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Polynômes et fractions rationnelles

Extrait du programme officiel :

CONTENUS CAPACITÉS & COMMENTAIRES

Anneaux K[X ]

Dans ce paragraphe, K est un sous-corps de C.

Idéaux de K[X ].
Définition du PGCD de n ⩾ 2 polynômes en termes d’idéaux, re-
lation de Bézout.

Par convention, le PGCD est unitaire.

Irréductibles de K[X ]. Existence et unicité de la décomposition
en facteurs irréductibles unitaires.
Irréductibles de C[X ] et R[X ]. La démonstration du théorème de d’Alembert-Gauss est hors

programme.
L’étude des irréductibles de K[X ] pour un corps autre que R ou
C n’est pas un objectif du programme.
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K désigne un sous-corps de C.
En fait tout corps convient, mais pour certaines propriétés, on a besoin qu’il soit de caractéristique nulle, c’est-à-dire

tel que nK = n ·1K = 1K+·· ·+1K 6= 0K si n ∈N∗.

I L’ALGÈBRE DES POLYNÔMES

1 Polynômes formels à une indéterminée
Se donner un polynôme à cœfficents dans K, c’est se donner la suite (a0, a1, . . . , ad ,0,0, . . . ) ∈K(N) de ses cœfficients

ayant un nombre fini de termes non nuls (nulle à partir d’un certain rang). On parle alors de suite presque nulle.
On note alors, pour tout k ∈N, X k la suite presque nulle (0, . . . ,0 ,1,︸︷︷︸

ke

0,0, . . . ).
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Cela permet de transformer la notation (a0, a1, . . . , ad ,0,0, . . . ) en

P = a0 +a1 X +·· ·+ad X d +0+0+·· · =
+∞∑
k=0

ak X k

︸ ︷︷ ︸
somme finie

=
d∑

k=0
ak X k .

On note parfois P (X ) pour P .
■ X est appelée indéterminée. L’indéterminée n’est pas un nombre ! Elle n’a pas de valeur. Elle représente la suite

presque nulle (0,1,0,0, . . . ).
■ L’ensemble des polynômes à une indéterminée à cœfficients dans K est noté K[X ].
■ Par définition, P = ∑

ak X k = Q = ∑
bk X k ⇐⇒ ∀ k, ak = bk (égalité de deux suites). Les cœfficients d’un polynôme

formel sont uniques.
■ Le polynôme nul est le polynôme dont tous les cœfficients sont nuls, noté 0K[X ] ou plus simplement 0.
■ On appelle monôme tout polynôme de la forme aX k avec k ∈N et a 6= 0.
■ On appelle polynôme constant tout polynôme P = a où a ∈K.
■ Si P ∈K[X ] \ {0}, on appelle degré de P, noté degP , le plus grand k ∈N tel que ak 6= 0 (qui existe bien).

degP = max{k ∈N, ak 6= 0}

adegP est appelé cœfficient dominant de P , noté cdP .
Si cdP = 1, P est dit unitaire ou normalisé.
On pose deg0 =−∞.

■ On note Kn [X ] = {P ∈K[X ] | degP ⩽ n} l’ensemble des polynômes de degré au plus n.

Kn [X ] =
{

a0 +a1 X +·· ·+an X n , (a0, . . . , an ) ∈Kn+1
}
= Vect

(
1, X , . . . , X n)

.

2 Opérations sur les polynômes

Pour P =
+∞∑
k=0

ak X k , Q =
+∞∑
k=0

bk X k ∈K[X ] et λ ∈K, on définit les lois +, ×, ·, ◦ par

■ P +Q =
+∞∑
k=0

(ak +bk )X k

■ λP =
+∞∑
k=0

(λak )X k

■ P ×Q =
+∞∑
k=0

ak X k ×
+∞∑
ℓ=0

bℓX ℓ =
+∞∑

m=0
(m=k+ℓ)

cm X m

en faisant une sommation par diagonales, c’est-à-dire avec

cm = ∑
m=k+ℓ

ak bℓ =
m∑

k=0
ak bm−k =

m∑
ℓ=0

am−ℓbℓ.

■ P ◦Q = P (Q) =
+∞∑
k=0

akQk .

Propriété 1 : Opérations algébriques et degré

Si P,Q ∈K[X ] et λ ∈K, P +Q, P ×Q et λP sont des polynômes et

■ deg(P + Q) ⩽ max(degP,degQ) avec égalité si et seulement si degP 6= degQ ou (degP = degQ et
cdP +cdQ 6= 0)

■ deg(λP ) = degP et cd(λP ) =λcdP si λ 6= 0, sinon λP = 0.

■ deg(PQ) = degP +degQ et cd(PQ) = cdP cdQ.

■ Si Q non constant, alors
deg(P ◦Q) = degP degQ
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et
cd(P ◦Q)) = cdP × (cdQ)degP .

Remarque
R 1 – En général, on a deg(αP +βQ)⩽max(degP,degQ).

Propriété 2 : Structure d’algèbre commutative intègre

(K[X ],+,×, ·) est une K-algèbre commutative intègre d’élément unité le polynôme constant 1 et dont
le groupe des inversible est K0[X ] \ {0} (polynômes constants non nuls.)

Remarque
R 2 – L’isomorphisme d’algèbres trivial K→K0[X ] permet de confondre K et K0[X ], c’est-à-dire les constantes λ et

les polynômes constants P =λ.

3 Dérivation formelle

Définition 1 : Polynôme dérivé

Si P = a0 +a1X +·· ·+an X n ∈K[X ], on appelle polynôme dérivé de P , noté P ′, le polynôme défini par

P ′ =
n∑

k=1
kak X k−1 =

n−1∑
k=0

(k +1)ak+1X k

= a1 +2a2X +·· ·+nan X n−1.

et 0′ = 0.
Plus généralement, on note P (0) = P , P (1) = P ′, P (2) = P ′′ = (

P ′)′ et pour tout k ∈N∗, P (k) = (
P (k−1)

)′.
Remarque
R 3 – Il n’est pas question ici de dérivabilité : la dérivation est une simple opération algébrique sur les polynômes.

Propriété 3 : de la dérivation

Soient P,Q ∈K[X ], α,β ∈K.
(i) degP ′ = degP −1 si P non constant, −∞ sinon.

Plus généralement, degP (n) = degP −n si degP ⩾ n, −∞ sinon.
En général, degP (n) ⩽ degP −n.

(ii) Linéarité : (αP +βQ)′ =αP ′+βQ ′.
(iii) Formule de Leibniz

(PQ)′ = P ′Q +PQ ′ et plus généralement, (PQ)(n) =
n∑

k=0

(
n

k

)
P (k)Q(n−k).

(iv) (P ◦Q)′ =Q ′×P ′ ◦Q.

Remarque
R 4 – P (n) = 0 si n ⩾ degP +1 et si d = degP , P (d) = d !cdP .

R 5 – degP = min
{

n ∈N | P (n) = 0
}
−1 si P 6= 0.

POLYNÔMES ET FRACTIONS RATIONNELLES - PAGE 4 SUR 23

https://mpi.lecontedelisle.re


J. Larochette VERSION DU 11 JANVIER 2026

R 6 – Si n ∈N,

(
(X −a)k

)(n) =


0 si n ⩾ k +1

k ! si n = k

k(k −1) · · · (k −n +1)(X −a)k−n = k !

(k −n)!
(X −a)k−n sinon.

R 7 – Si P =
d∑

k=0
ak X k , alors pour tout n ∈N, P (n) =


0 si n ⩾ d +1

d !ad si n = d
d∑

k=n
k(k −1) · · · (k −n +1)ak X k−n sinon.

II FONCTIONS POLYNOMIALES, RACINES

1 Fonctions polynomiales

Définition 2 : Fonction polynôme associée

Si P = ∑
k⩾0

ak X k ∈K[X ], on note P̃ :
K −→ K

x 7−→ P̃ (x) = ∑
k⩾0

ak xk appelée fonction polynomiale associée à

P .

Remarque
R 8 – Mathématiquement, P et P̃ sont des objets fondamentalement différents. Cependant, sous certaines condi-

tions, on peut les identifier (cf plus loin). Ainsi, on fait souvent l’abus de notation P (x) pour P̃ (x).
R 9 – On peut en fait définir un polynôme pour autre chose qu’un élément de K : il suffit de pouvoir élever à

une puissance k et faire des combinaisons linéaires (matrices, fonctions, polynômes, etc.) : la structure de
K-algèbre est adaptée.

R 10 – Si P,Q ∈K[X ], P ◦Q = P̃ (Q) (on applique la fonction polynomiale à un polynôme au lieu d’un élément de K.)

Propriété 4 : Fonction polynôme et opérations

Si P,Q ∈K[X ] et λ ∈K
(i) �P +Q = P̃ +Q̃.
(ii) �P ×Q = P̃ ×Q̃.

(iii) λ̃P =λP̃ .
(iv) �P ◦Q = P̃ ◦Q̃.
(v) Sur R, P̃ est dérivable et P̃ ′ = P̃ ′.

Remarque
R 11 – L’application P 7→ P̃ est un morphisme deK-algèbres de K[X ] vers l’algèbre des fonctions de K dans K.
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2 Formule de Taylor

Théorème 1 : Formule de Taylor

Soient P ∈K[X ] et a ∈K.
P (X ) =

+∞∑
n=0

P̃ (n)(a)

n!
(X −a)n

la somme étant finie, c’est-à-dire
P (X +a) =

+∞∑
n=0

P̃ (n)(a)

n!
X n .

Corollaire 1 : Formule de Mac Laurin

P =
+∞∑
n=0

P̃ (n)(0)

n!
X n c’est-à-dire les cœfficients de P sont les an = P̃ (n)(0)

n!
.

3 Racines

Définition 3 : Racine
a ∈K est un zéro ou une racine de P ∈K[X ] lorsque P̃ (a) = 0.

Remarque
R 12 – Cela dépend du corps K.
R 13 – Un polynôme réel de degré impair a toujours une racine réelle (conséquence du théorème des valeurs inter-

médiaires.)

Propriété 5 : Racine et division

Soit P ∈K[X ].
(i) a est racine de P si et seulement si (X −a)|P .
(ii) x1, . . . , xn sont racines deux à deux distinctes de P si et seulement si (X −x1) · · · (X −xn)|P .

Remarque
R 14 – Si P |Q, toute racine de P est racine de Q. La réciproque est fausse en général.

Corollaire 2 : Nombre de racines
Soit P ∈K[X ].
(i) Si P 6= 0, P admet au plus degP racines.
(ii) Si P admet strictement plus de degP racines, P = 0.
(iii) Si P admet une infinité de racines, P = 0.
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Corollaire 3 : Identification polynôme et fonction polynôme

Si K est infini et P̃ = Q̃, alors P =Q. On peut alors confondre P et P̃ .

Démonstration

Si P̃ = Q̃ et K infini, alors P −Q a une infinité de racines, donc est nul. ■

Remarque

R 15 – Si K= {x1, . . . , xn } fini (par exemple Z/pZ avec p premier), P =
n∏

k=1
(X −xk ) 6= 0 (il est unitaire) et pourtant P̃ ≡ 0 (pas

plus de racines que le degré !).

Exercice 1

Si K=R ou C, P (X +a) = ∑
n⩾0

an

n!
P (n)(X ). En effet, il suffit d’écrire P̃ (x +a) = P̃ (a + x) = ∑

n⩾0

ãP (n)(x)

n!
an =

ã( ∑
n⩾0

an

n!
P (n)

)
(x)

(on applique Taylor au point x, évalué en a...) d’où l’égalité des polynômes sur le corps infini.

Définition 4 : Multiplicité

Soient P ∈K[X ] tel que P 6= 0, a ∈K.
On appelle ordre de multiplicité de a en tant que racine de P l’entier

m = max
{

k ∈N, (X −a)k
∣∣∣P}

Ainsi, a est racine d’ordre m si et seulement si (X −a)m
∣∣∣P et (X −a)m+1 6

∣∣∣P si et seulement si on a Q ∈K[X ] tel
que P = (X −a)mQ et Q(a) 6= 0.

■ Si m = 0, a n’est pas racine de P .
■ Si m ⩾ 1, a est racine de P .
■ Si m = 1, a est racine simple de P .
■ Si m = 2, a est racine double de P .
■ Si m = 3, a est racine triple de P .
■ Si m ⩾ 2, a est racine multiple de P .

Remarque

R 16 – Si (X −a)n
∣∣∣P alors a est racine de P d’ordre au moins n.

R 17 – L’ordre est toujours au plus égal au degré du polynôme.

Propriété 6

x1, . . . , xn deux à deux distincts sont racines d’ordre au moins m1, . . . ,mn respectivement si et seulement
si (X −x1)m1 · · · (X −xn)mn

∣∣∣P .
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Propriété 7 : Caractérisation de l’ordre

Soient P ∈K[X ], a ∈K, m ∈N.
a est racine d’ordre m de P si et seulement si ∀k ∈ J0,m −1K, P̃ (k)(a) = 0 et P̃ (m)(a) 6= 0.

Exercice 2 : CCINP 85
1. Soient n ∈N∗, P ∈Rn [X ] et a ∈R.

(a) Donner sans démonstration, en utilisant la formule de Taylor, la décomposition de P (X ) dans la base(
1, X −a, (X −a)2 , · · · , (X −a)n)

.
(b) Soit r ∈N∗. En déduire que :

a est une racine de P d’ordre de multiplicité r si et seulement si P (r )(a) 6= 0 et ∀k ∈ J0,r −1K , P (k)(a) = 0.
2. Déterminer deux réels a et b pour que 1 soit racine double du polynôme

P = X 5 +aX 2 +bX et factoriser alors ce polynôme dans R [X ].

Corollaire 4 : Multiplicité des racines de P vs P ′

Si a est racine d’ordre m ⩾ 2 de P , a racine d’ordre m−1 de P ′. La réciproque est fausse si on ne suppose
pas a racine de P .

Exemple
E 1 – P = X (X −2) et P ′ = 2X −2 : 1 est racine simple de P ′, mais n’est pas racine double de P .

Exercice 3
Montrer que (X −1)3

∣∣∣nX n+2 − (n +2)X n+1 + (n +2)X −n.

Voir exercice du TD : 10, 11, 15, 18

4 Polynômes scindés

Définition 5 : Polynôme scindé

P ∈K[X ] est dit scindé sur K s’il peut s’écrire comme produit de polynômes de degré 1 de K[X ], c’est-
à-dire si on a λ ∈K∗, n ∈N∗ et y1, . . . , yn ∈K tels que

P =λ(X − y1) · · · (X − yn),

c’est-à-dire si on a λ ∈K∗, p ∈N∗ et x1, . . . , xp ∈K deux à deux distincts et m1, . . . ,mp ∈N∗ tels que

P =λ(X −x1)m1 · · · (X −xp )mp .

Alors degP ⩾ 1, λ = cdP , x1, . . . , xp sont les racines de P deux à deux distinctes de multiplicités respectives
m1, . . . ,mp .

Remarque

R 18 – " Scindé sur C⇐=x scindé sur R.
P = X 2 −1 est scindé sur C mais pas sur R.
P = X 2 −2 est scindé sur R, C mais pas sur Q.
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Propriété 8 : Caractérisation avec les racines

Soit P un polynôme non constant admettant exactement p racines d’ordres respectifs m1, . . . ,mp dans
K. P est scindé si et seulement si

m1 +·· ·+mp = degP.

Théorème 2 : Théorème de d’Alembert-Gauß (Théorème fondamental de l’algèbre)

Tout polynôme non constant de C[X ] admet une racine.
On dit que le corps C est algébriquement clos.

Corollaire 5 : Version alternative équivalente

Tout polynôme à cœfficients complexes non constant est scindé.

Corollaire 6 : Divisibilité et racines
Si P est scindé, alors P |Q si et seulement si toutes les racines de P sont racines deQ avecdesmultiplicités

au moins égales à celles pour P .

Remarque
R 19 – C’est donc toujours vrai dans C.

Voir exercice du TD : 12, 13, 16, 17

5 Relations cœfficients-racines

Définition 6 : Fonctions symétriques élémentaires

Soient n ∈N∗, x1, . . . , xn ∈K.
On appelle fonctions symétriques élémentaires de x1, . . . , xn les nombres

σ1 =
n∑

i=1
xi = x1 +x2 +·· ·+xn . (n termes)

σ2 =
∑

1⩽i1<i2⩽n
xi1 xi2 (n(n−1)

2 termes)

= x1x2 +x1x3 +·· ·+ x1xn +·· ·+xn−1xn .

...

σk = ∑
1⩽i1<i2<···<ik⩽n

xi1 xi2 · · ·xik . (
(n

k

)
termes)

...

σn = x1x2 · · ·xn . (1 terme)

Exemple
E 2 – Si n = 3, les fonctions symétriques élémentaires en x, y, z sont σ1 = x + y + z, σ2 = x y + y z +xz et σ3 = x y z.
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Remarque
R 20 – On peut montrer que toute fonction polynomiale en x1, . . . , xn symétrique en x1, . . . , xn s’exprime comme un

polynôme en σ1, . . . ,σn .

Exemple
E 3 – S1 = x1 +·· ·+xn =σ1 et S2 = x2

1 +·· ·+x2
n =σ2

1 −2σ2.

Propriété 9 : Relations cœfficients-racines

Soient n ∈N∗, a0, · · · , an ∈K tel que an 6= 0, P = a0 +·· ·+an X n , scindé sur K, x1, . . . , xn ses racines comptées
avec leur multiplicité, donc P = an(X − x1) · · · (X − xn). En notant σk les fonctions symétriques élémentaires
en x1, . . . , xn ,

■ σ1 =−an−1

an
. (somme)

■
...

■ σk = (−1)k an−k

an
.

■
...

■ σn = (−1)n a0

an
. (produit)

Ainsi,
P = an

(
X n − σ1︸︷︷︸

somme

X n−1 +σ2X n−2 +·· ·+ (−1)n σn︸︷︷︸
produit

)
.

Remarque
R 21 – En particulier, si P est unitaire, P = X n −σ1 X n−1 +σ2 X n−2 +·· ·+ (−1)nσn .
R 22 – Si n = 2, on retrouve que les racines complexes de aX 2+bX +c ont une somme égale à −b/a et un produit égal

à c/a.

Voir exercice du TD : 14, 20

III INTERPOLATION DE LAGRANGE
■ Problématique : Étant donné n ∈ N, n + 1 scalaires x0, . . . , xn ∈ K deux à deux distincts, et y0, . . . , yn ∈ K fixés (par

exemple pour tout k, yk = f (xk ) où f est une fonction connue ou non).

On cherche des polynômes P ∈K[X ] tels que

∀k ∈ J0,nK, P (xk ) = yk .

C’est un problème d’interpolation.

■ Principe : C’est un problème linéaire.

L’application u :
Kn [X ] −→ Kn+1

P 7−→ (
P (xk )

)
k∈J0,nK est une application linéaire injective entre deux espaces de dimen-

sion n +1.
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En effet, son noyau est réduit aux polynômes de degré au plus n admettent les n +1 racines distinctes x0, . . . , xn ,
c’est-à-dire au polynôme nul.
Il s’agit donc d’un isomorphisme.
On peut aussi remarquer que sa matrice dans les bases canoniques est la matrice de Vandermonde associée à
x0, . . . , xn .
L’unique solution au problème est donc, par linéarité,

u−1 (
y0, . . . , yn

)= n∑
i=0

yi ·u−1
(
0, . . . , 1︸︷︷︸, . . . ,0

)
ie

.

On cherche donc le polynôme Li = u−1
(
0, . . . , 1︸︷︷︸, . . . ,0

)
ie

tel que Li (xi ) = 1 et Li (x j ) = 0 si j 6= i , c’est-à-dire Li (x j ) = δi , j .

Alors les x j pour j 6= i sont racines de Li . Donc Li =
∏
j 6=i

(X −x j )Q.

Comme degLi = 1, alors Q est constant : Q =λ et Li (xi ) = 1 = ∏
j 6=i

(xi −x j ).

Définition 7 : Polynômes de Lagrange

Si n ∈N∗ et x0, . . . , xn deux à deux distincts, on appelle ie polynôme de Lagrange associé à (x0, . . . , xn) le
polynôme

Li =

∏
j 6=i

(X −x j )

∏
j 6=i

(xi −x j )
.

Propriété 10 : Polynôme d’interpolation de Lagrange

Étant donné x0, . . . , xn ∈K deux à deux distincts et y0, . . . , yn ∈K, il existe un unique polynôme P de degré
au plus n tel que ∀ i , P (xi ) = yi .

Il s’agit de P =
n∑

i=0
yi ·Li .

Comme le problème est linéaire (en fait affine), on peut le résoudre sur K[X ] en passant par solution particulière et
solution du problème homogène associé.

Propriété 11

Les polynômes d’interpolation associés aux points ((x0, y0), . . . , (xn , yn)) sont les polynômes

P +
(

n∏
i=0

(X −xi )

)
Q où Q ∈K[X ] et P =

n∑
i=0

yi Li .

Démonstration

Ils conviennent et si A convient, x0, . . . , xn sont racines de A−P qui s’écrit donc
(

n∏
i=0

(X −xi )

)
Q. ■

Exercice 4 : CCINP 87
Soient a0, a1, · · · , an n +1 réels deux à deux distincts.

1. Montrer que si b0,b1, · · · ,bn sont n + 1 réels quelconques, alors il existe un unique polynôme P vérifiant
degP ⩽ n et ∀i ∈ {0, · · · ,n} P

(
ai

)= bi .

2. Soit k ∈ J0, . . . ,nK.
Expliciter ce polynôme P , que l’on notera Lk , lorsque ∀i ∈ J0, . . . ,nK bi =

 0 si i 6= k

1 si i = k
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3. Prouver que ∀p ∈ J0, . . . ,nK , n∑
k=0

a
p
k Lk = X p .

Exercice 5 : CCINP 90
K désigne le corps des réels ou celui des complexes.
Soient a1, a2, a3 trois scalaires distincts donnés de K.

1. Montrer que Φ : K2[X ] −→ K3

P 7−→ (
P (a1),P (a2),P (a3)

) est un isomorphisme d’espaces vectoriels.

2. On note (e1,e2,e3) la base canonique de K3 et on pose

∀k ∈ {1,2,3}, Lk =Φ−1(ek ).

(a) Justifier que (L1,L2,L3) est une base de K2[X ].
(b) Exprimer les polynômes L1,L2 et L3 en fonction de a1, a2 et a3.

3. Soit P ∈K2[X ]. Déterminer les coordonnées de P dans la base (L1,L2,L3).
4. Application : On se place dans R2 muni d’un repère orthonormé et on considère les trois points

A(0,1),B(1,3),C (2,1).
Déterminer une fonction polynomiale de degré 2 dont la courbe passe par les points A, B et C .

IV ARITHMÉTIQUE SUR K[X ] (MPI)
Dans cette partie, K désigne un sous-corps de C, comme, Q, R ou C.

1 L’anneau K[X ]

Propriété 12 : Description des polynômes associés

Si P,Q ∈K[X ], P et Q sont associés si et seulement s’il existe λ ∈K∗ tel que P =λQ.

Théorème 3 : Division euclidienne polynomiale

Soient A,B ∈ K[X ] avec B 6= 0. Alors il existe un unique couple (Q,R) ∈ K[X ] tel que A = BQ + R et
degR < degB .

Remarque : Algorithme
R 23 – C’est celui que l’on utilise en posant la division. On s’intéresse au terme de plus haut degré dans A que l’on

compense en multipliant B par un monôme, et on recommence en soustrayant.

Démonstration

■ Existence : Soit d = degB , B = b0 +·· ·+bd X d avec bd 6= 0. Si d = 0, le couple (A/b0,0) convient. Sinon, on raisonne
par récurrence forte sur n = deg A, A = a0 +·· ·+an X n .

⋆ Si n < d , (0, A) convient.
⋆ Si le résultat est vrai pour tout polynôme de degré au plus n − 1, alors on écrit A = an

bd
X n−d B + A1 avec

deg A1 ⩽ n −1.
Par hypothèse de récurrence, on a (Q1,R) ∈K[X ] tels que A = BQ1 +R et degR < degB .
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Alors
(
Q1 +

an

bd
X n−d ,R

)
convient.

■ Unicité : Si (Q1,R1) et (Q2,R2) conviennent, alors B (Q1 −Q2) = R2−R1. Vu les degrés, on en tire Q1 =Q2, puis R1 = R2.
■

Théorème 4 : K[X ] est principal

L’anneau K[X ] est principal.
En particulier, tout idéal de K[X ] s’écrit sous la forme PK[X ] avec P ∈K[X ]. Si l’idéal est non nul, on

peut choisir P de manière unique en le supposant unitaire.

Démonstration

C’est un anneau intègre. Montrons que ses idéaux sont tous principaux.
Soit I un idéal de K[X ].
■ Si I = {0} alors I = 0K[X ] = (0).
■ Sinon, l’ensemble E = {degP,P ∈ I ,P 6= 0} est une partie non vide de N donc admet un minimum. Soit P0 ∈ I

réalisant ce minimum. On montre que I = (P0).
⋆ On a déjà P0 ∈ I donc par définition d’un idéal, (P0) = P0K[X ] ⊂ I .
⋆ Si, réciproquement, P ∈ I , effectuons la division euclidienne par P0 : on a (Q,R) ∈K[X ]2 tel que P = P0Q+R

et degR < degP0.
Alors R = P −P0Q ∈ I et degR < minE donc R = 0 et P = P0Q ∈ (P0).

■

2 PGCD de deux polynômes

Définition 8 : PGCD
Soient A,B ∈K[X ] non tous les deux nuls.

I = AK[X ]+BK[X ] = {AU +BV , U ,V ∈K[X ]}

est un idéal non réduit à zéro de K[X ].
Son unique générateur unitaire est appelé pgcd de A et B , noté A∧B .

Remarque
R 24 – La définition s’étend au cas où A = B = 0 en posant A∧B = 0 car (0)+(0) = (0) même si alors, on ne peut plus dire

que A∧B est unitaire.

Propriété 13 : Relation de Bézout

Si A,B ∈K[X ], on peut trouver U ,V ∈K[X ] tels que AU +BV = A∧B .

Démonstration

A∧B ∈ A∧BK[X ] = AK[X ]+BK[X ]. ■

Méthode 1 : Trouver une relation de Bézout
■ On peut trouver une relation de Bézout en appliquant l’algorithme d’Euclide étendu, donc en remontant les

divisions euclidiennes de l’algorithme d’Euclide en élimant tous les restes successifs (sauf le dernier, bien sur,
qui est le PGCD), comme pour les entiers.
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■ Une méthode plus inattendue consiste à calculer la décomposition en éléments simples de A∧B

AB
et à multi-

plier par AB cette décomposition.
Par exemple, (X −1)∧ (X −2)2 = 1 et on calcule facilement la décomposition en éléments simples

1

(X −1)(X −2)2
= 1

X −1
− 1

X −2
+ 1

(X −2)2

de laquelle on déduit
1 = (X −2)2 − (X −1)(X −2)− (X −1) = (X −2)2 + (3−X )(X −1)

qui est une relation de Bézout entre X −1 et (X −2)2.

Propriété 14 : Caractérisation du PGCD

Soit (A,B) 6= (0,0).

D = A∧B ⇐⇒


D est unitaire
D|A et D|B
∀C ∈K[X ], (C |A et C |B) =⇒C |D

Il s’agit donc du plus grand diviseur unitaire au sens de la division.

Démonstration

(=⇒) Si D = A∧B alors D est unitaire et AK [X ]+BK[X ] = DK[X ] donc A,B ∈ DK[X ] soit D|A et D|B .
Et si C |A et C |B , alors, comme on a U ,V ∈K[X ] tels que AU +BV = A∧B , C |A∧B .

(⇐=) Si D est un diviseur commun unitaire plus grand que tous les autres au sens de la division, alors D divise
AU +BV = A∧B , et comme A∧B est un diviseur commun, il divise D.
D et A∧B étant associés et unitaires, ils sont égaux. ■

Remarque
R 25 – Les diviseurs de D sont alors exactement les diviseurs communs à A et à B .
R 26 – Les racines des pgcd sont exactement les racines communes de A et B , de multiplicité le minimum des

multiplicités.

Définition 9 : Polynômes premiers entre eux

A,B ∈K[X ] sont dits premiers entre eux lorsque A∧B = 1, c’est-à-dire lorsque les seuls diviseurs communs
sont les polynômes constants non nuls.

Remarque
R 27 – Lorsque c’est le cas, ils n’ont pas de racine commune dans K. La réciproque est fausse.

Théorème 5 : de Bézout
Soit A,B ∈K[X ].

A∧B = 1 ⇐⇒∃U ,V ∈K[X ], AU +BV = 1

Démonstration

(=⇒) Connu
(⇐=) S’il existe U ,V ∈K[X ] tel que AU +BV = 1, alors 1 ∈ (A∧B) donc (A∧B) =K[X ] = (1). ■
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Corollaire 7
Soient A,B ,C ∈K[X ].
(i) A∧BC = 1 ⇐⇒ A∧B = A∧C = 1

(ii) Si D = A∧B , on a A1,B1 ∈K[X ] tels que A = D A1, B = DB1 et A1 ∧B1 = 1.

Remarque
R 28 – (i) s’étend à un produit quelconque (fini) de polynômes.

Démonstration

Comme dans Z en multipliant des relations de Bézout pour la première, en en divisant une par le PGCD s’il est
non nul pour la deuxième. ■

Théorème 6 : Lemme de Gauß
Soient A,B ,C ∈K[X ].
Si A|BC et A∧B = 1, alors A|C .

Démonstration

On a U ,V ∈K[X ] tels que AU +BV = 1 et A|BC donc C = ACU +BCV est divisible par A. ■

Propriété 15 : Cas des polynômes scindés

Si A ou B est scindé, A∧B = 1 ⇐⇒ A et B n’ont pas de racine commune.

Remarque
R 29 – C’est toujours vrai si K=C.

Voir exercice du TD : 21, 22

Démonstration

■ (=⇒) : Pas de facteur (X −a) commun.
■ (⇐=) : Si A et B n’ont pas de racine commune, un diviseur de A et de B , nécessairement constant ou scindé

n’a pas de racine, donc est constant. ■

3 PGCD d’une famille finie de polynômes
Soit n ∈N\ {0,1}.

Définition 10 : pgcd de n polynômes

Soient (A1, . . . , An) ∈ (K[X ])n \ {(0, . . . ,0)}. On note D = A1 ∧ A2 ∧·· ·∧ An =
n∧

k=1
Ak l’unique polynôme unitaire tel

que A1K[X ]+·· ·+ AnK[X ] = DK[X ].
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Remarque
R 30 – Comme pour deux polynômes, il s’agit du plus grand diviseur commun unitaire au sens de la division (et aussi

du degré).
R 31 – La définition s’étend à 0∧·· ·∧0 = 0.

Propriété 16

(i) Associativité : A∧B ∧C = (A∧B)∧C = A∧ (B ∧C ).

(ii) Les diviseurs communs à A1, . . . , An sont exactement les diviseurs de
n∧

k=1
Ak .

(iii) Relation de Bézout : On a U1, . . . ,Un ∈K[X ] tels que A1U1 +·· · AnUn =
n∧

k=1
Ak .

Définition 11 : Polynômes premiers entre eux dans leur ensemble

A1, . . . , An sont dits premiers entre eux dans leur ensemble lorsque
n∧

k=1
Ak = 1, c’est-à-dire que le seul

diviseur unitaire commun à tous les Ak est 1.
A1, . . . , An sont dits premiers entre eux deux à deux lorsque ∀ i 6= j , Ai ∧ A j = 1.

Propriété 17

Premiers entre eux deux à deux =⇒ premiers entre eux dans leur ensemble, mais la réciproque est
fausse pour plus de deux polynômes.

Théorème 7 : de Bézout
A1, . . . , An sont premiers entre eux dans leur ensemble si et seulement si on a U1, . . . ,Un tels que

A1U1 +·· ·+ AnUn = 1.

Propriété 18 : Diviseurs deux à deux premiers entre eux

Si A1, . . . , An sont premiers entre eux deux à deux et divisent B , alors A1 · · · An |B .

Remarque : Application
R 32 – Si x1, . . . , xn sont racines de P d’ordre au moins m1, . . . ,mn alors (X − x1)m1 · · · (X − xn )mn

∣∣P car les (X − xi )mi sont
premiers entre eux deux à deux (scindés sans racine commune).

4 Polynômes irréductibles

Définition 12 : Polynôme irréductible

On appelle polynôme irréductible tout polynôme P ∈K[X ] non constant dont les seuls diviseurs sont
les λ et λP pour λ ∈K∗, c’est-à-dire tels que P =UV =⇒U ou V inversible.

Les autres polynômes sont dits réductibles.
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Remarque
R 33 – Si P est irréductible dans K et degP ⩾ 2, P n’a pas de racine dans K. La réciproque est fausse.
R 34 – P est réductible dans K[X ] ss’il admet un diviseur Q tel que 0 < degQ < degP .

Propriété 19 : des polynômes irréductibles

Soit P un polynôme irréductible, et A, A1, . . . , An ∈K[X ].
(i) Soit P |A, soit P ∧ A = 1.
(ii) P |A1 · · · An ⇐⇒∃i tel que P |Ai .

Démonstration

(i) P ∧ A divise P qui est irréductible (et A), donc vaut soit 1, soit P (à normalisation près).
(ii) Le sens ⇐= ne pose pas de problème.

Pour l’autre sens, par contraposée, si P ne divise aucun des Ai , il est premier avec chacun (par (i)), donc il
est premier avec le produit, donc il ne le divise pas. ■

Théorème 8 : Décomposition en produit d’irréductibles

Tout A ∈K[X ] \ {0} s’écrit de manière unique à l’ordre des facteurs près sous la forme

A =λPα1
1 · · ·Pαk

k

où k ∈N, λ ∈K∗, P1, . . . ,Pk irréductibles deux à deux distincts unitaires, α1, . . . ,αk ∈N∗.
Alors λ= cd A, P1, . . . ,Pk sont les diviseurs irréductibles unitaires de A.

Démonstration

Unicité Si A se décompose ainsi sous cette forme λPα1
1 · · ·Pαk

k , avec P1, . . . ,Pk irréductibles deux à deux distincts
unitaires, alors

■ λ est le cœfficient dominant de A.
■ Si P est un diviseur unitaire irréductible de A, alors P |Pα1

1 · · ·Pαk
k donc P divise l’un des Pi par irréductibilité,

et alors, nécessairement, P = Pi .
Réciproquement, chaque Pi divise A.
Ainsi, P1, . . . ,Pk sont exactement les diviseurs irréductibles unitaires de A, k en est leur nombre.

■ Enfin, Pα1
1 |A et Pα1+1

1 6 |A, sinon on aurait P1|Pα2
2 · · ·Pαk

k .
En raisonnant de même pour chaque diviseur irréductible unitaire, on obtient pour 1 ⩽ i ⩽ k,
αi = max

{
m, P m

i |A
}
.

Tout cela nous donne l’unicité de la décomposition (à l’ordre des facteurs près) sous réserve de son existence.
Existence Par récurrence sur n = deg A.

■ Si n = 0, il n’y a rien à faire.
■ Si, pour un n ⩾ 1, c’est vrai jusqu’au degré n−1, soit A est irréductible et il n’y a rien à faire d’autre que de

factoriser le cœfficient dominant, soit ce n’est pas le cas, et on écrit A =UV avec degU < n et degV < n,
on applique deux fois l’hypothèse de récurrence et celle-ci s’établit. ■

Remarque
R 35 – On dit que l’anneau K[X ] est factoriel.
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Propriété 20 : Expression du PGCD en produit d’irréductibles

Si A = λPα1
1 · · ·Pαk

k et B = µPβ1
1 · · ·Pβk

k décompositions en irréductibles (avec exposants éventuellement
nuls), alors

A∧B = P min(α1,β1)
1 · · ·P min(αk ,βk )

k .

Voir exercice du TD : 19

5 Irréductibles sur C[X ]

Propriété 21 : Irréductibles de C[X ]

Les irréductibles de C[X ] sont les polynômes de degré 1.

Démonstration

Si P est irréductible et degP ⩾ 2, il est non constant et ne peut pas avoir de racine car C est algébriquement clos
(théorème de d’Alembrert-Gauß).

Réciproquement les polynômes de degré 1 sont bien irréductibles. ■

6 Irréductibles sur R[X ]

Propriété 22 : Racine complexe de polynôme réel

Soit P ∈R[X ]. alors si α ∈C est racine de P , α l’est aussi, de même ordre.

Démonstration

Pour tout k ∈N, P (k) (α)= P (k)(α) car les cœfficients sont réels.
Il suffit alors d’application la caractérisation de l’ordre des racines avec les dérivées. ■

Propriété 23 : Irréductibles de R[X ]

Les polynômes irréductibles de R[X ] sont les polynômes de degré 1 et les polynômes de degré 2 sans
racine réelle (à discriminant strictement négatif).

Démonstration

Si P est de degré 1, il est irréductible.
Si P est de degré 2 sans racine réelle et si P =UV , alors ni U ni V ne peut être de degré 1 sinon P aurait une racine

réelle. Donc P est irréductible.
Réciproquement, si P est irréductible et degP ⩾ 2, P a une racine complexe par théorème de d’Alembert-

Gauß, qui ne peut être réelle sinon P sera réductible. Mais alors α est également racine, distincte de
α, donc (X −α)

(
X −α

) = X 2 − 2(Reα)X + |α|2 divise P dans R[X ] et comme P est irréductible dans R[X ] ,
P =λ

(
X 2 −2(Reα)X +|α|2) ∈R[X ]. ■
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Remarque
R 36 – La décomposition en irréductibles dans C redonne le fait que tout polynôme à cœfficient complexe est

constant ou scindé. Elle est de la forme

P =λ(X −x1)m1 · · · (X −xn )mn .

R 37 – Les décompositions en irréductibles dans R[X ] sont donc de la forme

P =λ(X −x1)m1 · · · (X −xn )mn
(

X 2 +a1 X +b1

)ℓ1 · · ·
(

X 2 +ak X +bk

)ℓk

avec pour tout i , ∆k = a2
k −4bk < 0.

R 38 – Pour décomposer en irréductibles dansR[X ], on peut décomposer dansC[X ] puis rassembler les X −α et X −α

si α ∈C\R.

Exemple
E 4 – Décomposition en irréductibles de X n −1.
E 5 – Décomposition en irréductibles de X 4 +1.

7 PPCM (Complément)

Définition 13 : PPCM
Le PPCMdedeux polynômes A,B non nuls est l’unique générateur unitaire A∨B de l’idéal AK[X ]∩BK[X ]

des multiples communs à A et à B .
On a donc AK[X ]∩BK[X ] = (A∨B)K[X ].
On peut poser 0∨0 = 0.

Propriété 24 : du PPCM

(i) Il s’agit du plus petit multiple unitaire commun à A et à B au sens de la division.
(ii) Si A = λPα1

1 · · ·Pαk
k et B = µPβ1

1 · · ·Pβk
k décompositions en irréductibles (avec exposant éventuellement

nuls), alors A∨B = P max(α1,β1)
1 · · ·P max(αk ,βk )

k .

(iii) On a toujours que AB et (A∧B)(A∨B) sont associés (donc égaux à normalisation près).

V DÉCOMPOSITION EN ÉLÉMENTS SIMPLES

1 Partie entière

Définition – Propriété 1 : Partie entière

Soit F ∈K(X ).
On note K−(X ) = {F ∈K(X ) | degF < 0}.
Il existe un unique couple (Q,G) ∈K[X ]×K−(X ) tel que F =Q +G. Q est appelé partie entière de F .

Démonstration

L’existence provient de la division euclidienne.
Si (Q,G) et (Q1,G1) conviennent, Q1 −Q =G −G1 ∈K[X ]∩K−(X ) = {0} donc Q1 =Q puis G1 =G. ■

POLYNÔMES ET FRACTIONS RATIONNELLES - PAGE 19 SUR 23



LYCÉE LECONTE DE LISLE – LA RÉUNION https://mpi.lecontedelisle.re Π

Remarque
R 39 – La partie entière est le quotient de la division euclidienne du numérateur par la dénominateur.
R 40 – C’est l’analogue de la partie entière sur Q.
R 41 – Si degF < 0, alors sa partie entière est nulle.
R 42 – Si F ∈K[X ], sa partie entière est F elle-même.
R 43 – K[X ] et K−(X ) sont supplémentaires dans K(X ).

2 Décomposition en éléments simples dans C(X )

Théorème 9 : Décomposition en éléments simples dans C(X )

Soit F ∈C(X ), F = A

B
sous forme irréductible, α1, . . . ,αn pôles de F d’ordre m1, . . . ,mn :

F = A
n∏

k=1
(X −αk )mk

et Q ∈C[X ] la partie entière de F .
Alors il existe une unique famille

(
λk, j

)
1⩽k⩽n

1⩽ j⩽mk

de complexes telle que

F = Q︸︷︷︸
partie entière

+ λ1,1

X −α1
+·· ·+ λ1,m1

(X −α1)m1︸ ︷︷ ︸
partie polaire associée à α1

+·· ·+ λn,1

X −αn
+·· ·+ λn,mn

(X −αn)mn︸ ︷︷ ︸
partie polaire associée à αn

Démonstration

Admis. ■

Remarque

R 44 – Les
(

1

(X −a)n

)
(a,n)∈C×N∗

est une base de C−(X ).

Propriété 25 : Partie polaire relative à un pôle simple

Si α pôle simple de F = A

B
sous forme irréductible, λ

X −α
avec λ ∈C la partie polaire associée à α. Alors

F = A

(X −α)B1
avec B1(α) 6= 0 et

λ= ã[(X −α)F ](α) = A(α)

B1(α)
= A(α)

B ′(α)
.

Démonstration

■ F = λ
X−α +G avec G n’admettant pas α comme pôle. Alors (X −α)F =λ+ (X −α)G puis on évalue en α.

■ B = (X −α)B1 donc B ′ = B1 + (X −α)B ′
1 donc B1(α) = B ′(α).

■

Exemple : Le « cache »

E 6 – F = 1

(X −1)(X +2)
= −1/3

X −1
+ −1

X +2
.
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Exemple : Très classique

E 7 – F = 1

X n −1
=

n−1∑
k=0

λk

X −ωk
avec ωk = e

2ikπ
n et λk = 1

nωn−1
k

= ωk

n
.

Ainsi, F = 1

X n −1
=

n−1∑
k=0

ωk/n

X −ωk

Propriété 26 : Partie polaire relative à un pôle d’ordre ⩾ 2

Si α pôle d’ordre m ⩾ 2 de F = A

B
sous forme irréductible,

F = A

B
= A

(X −α)mB1
= λ1

X −α
+·· ·+ λm

(X −α)m +G

où B1(α) 6= 0 et α n’est pas pôle de G.
Alors λm = ã[(X −α)mF ](α) = A(α)

B1(α)
et F − λm

(X −α)m admet α comme pôle d’ordre au plus m − 1 ce qui
permet de réitérer le processus.

Méthode 2 : Décomposer en éléments simples dans C[X ]

Les deux propriétés précédentes permettent de trouver les cœfficients de la décomposition.
Lorsqu’il reste peu de cœfficients à calculer, on peut aussi essayer d’évaluer la fraction rationnelle en des points

bien choisis ou utiliser des méthodes d’analyse réelle (limite en ∞ de xm F (x)...)
Penser à exploiter la parité avec l’unicité des cœfficients !

Exemple

E 8 – F = 2X +1

X 3 −2X 2 +X
= 2X +1

(X −1)2 X
= 0+ −1

X −1
+ 3

(X −1)2
+ 1

X
.

Exemple

E 9 – F = X(
X 2 −1

)2
= 1/4

(X −1)2
− 1/4

(X +1)2

Voir exercice du TD : 23, 24, 25, 26, 27
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3 Décomposition en éléments simples dans R(X )

Théorème 10 : Décomposition en éléments simples dans R(X )

Soit F ∈R(X ), F = A

B
sous forme irréductible, avec la décomposition de B en facteur irréductibles dans

R : F = A
p∏

k=1
(X −xk )mk

r∏
i=1

(
X 2 +pi X +qi

)ni

et Q ∈R[X ] la partie entière de F .

Alors il existe d’uniques familles
(
λk, j

)
1⩽k⩽p

1⩽ j⩽mk

,
(
µi ,ℓ

)
1⩽i⩽r

1⩽ℓ⩽ni

et
(
νi ,ℓ

)
1⩽i⩽r

1⩽ℓ⩽ni

de réels tels que

F = Q︸︷︷︸
partie entière

+
p∑

k=1


mk∑
j=1

élément simple
de 1e espèce︷ ︸︸ ︷

λk, j

(X −xk ) j


︸ ︷︷ ︸

partie polaire associée à xk

+
r∑

i=1


ni∑
ℓ=1

élément simple
de 2e espèce︷ ︸︸ ︷
µi ,ℓX +νi ,ℓ(

X 2 +pi X +qi
)ℓ


︸ ︷︷ ︸

partie polaire associée à X 2+pi X+qi

.

Démonstration

Admis. ■

Méthode 3 : Décomposer en éléments simples dans R[X ]

Les méthodes vues dans C s’appliquent pour les pôles réels. Pour les µ et ν, on peut appliquer la méthode « du
cache » en α racine complexe de X 2 +p X +q.

On peut aussi décomposer dans C et rassembler les pôles complexes non réels et leur conjugué. L’écriture F = F
et l’unicité des cœfficients donne des relations entre ceux-ci (comme avec la parité).

Remarque
R 45 – Les 1

(X−a)n pour a ∈R et n ∈N∗ et les 1
(X 2+p X+q)n et X

(X 2+p X+q)n pour p, q ∈R tels que p2 < 4q et n ∈N∗ forment
une base de R−(X ).

Exemple

E 10 – F = X 3 −1

X 3 +X
= 1− 1

X
+ X −1

X 2 +1
soit directement, en évaluant en i, soit en passant par C.

E 11 – F = X 3

(X −1)3(X +2)
= 19/27

X −1
+ 8/9

(X −1)2
+ 1/3

(X −1)3
+ 8/27

X +2
de plusieurs façons, dont divisions euclidiennes successives

du numérateur de F − 8/27

X +2
par X −1.

E 12 – F = 2X 2

(X 2 +1)3
= 2(

X 2 +1
)2

− 2(
X 2 +1

)3
en posant Y = X 2 ou avec du ±1.
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4 Décomposition en éléments simples de P ′/P

Propriété 27 : Décomposition en éléments simples de P ′/P

Soit P ∈K[X ] scindé, P =λ
p∏

k=1
(X −xk )mk . Alors la décomposition en éléments simples de P ′

P
est donnée

par
P ′

P
=

p∑
k=1

mk

X −xk
.

Variante : si P =λ
n∏

k=1
(X − yk ) où les yk sont les racines comptées avec multiplicité, alors

P ′

P
=

n∑
k=1

1

X − yk
.

Démonstration

Il suffit d’écrire P ′ directement. ■

Remarque

R 46 – En considérant les ordres, on voit facilement que P ′
P

n’a que des pôles simples.

Exemple

E 13 –
∑

ω∈Un

1

2−ω
=n2n−1

2n −1
.

Voir exercice du TD : 28
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