
Colle no 12 Du 2 au 6 février

Programme de colle – MPI

1. Probabilités
Reprise de l’ensemble du chapitre pour exercices auquel s’ajoute

Extrait du programme officiel :

CONTENUS CAPACITÉS & COMMENTAIRES
k) Fonctions génératrices

Fonction génératrice de la variable aléatoire X à valeurs

dans N : GX (t ) = E
�
t X
�
=
+∞∑
k=0

P (X = k ) t k .

La série entière définissant GX est de rayon supérieur ou
égal à 1 et converge normalement sur le disque fermé
de centre 0 et de rayon 1. Continuité de GX .

Détermination de la loi de X par GX .
La variable aléatoire X est d’espérance finie si et seule-
ment si GX est dérivable en 1 ; dans ce cas E(X ) =GX

′(1).
La démonstration de la réciproque n’est pas exigible.
Utilisation de GX pour le calcul de E(X ) et V(X ).
Les étudiants doivent savoir calculer rapidement la fonc-
tion génératrice d’une variable aléatoire de Bernoulli, bi-
nomiale, géométrique, de Poisson.

Fonction génératrice d’une somme finie de variables
aléatoires indépendantes à valeurs dans N.

2. Espaces préhilbertiens réels (révisions de MP2I)
Extrait du programme officiel :

CONTENUS CAPACITÉS & COMMENTAIRES
a) Produit scalaire

Produit scalaire. Notations 〈x , y 〉, (x |y ), x · y .
Espace préhilbertien, espace euclidien.
Produit scalaire canonique sur Rn , surMn ,p (R). Expressions X >Y , tr(A>B ).

Produit scalaire 〈 f , g 〉=
∫ b

a

f g sur C �[a , b ],R
�
. Exemples de produits scalaires intégraux sur R[X ] et

C �[a , b ],R
�
.

b) Norme associée à un produit scalaire

Norme associée à un produit scalaire, distance.
Inégalité de Cauchy-Schwarz, cas d’égalité. Exemples : sommes finies, intégrales.
Inégalité triangulaire, cas d’égalité.
Identité remarquable ‖x + y ‖2 = ‖x‖2 + ‖y ‖2 +2〈x , y 〉. Formule de polarisation associée.

c) Orthogonalité

Vecteurs orthogonaux, orthogonal d’une partie. Notation X ⊥.
L’orthogonal d’une partie est un sous-espace.

Famille orthogonale, orthonormée (ou orthonormale).
Toute famille orthogonale de vecteurs non nuls est libre.
Théorème de Pythagore.
Algorithme d’orthonormalisation de Gram-Schmidt.

CONTENUS CAPACITÉS & COMMENTAIRES
d) Bases orthonormales

Existence de bases orthonormées dans un espace eucli-
dien. Théorème de la base orthonormée incomplète.
Expression des coordonnées, du produit scalaire et de la
norme dans une base orthonormée.

e) Projection orthogonale sur un sous-espace de dimension finie

Supplémentaire orthogonal d’un sous-espace F de di-
mension finie. Projection orthogonale sur F . Expression
du projeté orthogonal d’un vecteur x dans une base or-
thonormée de F .

En dimension finie : dimension de F ⊥, vecteur normal à
un hyperplan.

Distance d’un vecteur à F .
Le projeté orthogonal de x sur F est l’unique élément
de F qui réalise la distance de x à F .

Notation d (x , F ).
En dimension finie, projeté orthogonal d’un vecteur sur
l’hyperplan Vect(u )⊥ ; distance de x à Vect(u )⊥.

À cela s’ajoute la notion de symétrie orthogonale, le théorème de représentation de Riesz
des formes linéaires et la notion de produit mixte.

Semaine prochaine : Espaces vectoriels normés.

3. Questions de cours
(i) Fonctions génératrices des lois du programme, et déduction de leur espérance et va-

riance.
(ii) Toujours beaucoup d’exercices CCINP cette semaine.

Les membres du groupe ∗ peuvent éventuellement aussi être interrogés sur les exercices
39, 76, 92, 96, 110, 111.

(iii) ∗ Lemme de Borel-Cantelli
Soit (Ω,A ,P) un espace probabilisé. Si (An )n∈N est une suite d’événements.
1. On suppose que

∑
P(An )<+∞. Montrer que

P

�
+∞⋂
p=0

�
+∞⋃
n=p

An

��
= 0.

Traduction?
2. On suppose

∑
P(An ) = +∞ et les An indépendants. Montrer que

P

�
+∞⋂
p=0

�
+∞⋃
n=p

An

��
= 1.

3. (a) Donner la probabilité, lorsqu’on lance 2n fois une pièce équilibrée (n ¾ 1), d’obtenir
exactement n fois Pile et n fois Face. Calculer un équivalent de cette probabilité,
en utilisant par exemple la formule de Stirling.

(b) Trois parties équitables de Pile ou Face, indépendantes, se déroulent simultané-
ment sur trois tables. Montrer que, presque sûrement, il y a au plus un nombre fini
d’instants auxquels on a égalité simultanément sur les trois tables de jeux (ie un
nombre fini de n tels qu’après 2n lancers, on ait à chaque table obtenu exacte-
ment n fois Pile et n fois Face).



(iv) ∗ Identité de Wald
Soit (Xn )n∈N une suite de variables aléatoires de même loi et d’espérance finie à valeurs
dans N et N une variable aléatoire à valeurs dans N, d’espérance finie tel que N et toutes
les Xn soient indépendantes.

Déterminer la fonction génératrice de Y =
N∑
ℓ=1

Xℓ (on admet que c’est bien une variable

aléatoire discrète) et en déduire l’identité de Wald

E

�
N∑
ℓ=1

Xℓ

�
=E(N )E(X1).

Retrouver l’identité sans utiliser les fonctions génératrices.
(v) ∗ Théorème de Beppo-Levi (convergence monotone)

On considère une suite croissante (Xn )n∈N de variables aléatoires L 1, définies sur un univers
probabilisé (Ω,A ,P), à valeurs dans N.
On suppose de plus que la suite numérique (E(Xn ))n∈N converge.
On note X la limite simple de (Xn ), à valeurs dans N∪{+∞}, en admettant qu’il s’agit bien
d’une variable aléatoire discrète.
1. Montrer que, pour tout j ∈N, P(Xn ¾ j )−−−−→

n→+∞ P(X ¾ j ).

2. En déduire que X est presque sûrement finie.
3. Montrer que X est d’espérance finie, et que

E (Xn )−−−−→n→+∞ E(X ).

(vi) ∗ Supplémentarité de l’orthogonal d’un sous-espace de dimension finie, expression du
projeté orthogonal dans une base orthonormale du sous-espace. La distance à un sous-
espace de dimension finie est atteinte en un vecteur unique.

4. Exercices CCINP
� CCINP 39
On note ℓ2 l’ensemble des suites x = (xn )n∈N de nombres réels telles que la série

∑
x 2

n
converge.
1. (a) Démontrer que, pour x = (xn )n∈N ∈ ℓ2 et y = (yn )n∈N ∈ ℓ2, la série

∑
xn yn converge.

On pose alors (x |y ) =
+∞∑
n=0

xn yn .

(b) Démontrer que ℓ2 est un sous-espace vectoriel de l’espace vectoriel des suites de
nombres réels.

Dans la suite de l’exercice, on admet que (·|·) est un produit scalaire dans ℓ2.
On suppose que ℓ2 est muni de ce produit scalaire et de la norme euclidienne associée,
notée || · ||.
2. Soit p ∈N. Pour tout x = (xn ) ∈ ℓ2, on pose φ(x ) = xp .

Démontrer que φ est une application linéaire et continue de ℓ2 dans R.
3. On considère l’ensemble F des suites réelles presque nulles c’est-à-dire l’ensemble des

suites réelles dont tous les termes sont nuls sauf peut-être un nombre fini de termes.
Déterminer F ⊥ (au sens de (·|·)). Comparer F et

�
F ⊥
�⊥.

� CCINP 76 : Soit E un R-espace vectoriel muni d’un produit scalaire noté (·|·).
On pose ∀ x ∈ E , ||x ||=p(x |x ).
1. (a) Énoncer et démontrer l’inégalité de Cauchy-Schwarz.

(b) Dans quel cas a-t-on égalité? Le démontrer.
2. Soit E =
�

f ∈C ([a , b ] ,R) , ∀ x ∈ [a , b ] f (x )> 0
	
. Prouver que l’ensemble¨∫ b

a

f (t )dt ×
∫ b

a

1

f (t )
dt , f ∈ E

«
admet une borne inférieure m et déterminer la valeur de m .

� CCINP 77 : Soit E un espace euclidien.
1. Soit A un sous-espace vectoriel de E . Démontrer que

�
A⊥
�⊥
= A.

2. Soient F et G deux sous-espaces vectoriels de E .
(a) Démontrer que (F +G )⊥ = F ⊥ ∩G ⊥.
(b) Démontrer que (F ∩G )⊥ = F ⊥+G ⊥.

� CCINP 79 : Soit a et b deux réels tels que a < b .

1. Soit h une fonction continue et positive de [a , b ] dans R.

Démontrer que
∫ b

a

h (x )dx = 0=⇒ h = 0.

2. Soit E le R-espace vectoriel des fonctions continues de [a , b ] dans R.

On pose ∀ ( f , g ) ∈ E 2, ( f |g ) =
∫ b

a

f (x )g (x )dx . Démontrer que l’on définit ainsi un produit

scalaire sur E .

3. Majorer
∫ 1

0

p
x e −x dx en utilisant l’inégalité de Cauchy-Schwarz.

� CCINP 80 : Soit E l’espace vectoriel des applications continues et 2π-périodiques deRdans
R.

1. Démontrer que
�
f
��g �= 1

2π

∫ 2π

0

f (t )g (t )dt définit un produit scalaire sur E .

2. Soit F le sous-espace vectoriel engendré par f : x 7→ cos x et g : x 7→ cos (2x ).

Déterminer le projeté orthogonal sur F de la fonction u : x 7→ sin2 x .

� CCINP 81 : On définit dansM2 (R)×M2 (R) l’application φ par : φ (A, A′) = tr (AᵀA′), où tr (AᵀA′)
désigne la trace du produit de la matrice Aᵀ par la matrice A′. On admet que φ est un
produit scalaire surM2 (R) .

On note F =
��

a b
−b a

�
, (a , b ) ∈R2

�
.

1. Démontrer que F est un sous-espace vectoriel deM2 (R).
2. Déterminer une base de F⊥.
3. Déterminer la projection orthogonale de J =

�
1 1
1 1

�
sur F⊥ .

4. Calculer la distance de J à F .



� CCINP 82
Soit E un espace préhilbertien et F un sous-espace vectoriel de E de dimension finie n > 0.
On admet que, pour tout x ∈ E , il existe un élément unique y0 de F tel que x − y0 soit
orthogonal à F et que la distance de x à F soit égale à



x − y0



.
Pour A =

�
a b
c d

�
et A′ =
�

a ′ b ′
c ′ d ′
�
, on pose
�
A
��A′�= a a ′+ b b ′+ c c ′+d d ′.

1. Démontrer que ( · | · ) est un produit scalaire surM2 (R).

2. Calculer la distance de lamatrice A =

�
1 0
−1 2

�
au sous-espace vectoriel F desmatrices

triangulaires supérieures.

� CCINP 92
Soit n ∈N∗. On considère E =Mn (R) l’espace vectoriel des matrices carrées d’ordre n .
On pose ∀(A, B ) ∈ E 2, 〈A , B 〉 = tr (AᵀB ) où tr désigne la trace et Aᵀ désigne la transposée de
la matrice A.
1. Prouver que 〈·, ·〉 est un produit scalaire sur E .
2. On note Sn (R) l’ensemble des matrices symétriques de E .

Une matrice A de E est dite antisymétrique lorsque Aᵀ =−A.
On note An (R) l’ensemble des matrices antisymétriques de E .
On admet que Sn (R) et An (R) sont des sous-espaces vectoriels de E .
(a) Prouver que E = Sn (R)⊕An (R).
(b) Prouver que An (R)⊥ = Sn (R).

3. Soit F l’ensemble des matrices diagonales de E . Déterminer F ⊥.

� CCINP 96
Soit X une variable aléatoire à valeurs dansN, de loi deprobabilité donnéepar : ∀n ∈N, P(X = n ) = pn .

La fonction génératrice de X est notée GX et elle est définie par GX (t ) =E
�
t X
�
=
+∞∑
n=0

pn t n .

1. Prouver que l’intervalle ]−1,1 [ est inclus dans l’ensemble de définition de GX .
2. Soit X1 et X2 deux variables aléatoires indépendantes à valeurs dans N.

On pose S = X1+X2.
Démontrer que ∀t ∈]−1, 1

�
, GS (t ) =GX1

(t )GX2
(t ) :

(a) en utilisant le produit de Cauchy de deux séries entières.
(b) en utilisant uniquement la définition de la fonction génératrice par GX (t ) =E

�
t X
�
.

Remarque : on admetra, pour la question suivante, que ce résultat est généralisable
à n variables aléatoires indépendantes à valeurs dans N.

3. Un sac contient quatre boules : une boule numérotée 0, deux boules numérotées 1
et une boule numérotée 2. Soit n ∈ N∗. On effectue n tirages successifs, avec remise,
d’une boule dans ce sac.
On note Sn la somme des numéros tirés.
Soit t ∈]−1, 1[. Déterminer GSn

(t ) puis en déduire la loi de Sn .

� CCINP 101
Dans une zone désertique, un animal erre entre trois points d’eau A, B et C .
À l’instant t = 0, il se trouve au point A.
Quand il a épuisé l’eau du point où il se trouve, il part avec équiprobabilité rejoindre l’un
des deux autres points d’eau.
L’eau du point qu’il vient de quitter se régénère alors. Soit n ∈N.
On note An l’événement « l’animal est en A après son ne trajet ».
On note Bn l’événement « l’animal est en B après son ne trajet ».
On note Cn l’événement « l’animal est en C après son ne trajet ».

On pose P(An ) = an , P(Bn ) = bn et P(Cn ) = cn .

1. (a) Exprimer, en le justifiant, an+1 en fonction de an , bn et cn .
(b) Exprimer, de même, bn+1 et cn+1 en fonction de an , bn et cn .

2. On considère la matrice A =

 0 1/2 1/2
1/2 0 1/2
1/2 1/2 0

.
(a) Justifier, sans calcul, que la matrice A est diagonalisable.

(b) Prouver que −1

2
est valeur propre de A et déterminer le sous-espace propre asso-

cié.
(c) Déterminer une matrice P inversible et une matrice D diagonale de M3(R) telles

que D = P −1AP .
Remarque : le calcul de P −1 n’est pas demandé.

3. Montrer comment les résultats de la question 2. peuvent être utilisés pour calculer an ,
bn et cn en fonction de n .
Remarque : aucune expression finalisée de an , bn et cn n’est demandée.

� CCINP 106
X et Y sont deux variables aléatoires indépendantes et à valeurs dans N.
Elles suivent la même loi définie par ∀k ∈N, P(X = k ) =P(Y = k ) = p q k où p ∈ ]0,1[ et q = 1−p .
On considère alors les variables U et V définies par U = sup(X , Y ) et V = inf(X , Y ).
1. Déterminer la loi du couple (U , V ).
2. Déterminer la loi marginale de U .

On admet que V (Ω) =N et que ∀n ∈N, P(V = n ) = p q 2n (1+q ).

3. Prouver que W = V +1 suit une loi géométrique. En déduire l’espérance de V .
4. U et V sont-elles indépendantes?

� CCINP 109
Soit n ∈N∗. Une urne contient n boules blanches numérotées de 1 à n et deux boules noires
numérotées 1 et 2.
On effectue le tirage une à une, sans remise, de toutes les boules de l’urne.
On note X la variable aléatoire égale au rang d’apparition de la première boule blanche.
On note Y la variable aléatoire égale au rang d’apparition de la première boule numéro-
tée 1.

1. Déterminer la loi de X .
2. Déterminer la loi de Y .



� CCINP 110
Soit (Ω,A ,P) un espace probabilisé.

1. Soit X une variable aléatoire définie sur (Ω,A ,P) et à valeurs dans N.
On considère la série entière

∑
t nP(X = n ) de variable réelle t .

On note RX son rayon de convergence.

(a) Prouver que RX ¾ 1.

On pose GX (t ) =
+∞∑
n=0

t nP(X = n ) et on note DGX
l’ensemble de définition de GX .

Justifier que [−1, 1]⊂DGX
.

Pour tout réel t fixé de [−1,1], exprimer GX (t ) sous forme d’une espérance.
(b) Soit k ∈N. Exprimer, en justifiant la réponse, P(X = k ) en fonction de G (k )X (0).

2. (a) On suppose que X suit une loi de Poisson de paramètre λ.
Déterminer DGX

et, pour tout t ∈DGX
, calculer GX (t ).

(b) Soit X et Y deux variables aléatoires définies sur un même espace probabilisé,
indépendantes et suivant des lois de Poisson de paramètres respectifs λ1 et λ2.
Déterminer, en utilisant les questions précédentes, la loi de X + Y .

� CCINP 111

On admet, dans cet exercice, que : ∀q ∈N,∑
k¾q

�
k

q

�
x k−q converge et

∀ x ∈ ]−1,1[ ,
+∞∑
k=q

�
k

q

�
x k−q =

1

(1− x )q+1
.

Soit p ∈ ]0,1[.
Soit (Ω,A ,P) un espace probabilisé.
Soit X et Y deux variables aléatoires définies sur (Ω,A , P ) et à valeurs dans N.
On suppose que la loi de probabilité du couple (X , Y ) est donnée par

∀ (k , n ) ∈N2, P((X = k )∩ (Y = n )) =


�

n

k

��
1

2

�n
p (1−p )n sik ¶ n

0 sinon

1. Vérifier qu’il s’agit bien d’une loi de probabilité.
2. (a) Déterminer la loi de Y .

(b) Prouver que 1+ Y suit une loi géométrique.
(c) Déterminer l’espérance de Y .

3. Déterminer la loi de X .
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