Collenc 12

Du 2 au 6 février

Programme de colle - MPI

1. Probabilités

Reprise de I’'ensemble du chapitre pour exercices auquel s’ajoute

Extrait du programme officiel :

CONTENUS

CAPACITES & COMMENTAIRES

k) Fonctions génératrices

Fonction génératrice de la variable aléatoire X & valeurs
+00

dans IN : Gx(t):E(tX):ZP(X =k)t*.

k=0
Détermination de la loi de X par Gy.
La variable aléatoire X est d'espérance finie si et seule-
ment si Gy est dérivable en 1; dans ce cas E(X) = Gy'(1).

Fonction génératrice d'une somme finie de variables
aléatoires indépendantes & valeurs dans IN.

La série entiere définissant Gy est de rayon supérieur ou
égal a 1 et converge normalement sur le disque fermé
de centre 0 et de rayon 1. Continuité de Gy.

La démonstration de la réciproque n’est pas exigible.
Utilisation de Gy pour le calcul de E(X) et V(X).

Les étudiants doivent savoir calculer rapidement la fonc-
tion génératrice d'une variable aléatoire de Bernoulli, bi-
nomiale, géométrique, de Poisson.

2. Espaces préhilbertiens réels (révisions de MP2I)

Extrait du programme officiel :

CONTENUS

CAPACITES & COMMENTAIRES

a) Produit scalaire

Produit scalaire.
Espace préhilbertien, espace euclidien.
Produit scalaire canonique sur R”, sur ., ,(R).

b
Produit scalaire (f,g) :f fgsur6(la, bl R).

Notations (x, y). (x|y). x- y.

Expressions XY, tr(AT B).

Exemples de produits scalaires intégraux sur R[X] et
¢(la, b] R).

b) Norme associée & un produit scalaire

Norme associée & un produit scalaire, distance.
Inégalité de Cauchy-Schwarz, cas d’égalité.
Inégalité triangulaire, cas d’égalité.

Identité remarquable  ||x + y|[> =|lx|I> +ly|I> +2({x, y).

Exemples : sommes finies, intégrales.

Formule de polarisation associée.

c) Orthogonalité

Vecteurs orthogonaux, orthogonal d’une partie.

Famille orthogonale, orthonormée (ou orthonormale).
Toute famille orthogonale de vecteurs non nuls est libre.
Théoréme de Pythagore.

Algorithme d’orthonormalisation de Gram-Schmidt.

Notation X*.
L'orthogonal d’une partie est un sous-espace.

CONTENUS CAPACITES & COMMENTAIRES

d) Bases orthonormales

Existence de bases orthonormées dans un espace eucli-
dien. Théoreme de la base orthonormée incompléte.
Expression des coordonnées, du produit scalaire et de la
norme dans une base orthonormée.

e) Projection orthogonale sur un sous-espace de dimension finie

Supplémentaire orthogonal d‘un sous-espace F de di- En dimension finie : dimension de F*, vecteur normal &
mension finie. Projection orthogonale sur F. Expression un hyperplan.

du projeté orthogonal d’un vecteur x dans une base or-

thonormée de F.

Distance d'un vecteur & F. Notation d(x, F).

Le projeté orthogonal de x sur F est I'unique élément En dimension finie, projeté orthogonal d’un vecteur sur
de F quiréalise la distance de x O F. I'hyperplan Vect(u)* ; distance de x & Vect(u)*.

A cela s’ajoute la notion de symétrie orthogonale, le théoréme de représentation de Riesz
des formes linéaires et la notion de produit mixte.

Semaine prochaine : Espaces vectoriels normés.

3. Questions de cours

(i) Fonctions génératrices des lois du programme, et déduction de leur espérance et va-
riance.

(i) Toujours beaucoup d’exercices CCINP cette semaine.

Les membres du groupe >k peuvent éventuellement aussi étre interrogés sur les exercices
39,76,92,96,110, 111.

(iify * Lemme de Borel-Cantelli
Soit (Q,.«7,P) un espace probabilisé. Si (A,),cn €st une suite d’événements.

1. On suppose que » P(4,) < +oco. Montrer que
+00 (400
p=0 \n=p
2. On suppose Z]P(An):+°° et les A, indépendants. Montrer que

(A5

3. (a) Donnerla probabilité, lorsqu’on lance 2n fois une piece équilibrée (n > 1), d’obtenir
exactement rn fois Pile et n fois Face. Calculer un équivalent de cette probabilité,
en utilisant par exemple la formule de Stirling.

Traduction?

(b) Trois parties équitables de Pile ou Face, indépendantes, se déroulent simultané-
ment sur frois tables. Montrer que, presque strement, il y a au plus un nombre fini
d’instants auxquels on a égalité simultanément sur les trois tables de jeux (ie un
nombre fini de n tels qu’aprés 2n lancers, on ait & chaque table obtenu exacte-
ment n fois Pile et n fois Face).



(iv) >k Identité de Wald

Soit (X,),enw Une suite de variables aléatoires de méme loi et d’espérance finie & valeurs
dans IN et N une variable aléatoire & valeurs dans IN, d’espérance finie tfel que N et toutes
les X,, soient indépendantes.

N
Déterminer la fonction génératrice de Y = fo (on admet que c’est bien une variable

(=1
aléatoire discrete) et en déduire I'identité de Wald

N
]E(ZX[) =EN)EX,).
(=1

Retrouver I'identité sans utiliser les fonctions génératrices.

*k Théoréme de Beppo-Levi (convergence monotone)

On considére une suite croissante (X,),cn de variables aléatoires L', définies sur un univers
probabilisé (Q,.</,P), & valeurs dans IN.

On suppose de plus que la suite numérique (E(X,,)),en CONverge.

On note X la limite simple de (X,,). & valeurs dans INU {+o0}, en admettant qu’il s’agit bien
d’une variable aléatoire discréte.

(v

~

1. Montrer que, pour tout jeNN, P(X, > j)—— P(X > j).

n—+o00o
2. En déduire que X est presque strement finie.
3. Montrer que X est d’espérance finie, et que

E(X,,) —— E(X).

n—+00

(vi) *k Supplémentarité de I'orthogonal d’un sous-espace de dimension finie, expression du
projeté orthogonal dans une base orthonormale du sous-espace. La distance & un sous-
espace de dimension finie est atteinte en un vecteur unique.

4. Exercices CCINP

CCINP 39

On note ¢? I'ensemble des suites x = (x,),ew de Nombres réels telles que la série fol
converge.

1. (a) Démontrer que, pour x =(x,)en €2 €t y =(Vu)nen € £2, 10 série Zx,,yn converge.

+00
On pose alors (x|y) = Z X Y-

n=0
(b) Démontrer que ¢? est un sous-espace vectoriel de I'espace vectoriel des suites de
nombres réels.
Dans la suite de I'exercice, on admet que () est un produit scalaire dans ¢2.

On suppose que £2 est muni de ce produit scalaire et de la norme euclidienne associée,
notée ||-||.

2. SoitpelN—Pourtoutx={xetonpose-plx)y=x;

7 =25
ication linéaire e

Démontreraye—+s—est une-app
= O e~y d app

3. Onconsidére I'ensemble F des suites réelles presque nulles ¢’ est-a-dire I'ensemble des
suites réelles dont fous les termes sont nuls sauf peut-&tre un nombre fini de termes.

Déterminer FL (au sens de (-)). Comparer F et (Fi)l.

= CCINP 76 : Soit E un R-espace vectoriel muni d’un produit scalaire noté (-|-).
On pose ¥V x € E, ||x]|=+/(x[x).
1. (a) Enoncer et démontrer I'inégalité de Cauchy-Schwarz.
(b) Dans quel cas a-t-on égalité ? Le démontrer.
2. Soit E={f €¢(la,b],R), Y x €la, b] f(x)>0}. Prouver que I'ensemble

b by
{L f(t)dth mdr,feE}

admet une borne inférieure m et déterminer la valeur de m.

= CCINP 77 : Soit E un espace euclidien.
1. Soit A un sous-espace vectoriel de E. Démontrer que (A)" = A.
2. Soient F et G deux sous-espaces vectoriels de E.
(a) Démontrer que (F +G)t=FLnG*t.
(b) Démontrer que (FNG)' =FL+G*L.

= CCINP 79 : Soit a et b deux réels tels que a < b.

1. Soit h une fonction continue et positive de [a, b] dans R.
b

Démontrer que J h(x)dx=0=h=0.
a

2. Soit E le R-espace vectoriel des fonctions continues de [a, b] dans R.
b
On pose Y(f,g) € E2. (flg) :j f(x)g(x)dx. Démontrer que I'on définit ainsi un produit
scalaire sur E. ¢

1
3. Mojorerf vxe *dx en utilisant I'inégalité de Cauchy-Schwarz.
0

=« CCINP 80 : Soit E I'espace vectoriel des applications continues et 2-périodiques de R dans
R.

2m
1
1. Démontrer que (f ‘g) = ﬂf f(t)g(t)dr définit un produit scalaire sur E.
0
2. Soit F le sous-espace vectoriel engendré par f: x — cosx et g: x — cos(2x).

Déterminer le projeté orthogonal sur F de la fonction u : x — sin? x.

« CCINP 81 : On définit dans ., (R) x .#,(R) I'application ¢ par: ¢ (A, A’) =tr(ATA’), oU tr(ATA)
désigne la trace du produit de la matrice AT par la matrice A’. On admet que ¢ est un
produit scalaire sur .4, (R).

On note Z = {(_ab Z) (a,b)eRz}.

1. Démontrer que . est un sous-espace vectoriel de ., (R).
2. Déterminer une base de Z+.

11
3. Déterminer la projection orthogonale de J = (1 1) sur 7t .

4. Calculer la distance de J & Z.



= CCINP 82

Soit E un espace préhilbertien et F un sous-espace vectoriel de E de dimension finie n > 0.

On admet que, pour tout x € E, il existe un élément unique y, de F tel que x — y, soit
orthogonal & F et que la distance de x & F soit égale a || x— y|.

a b / a, b/ / ’ /7 / /7
Poura=| = |eta'=|_ /| onpose(A|A)=aa’+bb'+cc'+dd'.

1. Démontrer que (-|-) est un produit scalaire sur ., (RR).

) . 1 0 . ’
2. Cdlculerla distance de lamatrice A= (_1 2) au sous-espace vectoriel F des matrices

friangulaires supérieures.

=« CCINP 92
Soit n e N*. On considére E = .#,(R) I'espace vectoriel des matrices carrées d’ordre n.
On pose V(A,B) € E?, (A, B) = tr(ATB) oU tr désigne la trace et AT désigne la transposée de
la matrice A.

1. Prouver que (,-) est un produit scalaire sur E.

2. On note S,(R) I'ensemble des matrices symétriques de E.
Une matrice A de E est dite antisymétrique lorsque AT =—A.
On note A,(R) I'ensemble des matrices antisymétriques de E.
On admet que S,(R) et A,(R) sont des sous-espaces vectoriels de E.

(a) Prouver que E =S, (R)® A,(R).
(o) Prouver que A, (R)! =S,(R).
3. Soit F I'ensemble des matrices diagonales de E. Déterminer F-,

= CCINP 96

Soit X une variable aléatoire & valeurs dans N, de loi de probabilité donnée par: Vn eN, P(X =n)=p,.

+00
La fonction génératrice de X est notée Gy et elle est définie par Gx(t)=E[tX]= ant".
n=0

1. Prouver que I'intervalle ]—1,1[ est inclus dans I’ensemble de définition de Gx.
2. Soit X; et X, deux variables aléatoires indépendantes & valeurs dans N.
On pose S=X; + X,.
Démontrer que Yt €]—1,1[, Gs(t)= Gy, ()Gx,(1):
(a) en utilisant le produit de Cauchy de deux séries entiéres.
(b) en utilisant uniquement la définition de la fonction génératrice par GX(t):]E[tX].

Remarque : on admetra, pour la question suivante, que ce résultat est généralisable
& n variables aléatoires indépendantes & valeurs dans N.

3. Un sac contient quatre boules : une boule numérotée 0, deux boules numérotées 1

et une boule numérotée 2. Soit n € N*. On effectue n tirages successifs, avec remise,

d’une boule dans ce sac.
On note S, la somme des numéros tirés.
Soit ¢ €]—1,1[. Déterminer Gg, (¢) puis en déduire la loi de S,,.

=« CCINP 101
Dans une zone désertique, un animal erre entre trois points d’eau A, B et C.
A l'instant ¢ =0, il se trouve au point A.
Quand il a épuisé I'eau du point ou il se frouve, il part avec équiprobabilité rejoindre 1'un
des deux autres points d’eau.
L'eau du point qu’il vient de quitter se régénére alors. Soif n eN.

On note A,, I'événement «|’animal est en A aprés son n€ trajet ».
On note B, I'événement «|’animal est en B aprés son n® trajet ».
On note C, I'événement «I’animal est en C aprés son n® trajet ».
On pose P(A,)=a,. P(B,)=b, et P(C,)=c,.

1. (a) Exprimer, en le justifiant, a,,,; en fonction de a,,. b, et c,.
(b) Exprimer, de méme, b, et ¢,,; en fonction de a,, b, et c,.

0 12 1/2
2. On considére la matrice A=| 12 0 1)z
/2 12 0

(a) Justifier, sans calcul, que la matrice A est diagonalisable.

1 . )
(b) Prouver que -3 est valeur propre de A et déterminer le sous-espace propre asso-
cié.
(c) Déterminer une matrice P inversible et une matrice D diagonale de .#;(R) telles
que D =P AP,
Remarque : le calcul de P! n'est pas demandé.

3. Montrer comment les résultats de la question 2. peuvent étre utilisés pour calculer a,,,
b, et ¢, en fonction de n.
Remarque : aucune expression finalisée de a,,, b, et ¢, N’est demandée.

=« CCINP 106
X et Y sont deux variables aléatoires indépendantes et & valeurs dans IN.
Elles suivent la méme loi définie parVkeN, P(X =k)=P(Y =k)=pg* ol pelo,1[ et g=1—p.
On considére alors les variables U et V définies par U =sup(X, Y) et V =inf(X, Y).
1. Déterminer la loi du couple (U, V).
2. Déterminer la loi marginale de U.
On admet que V(Q)=N et que YneNN, P(V =n)=pg?"(1+q).
3. Prouver que W =V +1 suit une loi géométrique. En déduire I’'espérance de V.
4. U et V sont-elles indépendantes ?

= CCINP 109
Soit n e IN*. Une urne contient n boules blanches numérotées de 1 & n et deux boules noires
numeérotées 1 et 2.
On effectue le firage une & une, sans remise, de toutes les boules de |'urne.
On note X la variable aléatoire égale au rang d’apparition de la premiére boule blanche.

On note Y la variable aléatoire égale au rang d’apparition de la premiére boule numéro-
tée 1.

1. Déterminer la loi de X.
2. Déterminer laloide Y.



=« CCINP 110
Soit (Q,.«7,P) un espace probabilisé.

1. Soit X une variable aléatoire définie sur (2, .<7,IP) et & valeurs dans N.
On considere la série entiére > t"P(X = n) de variable réelle t.
On note Ry son rayon de convergence.

(a) Prouver que Ry >1.

+00

On pose Gx(t)= Z t"IP(X = n) et on note Dg, I'ensemble de définition de Gy.

=0
Justifier que [—1, f] C Dg, .

Pour tout réel ¢ fixé de [—1, 1], exprimer Gx(t) sous forme d'une espérance.
(b) Soit k € N. Exprimer, en justifiant la réponse, P(X = k) en fonction de G{(0).

2. (a) Onsuppose que X suit une loi de Poisson de parameétre A.
Déterminer D, et, pour tout ¢ € Dg, , calculer Gx(t).

(b) Soit X et Y deux variables aléatoires définies sur un méme espace probabilisé,
indépendantes et suivant des lois de Poisson de paramétres respectifs A, et A,.
Déterminer, en utilisant les questions précédentes, la loi de X + Y.

= CCINP 111

k
On admet, dans cet exercice, que : Vg €N, Z( )xk_" converge et
k=q

Vxel-11] f Moo 1
X , ,k:q q X S

Soit p €]0,1].

Soit (Q,.«7,P) un espace probabilisé.

Soit X et Y deux variables aléatoires définies sur (,.</, P) et & valeurs dans N.
On suppose que la loi de probabilité du couple (X, Y) est donnée par

n\(1\" 0
V(k,n)eN?, P(X=k)n(Y =n))= (k)(i) p(l1—p)" sik<n

0 sinon
1. Vérifier qu’il s"agit bien d’une loi de probabilité.
2. (0) Déterminerlaloide Y.
(b) Prouver que 1+ Y suit une loi géométrique.
(c) Déterminer I'espérance de Y.
3. Déterminer la loi de X.
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