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CCINP 2023 MP-MPI
Mathématiques 1 et 2

Durée : 4 heures

N.B. : Le candidat attachera la plus grande importance a la clarté, d la précision et a la concision de la rédaction. Si un
candidat est amené a repérer ce qui peut lui sembler étre une erreur d’énoncé, il le signalera sur sa copie et devra poursuivre
sa composition en expliquant les raisons des initiatives qu’il a été amené a prendre.

Les calculatrices sont interdites
Ce sujet est composé de deux problemes indépendants.

Probléeme 1 : Analyse

Dans tout le probléme, « est un réel appartenant a I'intervalle |0, 1[. On pose

L pa—l oo La—1
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(@) /0 i1 e (@) /1 11z &

Partie I — Calcul d’une intégrale a I’aide d’une série

a—1
1. Démontrer que x —
142z

est intégrable sur |0, 1] et sur [1, 4+o0].
2. Démontrer que J(a) = I(1 — ).
On se propose maintenant d’écrire I(«) sous forme d’une somme de série.

3. 1r© tentative
-1

Pour tout x € ]0,1[, on pose f,(z) = (—=1)"z" =L, Montrer que Vz € |0, 1],

—an o).

La série de fonctions Y f,, converge-t-elle uniformément sur |0, 1[?

4. 2° tentative
n

Pour tout x €]0, 1], on pose Sy, ( Z Yo gh+a=l
k=0
A 1
A Taide du théoréme de convergence dominée, montrer que I(a) = lim Sy (x)dz

n—+oo Jq
En déduire une expression de I(«) sous forme d’une somme de série.

a—1

+o0 T 1 too )”
5. En dédu I J(a) = dr = —+2 e
n déduire que I(a) + J(a) /0 T=_F 0‘; 22

1+

On admet la formule suivante

n2
Vz €R, cos(az)= sin(ma) < + Z acos:g:r)) :

n=1

/+OO moz—l T
dr = —
o 14z sin(am)

6. Démontrer que




10.

11.

12.
13.

14.

15.

16.

Partie IT — Lien avec la fonction Gamma

Dans toute la suite, on pose
—+oo
Vz €]0,4+00[, I'(z) :/ t* et at
0

et

+00toz—1 .
Vo e [0,4o0], falz)= ——e "t dt
reltl, fole)= [ e

Démontrer que I" est bien définie sur ]0, +oo].
Démontrer que f, est bien définie et continue sur [0, 4+o0].
Démontrer que f, est de classe C! sur ]0, +oo] et calculer sa dérivée.
Déterminer lim f,(x).
T—r00
—t
e
Démontrer que ¢ — e est intégrable sur ]0, +oo[. En déduire
+oo —t
e
lim —dt
ta

Tr——+00 .

Partie III — Vers la formule des compléments
I'(a)

Pour tout x €]0, +00|, démontrer que f,(z) — fi () =
xa

Pour tout x €0, +00[, on pose

I'(a)

Vérifier que g, est une solution particuliére de I’équation différentielle y — 3’ = —.
x

En déduire que Vz €]0,+00[, fo(z) = ga(z).

En déduire que
+o0 ta—l +o0 et
/ dt = T(a) / CEEY
o t+1 0 o

Démontrer I'identité suivante (formule des compléments)

T(a)(1-a)= ——

sin(am)

400
—¢2
/ e " dt
0

En déduire la valeur de I'intégrale de Gauss

Probléeme 2 : Algebre

Dans ce probléme, E est un C-espace vectoriel de dimension finie.

Partie I

1.

Un exemple
3 2

9 3 > est diagonalisable.

Vérifier que la matrice A = (

1 — 1
Démontrer que les matrices I1; = 3 ( _11 11 ) et Il = 3 ( 1 1 ) sont des matrices de projecteurs puis calculer
H1 + 5H2, H1 + H2 et H1H2.

On rappelle le lemme de décomposition des noyaux :
si Py, Py, ..., P sont des éléments de C[X] deux & deux premiers entre eux de produit égal a T, si u est un endomor-
phisme de E, alors :
Ker[T(u)] = Ker(Py(u)) @ Ker(Py(u)) @ - - - @ Ker(Pr(u)).
L’objet de cette question est de démontrer le cas particulier r = 2.
Soit w un endomorphisme de E et soient P et ) deux polynomes premiers entre eux.
Justifier que Ker(P(u)) C Ker[(PQ)(u)] (de méme, on a Ker(Q(u)) C Ker[(PQ)(u)]).
Démontrer que Ker[(PQ)(u)] = Ker(P(u)) & Ker(Q(u)).

2



Dans la suite du probleme, on pourra utiliser librement le lemme de décomposition des noyaux.

3. Soit u un endomorphisme de E et soit m, son polynéme minimal.
On suppose que 7, = PlklPQk"‘ ol les polynémes P; et P, sont premiers entre eux. On pose, pour tout entier ¢ € {1, 2},
7r’U.
Qi = —--
i Pik’
Justifier qu’il existe deux polynoémes Ry et Ro de C[X] tels que R1Q1 + RoQ2 = 1.

Pour la suite de cette partie, on notera m, = PI* Py2 ... Pkm 1a décomposition en facteurs premiers du polynéme minimal et

T
on admettra que, si pour tout entier ¢ € {1,2,...,m}, Q; = P—z, il existe des polynémes de C[X] tels que

RiQ1+ RoQ2+ ...+ Rp@Qp, = 1.

4. On pose alors, pour tout entier ¢ € {1,2,...,m}, p; = R;(u) o Q;(u).

Démontrer que, pour tout couple (i, j) d’entiers distincts de {1,2,...,m}, on a les trois résultats suivants :
m
piop; =0, Zpi =1idg, et chaque p; est un projecteur de F.
i=1

Les p; seront appelés projecteurs associés a u.

5. Soit w un endomorphisme de E et soit x, son polyndéme caractéristique :

m
i=1
(avec les \; deux & deux distincts et les «; des entiers naturels non nuls) et, pour tout entier ¢ € {1,2,...,m},

N; = Ker(u — A\jidg)® le sous-espace caractéristique associé a \;.
Justifier que E = N1 ® No @ ... D Ny,

6. Démontrer que £ =Im p; @ Im ps & --- & Im p,,.
7. Démontrer que, pour tout entier i € {1,2,...,m}, N; = Im p;.

Partie 11

Dans toute cette partie, on suppose que I’endomorphisme v est diagonalisable et on note Aj, Ao, ..., \;, ses valeurs propres
distinctes.

1. Quel est alors le polynéme minimal w,, de u?

0 1
2. On note toujours, pour tout entier i € {1,2,...,m}, Q; = — ot P, = X — \;, et on pose 0; = ——.
Donner sans détails, la décomposition en éléments simples de —, puis démontrer que les projecteurs associés a u sont,
Ty
. Qi(u)
pour tout entier ¢ € {1,2,...,m}, p; = .
{ )P Qi(N\)
m m
Qi (X
3. Démontrer que X = Z L() puis que u = Z Aip; (décomposition spectrale de ).
o @) i=1
1 1 1 1
. . 1 1 -1 -1
4. Exemple : on consideére la matrice A = 1 -1 1 -1
1 -1 -1 1

(a) Justifier que la matrice A est diagonalisable et calculer la matrice A2.

(b) En déduire le polyndme minimal 74 de la matrice A puis la décomposition spectrale de la matrice A. On notera
II; et Il les matrices des projecteurs associés.

(c) Calculer, pour tout entier naturel ¢, A? en fonction des matrices IT; et ITs.

FIN



