le résultat est vrai pour tfout polyndme de degré au plus n -1, alors on écrit A = Z—"X”‘dB + A; avec
degA; <n-1. ¢
Par hypothése de récurrence, on a (Q, R) € K[X] tels que A= BQ; + R et degR < degB.
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a .
Alors (Q1 + b—”X”‘d,R) convient.
d

= Unicité : Si (Q;,Ry) et (@, R») conviennent, alors B (Q; — Q2) = R, —R;. Vules degrés, on en tire Q; = Q2. puis Ry = R.

[
Théoreme 4 : K[X] est principal

L'anneau K[X] est principal.
En particulier, fout idéal de K[X] s’écrit sous la forme PK[X] avec P e K[X]. Si I'idéal est non nul, on

peut choisir P de maniere unique en le supposant unitaire.

Démonstration
C’est un anneau intégre. Montrons que ses idéaux sont fous principaux.
Soit I un idéal de K[X].
m Si I=1{0} alors I =0K[X] = (0).
m Sinon, I'ensemble E = {degP P € I,P # 0} est une partie non vide de IN donc admet un minimum. Soit Py € I
réalisant ce minimum. On montre que I = (Py).
*x On a déja Py e I donc par définition d'un idéal, (Py) = PgK[X] < I.
* Si, réciproguement, P e I, effectuons la division euclidienne par Py : on a (Q,R) € K[X]% tel que P = PyQ +R
et degR < degPy.
Alors R=P-PyQe I et degR <minE donc R=0 et P=PyQ € (Py).

E PGCD de deux polynomes
Soient A, B € K[X] non tous les deux nuls.

I1=AK[X]+BK[X]={AU+ BV, U,V e K[X]}
est un idéal non réduit a zéro de K[X].

Son unique générateur unitaire est appelé pgcd de A et B, noté A B.

Remarque
R24 — La définition s’étend au cas ou A= B =0 en posant AA B =0 car (0) + (0) = (0) méme si alors, on ne peut plus dire
que AA B est unitaire.

Propriété 13 : Relation de Bézout

Si A, B e K[X], on peut frouver U,V € K[X] fels que AU+ BV = AAB.

Démonstration

ANABe AnBK[X] = AK[X] + BKI[X]. |

T\

Méthode 1 : Trouver une relation de Bézout

m On peut frouver une relation de Bézout en appliquant I'algorithme d’Euclide étendu, donc en remontant les
divisions euclidiennes de I'algorithme d’Euclide en élimant tous les restes successifs (sauf le dernier, bien sur,
qui est le PGCD), commme pour les entiers.
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a ) . N . . s , AANB R -
m Une méthode plus inattendue consiste & calculer la décomposition en éléments simples de 5 et a multi-
plier par AB cette décomposition.
Par exemple, (X -1) A (X-2)? =1 et on calcule facilement la décomposition en éléments simples

1 1 1 1
= = +
(X-1D(X-22 X-1 X-2 (Xx-2)2

de laquelle on déduit
1=(X-2-(X-1)X-2-(X-1)=(X-22+3B-X)(X-1)
qui est une relation de Bézout entre X —1 et (X -2)2.

Propriété 14 : Caractérisation du PGCD

Soit (A, B) #(0,0).
D est unitaire
D=AANB<—= D|AetD|B

VCeK[X], (C|AetC|B)= C|D

Il s’agit donc du plus grand diviseur unitaire au sens de la division.

Démonstration
(=) SiD=AAB alors D est unitaire et AK[X]+ BIK[X] = DK[X] donc A, B € DIK[X] soit D|Aet D|B.
Et si Cl|Aet C|B, alors, comme on a U,V e K[X] fels que AU+ BV = AAB, C|AAB.

(<) Si D est un diviseur commun unitaire plus grand que tous les autres au sens de la division, alors D divise
AU+ BV = AA B, et comme A A B est un diviseur commun, il divise D.

D et A B étant associés et unitaires, ils sont égaux. [

Remarque
R25 — Les diviseurs de D sont alors exactement les diviseurs communs & A et & B.

R26 — Les racines des pgcd sont exactement les racines communes de A et B, de multiplicité le minimum des
multiplicités.

Définition 9 : Polyndmes premiers entre eux

A, B e K[X] sont dits premiers entre eux lorsque AAB =1, c’est-O-dire lorsque les seuls diviseurs communs
sont les polyndmes constants non nuls.

Remarque

R27 — Lorsque c’est le cas, ils n‘ont pas de racine commune dans K. La réciproque est fausse.

Théoreme 5 : de Bézout

Soit A,B e K[X].
AANB=1<—=3U,VeK[X], AU+BV =1

Démonstration

(=) Connu
(=) S'ilexiste U,V e K[X] tel que AU+ BV =1, alors 1€ (AA B) donc (AAB) = K[X]=(1). [
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Corollaire 7
Soient A, B, C e K[X].
() ANABC=1<= AAB=AAC=1
(i SiD=AANB,0on a A;,B; e K[X] felsque A=DA;, B=DB; et AiAB; =1.

Remarque
R28 — (i) s'étend & un produit quelconque (fini) de polyndmes.

Démonstration

Comme dans Z en multipliant des relations de Bézout pour la premiére, en en divisant une par le PGCD s’il est
non nul pour la deuxieme. [ |

Théoréme 6 : Lemme de GauB

Soient A, B, C e K[X].
Si AIBC et AANB =1, alors AlC.

Démonstration

Ona U,vVeK[X] telsque AU+ BV =1 et A|IBC donc C = ACU + BCV est divisible par A. [ |

Propriété 15 : Cas des polynémes scindés

Si A ou B est scindé, ANB=1<= A et B n‘ont pas de racine commune.

Remarque
R29 — C’est toujours vrai si K = C.

f! Voir exercice du TD : 21, 22

Démonstration

® (=) : Pas de facteur (X —a) commun.

m (<) :Si Aet Bn'ont pas de racine commune, un diviseur de A et de B, nécessairement constant ou scindé
N’'a pas de racine, donc est constant. [ |

PGCD d’une famille finie de polynémes

Soit ne IN\{0,1}.

Définition 10 : pgcd de n polynémes

n
Soient (A1,..., Ay) € (KIXD™\{(0,...,00}. Onnote D=A; A Ay A---AA, = /\ Ax I'Unique polyndme unitaire tel
k=1
que A K[X]+---+ A,K[X] = DK[X].
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Remarque
R30 — Comme pour deux polyndmes, il s’agit du plus grand diviseur commun unitaire au sens de la division (et aussi
du degré).

R31 - La définition s’étend G 0A---A0=0.

Propriété 16

() Associdtivité : ANBAC=(AAB)AC=ANA(BAC).

n
(i) Les diviseurs communs 4 As,..., A, sont exactement les diviseurs de )\ Ay.
k=1

n
(i) Relation de Bézout : On a Uy, ..., U, € K[X] fels que AjUy +--- AyUp = N\ Ag.
k=1

Définition 11 : Polynémes premiers entre eux dans leur ensemble

n
Ai,..., A, sont dits premiers entre eux dans leur ensemble lorsque A A =1, c’est-a-dire que le seul
k=1
diviseur unitaire commun & tous les Ay est 1.
Ay,..., A, sont dits premiers entre eux deux & deux lorsque Vi #j, A;jAAj=1.

Propriété 17

Premiers enfre eux deux & deux = premiers enfre eux dans leur ensemble, mais la réciproque est
fausse pour plus de deux polynémes.

Théoréeme 7 : de Bézout

Ay,..., A, sont premiers entre eux dans leur ensemble si et seulement si on a Uy,...,U, fels que
AU +---+ AU, =1.

Propriété 18 : Diviseurs deux a deux premiers entre eux

Si Ay, ..., A, sont premiers entre eux deux & deux et divisent B, alors A; --- A|B.

Remarque : Application

R32 - Si x1,...,x, sont racines de P d’ordre au moins my,...,m;, alors (X — x;)™ ---(X—xn)m"|P car les (X —x;)™i sont
premiers entre eux deux & deux (scindés sans racine commune).

ﬂ Polynémes irréductibles

Définition 12 : Polynéme irréductible

On appelle polynéme irréductible tout polyndme P € K[X] non constant dont les seuls diviseurs sont
les A et AP pour A e K*, c’est-O-dire fels que P=UV = U ou V inversible.
Les autres polyndmes sont dits réductibles.
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Remarque
R33 — Si P estirréductible dans K et degP > 2, P n’a pas de racine dans K. La réciproque est fausse.
R34 — P est réductible dans K[X] ss'il admet un diviseur Q tel que 0 < degQ < degP.

Propriété 19 : des polynémes irréductibles

Soit P un polynéme irréductible, et A, Ay, ..., A, e K[X].
() Soit P|A, soit PAA=1.
(i PlA;--- A, < 3i tel que P|A;.

Démonstration

(i) P A Adivise P qui estirréductible (et A), donc vaut soit 1, soit P (& normalisation prées).
(i) Le sens < ne pose pas de probleme.

Pour I’autre sens, par confraposée, si P ne divise aucun des 4;, il est premier avec chacun (par (i), donc il
est premier avec le produit, donc il ne le divise pas.

Théoréme 8 : Décomposition en produit d’irréductibles

Tout Ae K[X]\ {0} s’écrit de maniére unique a I'ordre des facteurs prés sous la forme
a a
A=AP"---P*

ol kelN, Ae K*, Py,..., Py iréductibles deux & deux distincts unitaires, a;,...,a € IN*,
Alors A=cd A, Py,..., Py sont les diviseurs irréductibles unitaires de A.

Démonstration

Unicité Si A se décompose ainsi sous cette forme AP ~-~P,‘f’“, avec Py,..., P, iméductibles deux & deux distincts
unitaires, alors

m A estle coefficient dominant de A.

m Si P est un diviseur unitaire irréductible de A, alors P|Pf‘l -~-Pl‘:’“ donc P divise I'un des P; par irréductibilité,
et alors, nécessairement, P = P;.

Réciproquement, chaque P; divise A.
Ainsi, Py,..., Py sont exactement les diviseurs irréductibles unitaires de A, k en est leur nombre.

= Enfin, P{|A et P*1*! 14, sinon on aurait Py|PY? - PIE,
En raisonnant de méme pour chaqgue diviseur irréductible unitaire, on obfient pour 1 < i < k,
a; =max{m, Pl.mlA}.

Tout cela nous donne I'unicité de la décomposition (& I'ordre des facteurs prés) sous réserve de son existence.
Existence Parrécurrence sur n=degA.
m Sin=0,in"y arien & faire.
m Si,pourun n>1,c’est vraijusqu’'au degré n—1, soit A estirréductible et iln’y arien & faire d’autre que de

factoriser le coefficient dominant, soit ce n’est pas le cas, et on écrit A= UV avec degU < n et degV < n,
on appligue deux fois I'hypothése de récurrence et celle-ci s’ établit.

Remarque
R35 — On dit que I'anneau KI[X] est factoriel.
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Propriété 20 : Expression du PGCD en produit d’irréductibles

Si A=AP"...-Pl* et B= upl ---P,f" decompositions en irréductibles (avec exposants eventuellement

nuls), alors
AAB= Pinin(ahﬁl) . ”Plrcnin(ak,ﬁk).

5 Voir exerciceduTD: 19

E Irréductibles sur C[X]

Propriété 21 : Irréductibles de C[X]

Les irréductibles de C[X] sont les polynémes de degré 1.

Démonstration

Si P estirréductible et degP > 2, il est non constant et ne peut pas avoir de racine car C est algébriquement clos
(théoréme de d’Alembrert-GauB).
Réciproquement les polyndmes de degré 1 sont bien irréductibles.

ﬂ Irréductibles sur R[X]

Propriété 22 : Racine complexe de polynéme réel

Soit P e R[X]. alors si a € C est racine de P, «a I’'est aussi, de méme ordre.

Démonstration

Pour tout ke IN, P® (@) = P0)(a) car les coefficients sont réels.
I suffit alors d’application la caractérisation de I'ordre des racines avec les dérivées.

Propriété 23 : Irréductibles de R[X]

Les polynémes irréductibles de R[X] sont les polynébmes de degré 1 et les polynébmes de degré 2 sans
racine réelle (& discriminant strictement negatir).

Démonstration

Si P est de degré 1, il estirréductible.

Si P est de degré 2 sansracine réelle et si P= UV, alors ni U ni V ne peut étre de degré 1 sinon P aurait une racine
réelle. Donc P est irréductible.

Réciproquement, si P est irréductible et degP > 2, P a une racine complexe par théoréme de d'Alembert-
GauB, qui ne peut étre réelle sinon P sera réductible. Mais alors @ est également racine, distincte de
a, donc (X-a)(X-a) = X2 -2Rkea)X + |al*> divise P dans R[X] et comme P est irréductible dans R[X] ,
P=A(X?-2Rea)X +|al?) e RIX].
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Remarque
R36 — La décomposition en irréductibles dans € redonne le fait que fout polyndme & coefficient complexe est
constant ou scindé. Elle est de la forme
P=AX—x)™ - (X —xp)™n.

R37 — Les décompositions en irréductibles dans R[X] sont donc de la forme
m m 2 4 2 Ok
P=AX—x))™ (X - xp) n(x +a1X+b1) (X +akX+bk)
avec pour fout i, Ay = a2 - 4b <0.

R38 — Pour décomposer en irréductibles dans R[X], on peut décomposer dans C[X] puis rassemblerles X—a et X—a
siae C\R.

Exemple
E4 — Décomposition en irréductibles de X —1.
£5 — Décomposition en iréductibles de x* +1.

PPCM (Complément)

Définition 13 : PPCM

Le PPCM de deux polyndmes A, B non nuls est I'unique générateur unitaire AvB de l'idéal AK[X]nBIK[X]
des multiples communs & A et  B.

On a donc AK[X]nBK[X] = (Av B)IK[X].

On peut poser 0v 0 =0.

Propriété 24 : du PPCM

(0 II's’agit du plus petit multiple unitaire commun & A et & B au sens de la division.
(ify Si A= AP ---P,‘:’“ etB= ;qu ! ---P,/fk décompositions en irréductibles (avec exposant éventuellement

nuls), alors Av B = pma@nh . pmaxai.pfe
, =P} p .

(i On a toujours que AB et (AA B)(AV B) sont associés (donc egaux & normalisation pres).

m DECOMPOSITION EN ELEMENTS SIMPLES

Il Partie entiere

Définition — Propriété 1 : Partie entiére

Soit F e K(X).
On note K~ (X) = {Fe K(X) | degF < 0}.
Il existe un unique couple (Q,G) e K[X] x K~ (X) tel que F = Q+G. Q est appelé partie entiére de F.

Démonstration

L'existence provient de la division euclidienne.
Si (Q,G) et (Q1,Gy) conviennent, Q1 —Q =G-G; e KIX]nIK™ (X) = {0} donc Q) = Q pulis G =G. [ |

POLYNOMES ET FRACTIONS RATIONNELLES - PAGE 19 SUR 23



y LyCEE LECONTE DE LISLE — LA REUNION ?%

E].
HTTPS://MPI.LECONTEDELISLE.RE I I 1}_1*
it

[CIFE

Remarque

R39 — La partie entiere est le quotient de la division euclidienne du numérateur par la dénominateur.
R40 — C’est I'analogue de la partie entiere sur Q.

R41 - SidegF <0, alors sa partie entiére est nulle.

R42 — Si Fe K[X], sa partie entiere est F elle-méme.

R43 — K[X] et K™ (X) sont supplémentaires dans K (X).

E Décomposition en éléments simples dans C(X)

Théoréme 9 : Décomposition en éléments simples dans C(X)

) A s , A p
Soit Fe C(X), F= = sous forme irréductible, a;,...,a, pdles de F d’ordre my,...,my, :

A
F:

n
[T X —ap™
k=1

et Qe C[X] la partie entiére de F.
Alors il existe une unique famille (A, j) 1<k<n @€ complexes felle que

1S jSmy
A1 M Ani A
F= ’ dho0c o) coodk L 4000k ILMmn
—~ X-—a (X —a)™ X—ap (X —ap)mn
partie entiére =~ — — . — —
partie polaire associée a a; partie polaire associee & a

Démonstration

Admis.

Remarque

est une base de C~(X).

R44 - Les ( n)
(X =a)" ) (a,n)eCxN*

Propriété 25 : Partie polaire relative a un pdle simple

. o A . . A . . U
Si a pble simple de F = = sous forme irréductible, — avec A e C la partie polaire associee & a. Alors
-

F avec Bj(a) #0 ef

T X-a)B
Al@) AW

Bi(a) B(a)

A=[(X-a)Fl(a) =

Démonstration
m F= ﬁ + G avec G n‘admettant pas a« comme pdle. Alors (X —a)F = A+ (X — a)G puis on évalue en a.

® B=(X-a)B; donc B’ =By + (X - a)B} donc B () = B'(a).

Exemple : Le «cache »
1 -1/3 -1

E6— F= = + .
X-DX+2) X-1 X+2
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Exemple : Trés classique

1 n-l 3 2ik 1 w
E7- F=———=3 —“*_avecwy=en ef A= o=k,
XT=1 Sy X-o m"Z_ n
=1 wi/n
Ainsi, F =

X"-1 = X-wg

Propriété 26 : Partie polaire relative & un pole d’ordre > 2

. ~ , A - .
Sia pble d’ordre m>2 de F = 5 sous forme irreductible,

A A M Am
F=—= = dbooodh =——L_ (&
B X-a)"B, X-«a X-a)ym

oU B (a) #0 ef a n’est pas pdle de G.

Alors A, = [(X —a)F)(a) = Ala) et F- _Am admet a comme pdle d’ordre au plus m -1 ce qui
Bi(a) (X—a)™

permet de réitérer le processus.

T\

Méthode 2: Décomposer en éléments simples dans C[X]

Les deux propriétés précédentes permettent de trouver les coefficients de la décomposition.

Lorsqu’il reste peu de coefficients & calculer, on peut aussi essayer d’évaluer la fraction rationnelle en des points
bien choisis ou utiliser des méthodes d’analyse réelle (limite en co de x™F(x)...)

Penser & exploiter la parité avec I'unicité des coefficients!

Exemple
2X+1 2X+1 =]l 3 1

ES—F: = = + =+ + —.
X3-2X2+X (X-12X X-1 X-1)2 X

Exemple
X 1/4 1/4

E9- F= = =
(x2-1)> X-1? (X+1)?

f! Voir exercice du TD : 23, 24, 25, 26, 27
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Décomposition en éléments simples dans R(X)

Théoréme 10 : Décomposition en éléments simples dans R(X)

A B " _p .
Soit FER(X), F= E sous forme irréductible, avec la décomposition de B en facteur irréductibles dans
R:F= ’ - A et Qe R[X] la partie entiére de F.
[T&X-x0™ ] (X2+p:iX+q)"
k=1 i=1
Alors il existe d’uniques familles (A ;) 1<k<p - (i) 1<i<r € (Vi) 1<i<r de réels tels que

1< j<my 1<0<n; 1<0<n

élément simple élément simple

de 1e espece de 2¢ espece

m nj
p k Ak,j i L e X+vig
F= Q +) LT
~ =1 |j=1 X=x) izl =1 (X2 +piX +q;)
partie entiére
partie polaire associée & x;. partie polaire associée a X?+p; X+q;

Démonstration

Admis.

Méthode 3 : Décomposer en éléments simples dans R|[X]

Les méthodes vues dans C s’appliquent pour les pdles réels. Pour les u et v, on peut appliquer la méthode « du
cache » en a racine complexe de X? + pX +g.

On peut aussi décomposer dans C et rassembler les poles complexes non réels et leur conjugué. L' écriture F=F
et I'unicité des coefficients donne des relations entre ceux-ci (comme avec la parité).

Remarque

— 1 ko 1 X 2 *
R45 - Les z—m pour ae R et ne IN* ef les X" et XZipxiqn POUrpae R fels que p® <4q et ne IN* forment
une base de R~ (X).

Exemple
TB=1 1 X-1 . . o
E10- F=———=1-—+ ——— soit directement, en évaluant en i, soit en passant par C.
X3+X X X%+1
T 19/27 8/9 1/3 8/27
E1l— F=

= + + + de plusieurs fagons, dont divisions euclidiennes successives
X-13(X+2) X-1 (X-1?2 (X-13 X+2
5 8/27
du numérateur de F—- —— par X —1.
X+2
2x? 2

E12— F= = -
X2+D3 (x241)%  (x2+1)

3 en posant Y = X2 ou avec du +1.
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ﬂ Décomposition en éléments simples de P'/P

Propriété 27 : Décomposition en éléments simples de P’/ P

. 2 L . e . P’ .
Soit P e K[X] scindé, P=A[ [ (X —xx)™. Alors la décomposition en éléments simples de = est donnée
k=1
par

1]

_ i mi
S X
n
Variante : si P=A]] (X - yx) ot les yy sont les racines comptées avec multiplicité, alors
k=1

1
X-yr

o2

n
=2
k=1

Démonstration
|| suffit d’écrire P’ directement. [ |
Remarque

i . . P, N .
R46 — En considérant les ordres, on voit facilement que = Nn'a que des podles simples.

Exemple
1 n2nd
e ¥ oo =T
wel, 2—w 2"-1

fg Voir exercice du TD : 28
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