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Mathématiques 1 et 2

Durée : 4 heures

N.B. : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un
candidat est amené à repérer ce qui peut lui sembler être une erreur d’énoncé, il le signalera sur sa copie et devra poursuivre
sa composition en expliquant les raisons des initiatives qu’il a été amené à prendre.

Les calculatrices sont interdites

Ce sujet est composé de deux problèmes indépendants.

Problème 1 : Analyse
Dans tout le problème, α est un réel appartenant à l’intervalle ]0, 1[. On pose

I(α) =

∫ 1

0

xα−1

1 + x
dx et J(α) =

∫ +∞

1

xα−1

1 + x
dx

Partie I – Calcul d’une intégrale à l’aide d’une série

1. Démontrer que x 7→ xα−1

1 + x
est intégrable sur ]0, 1] et sur [1,+∞[.

2. Démontrer que J(α) = I(1− α).

On se propose maintenant d’écrire I(α) sous forme d’une somme de série.
3. 1re tentative

Pour tout x ∈ ]0, 1[, on pose fn(x) = (−1)nxn+α−1. Montrer que ∀x ∈ ]0, 1[ ,
xα−1

1 + x
=

+∞∑
n=0

fn(x).

La série de fonctions
∑

fn converge-t-elle uniformément sur ]0, 1[ ?
4. 2e tentative

Pour tout x ∈]0, 1[, on pose Sn(x) =

n∑
k=0

(−1)kxk+α−1

À l’aide du théorème de convergence dominée, montrer que I(α) = lim
n→+∞

∫ 1

0

Sn(x)dx

En déduire une expression de I(α) sous forme d’une somme de série.

5. En déduire que I(α) + J(α) =

∫ +∞

0

xα−1

1 + x
dx =

1

α
+ 2α

+∞∑
n=1

(−1)n

α2 − n2
.

On admet la formule suivante

∀x ∈ R, cos(αx) =
sin(πα)

π

(
1

α
+

+∞∑
n=1

(−1)n
2α cos(nx)

α2 − n2

)
.

6. Démontrer que ∫ +∞

0

xα−1

1 + x
dx =

π

sin(απ)
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Partie II – Lien avec la fonction Gamma
Dans toute la suite, on pose

∀x ∈ ]0,+∞[ , Γ(x) =

∫ +∞

0

tx−1e−t dt

et
∀x ∈ [0,+∞[ , fα(x) =

∫ +∞

0

tα−1

t+ 1
e−xt dt

7. Démontrer que Γ est bien définie sur ]0,+∞[.
8. Démontrer que fα est bien définie et continue sur [0,+∞[.
9. Démontrer que fα est de classe C1 sur ]0,+∞[ et calculer sa dérivée.

10. Déterminer lim
x→∞

fα(x).

11. Démontrer que t 7→ e−t

tα
est intégrable sur ]0,+∞[. En déduire

lim
x→+∞

∫ +∞

x

e−t

tα
dt

Partie III – Vers la formule des compléments

12. Pour tout x ∈]0,+∞[, démontrer que fα(x)− f ′
α(x) =

Γ(α)

xα

13. Pour tout x ∈]0,+∞[, on pose

gα(x) = Γ(α)ex
∫ +∞

x

e−t

tα
dt

Vérifier que gα est une solution particulière de l’équation différentielle y − y′ =
Γ(α)

xα
.

En déduire que ∀x ∈]0,+∞[, fα(x) = gα(x).

14. En déduire que ∫ +∞

0

tα−1

t+ 1
dt = Γ(α)

∫ +∞

0

e−t

tα
dt

15. Démontrer l’identité suivante (formule des compléments)

Γ(α)Γ(1− α) =
π

sin(απ)

16. En déduire la valeur de l’intégrale de Gauss ∫ +∞

0

e−t2 dt

Problème 2 : Algèbre
Dans ce problème, E est un C-espace vectoriel de dimension finie.

Partie I
1. Un exemple

Vérifier que la matrice A =

(
3 2
2 3

)
est diagonalisable.

Démontrer que les matrices Π1 =
1

2

(
1 −1
−1 1

)
et Π2 =

1

2

(
1 1
1 1

)
sont des matrices de projecteurs puis calculer

Π1 + 5Π2, Π1 +Π2 et Π1Π2.
2. On rappelle le lemme de décomposition des noyaux :

si P1, P2, . . . , Pr sont des éléments de C[X] deux à deux premiers entre eux de produit égal à T , si u est un endomor-
phisme de E, alors :

Ker[T (u)] = Ker(P1(u))⊕Ker(P2(u))⊕ · · · ⊕Ker(Pr(u)).

L’objet de cette question est de démontrer le cas particulier r = 2.
Soit u un endomorphisme de E et soient P et Q deux polynômes premiers entre eux.
Justifier que Ker(P (u)) ⊂ Ker[(PQ)(u)] (de même, on a Ker(Q(u)) ⊂ Ker[(PQ)(u)]).
Démontrer que Ker[(PQ)(u)] = Ker(P (u))⊕Ker(Q(u)).
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Dans la suite du problème, on pourra utiliser librement le lemme de décomposition des noyaux.
3. Soit u un endomorphisme de E et soit πu son polynôme minimal.

On suppose que πu = P k1
1 P k2

2 où les polynômes P1 et P2 sont premiers entre eux. On pose, pour tout entier i ∈ {1, 2},
Qi =

πu

P ki
i

.

Justifier qu’il existe deux polynômes R1 et R2 de C[X] tels que R1Q1 +R2Q2 = 1.

Pour la suite de cette partie, on notera πu = P k1
1 P k2

2 . . . P km
m la décomposition en facteurs premiers du polynôme minimal et

on admettra que, si pour tout entier i ∈ {1, 2, . . . ,m}, Qi =
πu

P ki
i

, il existe des polynômes de C[X] tels que

R1Q1 +R2Q2 + . . .+RmQm = 1.

4. On pose alors, pour tout entier i ∈ {1, 2, . . . ,m}, pi = Ri(u) ◦Qi(u).
Démontrer que, pour tout couple (i, j) d’entiers distincts de {1, 2, . . . ,m}, on a les trois résultats suivants :

pi ◦ pj = 0,

m∑
i=1

pi = idE , et chaque pi est un projecteur de E.

Les pi seront appelés projecteurs associés à u.
5. Soit u un endomorphisme de E et soit χu son polynôme caractéristique :

χu =

m∏
i=1

(X − λi)
αi

(avec les λi deux à deux distincts et les αi des entiers naturels non nuls) et, pour tout entier i ∈ {1, 2, . . . ,m},
Ni = Ker(u− λiidE)

αi le sous-espace caractéristique associé à λi.
Justifier que E = N1 ⊕N2 ⊕ . . .⊕Nm.

6. Démontrer que E = Im p1 ⊕ Im p2 ⊕ · · · ⊕ Im pm.

7. Démontrer que, pour tout entier i ∈ {1, 2, . . . ,m}, Ni = Im pi.

Partie II
Dans toute cette partie, on suppose que l’endomorphisme u est diagonalisable et on note λ1, λ2, . . . , λm ses valeurs propres
distinctes.

1. Quel est alors le polynôme minimal πu de u ?

2. On note toujours, pour tout entier i ∈ {1, 2, . . . ,m}, Qi =
πu

Pi
où Pi = X − λi, et on pose θi =

1

Qi(λi)
.

Donner sans détails, la décomposition en éléments simples de 1

πu
, puis démontrer que les projecteurs associés à u sont,

pour tout entier i ∈ {1, 2, . . . ,m}, pi =
Qi(u)

Qi(λi)
.

3. Démontrer que X =

m∑
i=1

λiQi(X)

Qi(λi)
puis que u =

m∑
i=1

λipi (décomposition spectrale de u).

4. Exemple : on considère la matrice A =


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

.

(a) Justifier que la matrice A est diagonalisable et calculer la matrice A2.
(b) En déduire le polynôme minimal πA de la matrice A puis la décomposition spectrale de la matrice A. On notera

Π1 et Π2 les matrices des projecteurs associés.
(c) Calculer, pour tout entier naturel q, Aq en fonction des matrices Π1 et Π2.

FIN
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