
1 Lemme de Borel-Cantelli Soit (Ω,A ,P) un espace probabilisé. Si (An )n∈N est une suite d’événements.

1. On suppose que
∑

P(An )<+∞. Montrer que
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Traduction?
2. On suppose

∑
P(An ) = +∞ et les An indépendants. Montrer que
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3. (a) Donner la probabilité, lorsqu’on lance 2n fois une pièce équilibrée (n ⩾ 1), d’obtenir exactement n fois Pile et
n fois Face. Calculer un équivalent de cette probabilité, en utilisant par exemple la formule de Stirling.

(b) Trois parties équitables de Pile ou Face, indépendantes, se déroulent simultanément sur trois tables. Montrer
que, presque sûrement, il y a au plus un nombre fini d’instants auxquels on a égalité simultanément sur les trois
tables de jeux (ie un nombre fini de n tels qu’après 2n lancers, on ait à chaque table obtenu exactement n
fois Pile et n fois Face).

Solution de 1 : Lemme de Borel-Cantelli

1. Par continuité décroissante,
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Mais, par inégalité de Boole,
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Et la suite des restes d’une série convergente converge vers 0, ce qui permet de conclure.
Presque sûrement, à partir d’un certain rang, plus aucun événement An ne se produit.
Autrement dit, presque sûrement, un nombre fini seulement d’événements An se produisent.

2. Déjà, pour tout p ∈N, par continuité décroissante et indépendance,
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Or, par convexité, pour tout réel x , ex ⩾ 1+ x . Donc, tout étant positif,
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d’où P
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= 0 en utilisant la divergence de la série à termes positifs.

Donc
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�
est négligeable lui aussi en tant que réunion dénombrable d’événements négligeables, et on

conclut en passant au complémentaire.

3. (a) La probabilité cherchée est
�
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(b) L’égalité aux trois tables après 2n parties a une probabilité équivalente à�
1p
πn

�3
=

1
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,

qui est le terme général d’une série convergente.
Il n’y a donc qu’à appliquer la question 1.



2 Identité de Wald Soit (Xn )n∈N une suite de variables aléatoires de même loi et d’espérance finie à valeurs dans N
et N une variable aléatoire à valeurs dans N, d’espérance finie tel que N et toutes les Xn soient indépendantes.

Déterminer la fonction génératrice de Y =
N∑
ℓ=1

Xℓ (on admet que c’est bien une variable aléatoire discrète) et en

déduire l’identité de Wald
E

�
N∑
ℓ=1

Xℓ

�
=E(N )E(X1).

Retrouver l’identité sans utiliser les fonctions génératrices.

Solution de 2 : Identité de Wald
Avec les fonctions génératrices, si |t |< 1,
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par indépendance
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la sommabilité se justifiant par le fait que
+∞∑
k=0
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P(Y = k , N = n ) |t |k =GY (|t |)<+∞.

Il reste à dériver et évaluer en 1 :
E(Y ) =G ′Y (1) =G ′X1

(1)G ′N (GX1
(1)) =E(X1)G

′
N (1) =E(N )E(X1).

Pour un calcul direct, on peut travailler directement dans [0,+∞] et utiliser Fubini :
E (Y ) =
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P(N = n )nE (X1) par linéarité et les Xℓ de même loi

=E(N )E(X1).

(On redécouvre à chaque fois une formule classique appelée formule de l’espérance totale, mais malheureusement
hors-programme.)

Remarque : On aurait aussi pu écrire E(Y ) =E

�
+∞∑
ℓ=1

Xℓ1(ℓ⩽N )

�
mais pour intervertir l’espérance et la série, on a besoin

d’un théorème : celui de Beppo Levi (convergence monotone).

Comme vu dans l’exercice 3, la suite de variables aléatoires (Yn )n∈N =
�

n∑
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Xℓ1(ℓ⩽N )

�
n∈N

étant une suite croissante de

variables aléatoires L 1 à valeurs dans N tel que

E(Yn ) =E
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P(N ⩾ ℓ) =E(X1)E(N )<+∞
par indépendance et lemme des coalitions.

On peut alors écrire E(Y ) = limE(Yn ) =E(X1)E(N ).
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3 Théorème de Beppo-Levi (convergence monotone)
On considère une suite croissante (Xn )n∈N de variables aléatoires L 1, définies sur un univers probabilisé (Ω,A ,P), à

valeurs dans N.
On suppose de plus que la suite numérique (E(Xn ))n∈N converge.
On note X la limite simple de (Xn ), à valeurs dans N∪{+∞}, en admettant qu’il s’agit bien d’une variable aléatoire

discrète.
1. Montrer que, pour tout j ∈N, P(Xn ⩾ j )−−−−→

n→+∞ P(X ⩾ j ).

2. En déduire que X est presque sûrement finie.
3. Montrer que X est d’espérance finie, et que

E (Xn )−−−−→
n→+∞ E(X ).

Solution de 3 : Théorème de Beppo-Levi (convergence monotone)

1. Par croissance, pour tout entier j ,

(X ⩾ j ) =
+∞⋃
n=0

(Xn ⩾ j )

(pour tout ω ∈ Ω, la suite (Xn (ω)) est une suite croissante d’entiers naturels, sa limite est ⩾ j si et seulement si il y a
un rang à partir duquel elle est ⩾ j ). Il suffit alors d’utiliser la continuité croissante. Remarquons que par ce moyen
on peut conclure que pour tout j , (X ⩾ j ) est un évènement, il n’est alors pas très dur de montrer que X est une
variable aléatoire.

2. Or, par inégalité de Markov,
P(Xn ⩾ j )⩽ E(Xn )

j

La suite (E(Xn )) est convergente, elle est croissante, elle est donc majorée par sa limite ℓ. On obtient, par passage
des inégalités larges à la limite,

P(X ⩾ j )⩽ ℓ
j

or
(X =+∞) =

+∞⋂
j=1

(X ⩾ j )

et la continuité décroissante cette fois nous donne

P(X =+∞) = 0

3. Soit ϕ j : t 7→
¨
P(Xn ⩾ j ) si t = n ∈N,
P(X ⩾ j ) sinon.

On applique le théorème de la double limite :
H1 Pour tout j ⩾ 1, ϕ j (t )−−−→

t→+∞ P(X ⩾ j ).

H2 On a N∞(ϕ j ) =P(X ⩾ j ). Pour tout N ,
N∑

j=1

P(Xn ⩾ j )−−−−→
n→+∞

N∑
j=1

P(X ⩾ j )

Mais le membre de gauche est majoré pour tout n par E(Xn ) =
+∞∑
j=1

P(Xn ⩾ j ), donc par ℓ. Donc on a

∀N ⩾ 1,
N∑

j=1

P(X ⩾ j )⩽ ℓ

donc
+∞∑
j=1

N∞(ϕ j )⩽ ℓ <+∞ et
∑

j

ϕ j converge uniformément car normalement sur R.

Le théorème de la double limite s’applique : E(Xn ) =
+∞∑
j=1

ϕ j (n )−−−−→
n→+∞

+∞∑
j=1

P(X ⩾ j ) =E(X ).
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