
Colle no 11 Du 26 au 30 janvier

Programme de colle – MPI

1. Séries entières
Extrait du programme officiel :

Les coefficients des séries entières considérées sont réels ou complexes.

CONTENUS CAPACITÉS & COMMENTAIRES
a) Généralités

Série entière de la variable réelle, de la variable com-
plexe.
Lemme d’Abel : si la suite

�
an z n

0

�
est bornée alors, pour

tout nombre complexe z tel que |z |< |z0|, la série
∑

an z n

est absolument convergente.
Rayon de convergence d’une série entière, défini
comme borne supérieure dans [0,+∞], de l’ensemble
des réels positifs r tels que la suite (an r n ) est bornée.
Disque ouvert de convergence.
Intervalle ouvert de convergence.

La série
∑

an z n converge absolument si |z | < R , et elle
diverge grossièrement si |z |>R .

Si an =O (bn ) et donc en particulier si an = o (bn ), Ra ¾Rb . Si
an ∼ bn , Ra =Rb .

Rayon de convergence de
∑

nαx n .

Application de la règle de d’Alembert pour les séries nu-
mériques au calcul du rayon.

La limite du rapport |an+1|
|an | peut être utilisée directement.

Somme et produit de Cauchy de deux séries entières.

b) Continuité de la somme d’une série entière de la variable complexe

Convergence normale d’une série entière sur tout
disque fermé de centre 0 contenu dans le disque ouvert
de convergence.
Continuité de la somme d’une série entière sur le disque
ouvert de convergence.

c) Régularité de la somme d’une série entière de la variable réelle

Théorème d’Abel radial :
si
∑

an x n a pour rayon de convergence R ∈ R∗+ et si∑
an R n converge, alors

+∞∑
n=0

an x n −→
x→R−

+∞∑
n=0

an R n .

La démonstration est hors programme.

La somme d’une série entière est de classe C∞ sur
l’intervalle ouvert de convergence et ses dérivées s’ob-
tiennent par dérivation terme à terme.

Relation R
�∑

an x n
�
=R
�∑

nan x n
�
.

Expression des coefficients d’une série entière de rayon
de convergence strictement positif à l’aide des dérivées
en 0 de sa somme.

Si les fonctions x 7→
+∞∑
n=0

an x n et x 7→
+∞∑
n=0

bn x n coïncident

sur un intervalle ]0,α] avec α > 0, alors, pour tout n ∈ N,
an = bn .

d) Fonctions développables en série entière, développements usuels

Fonction développable en série entière sur le disque ou-
vert de centre 0 et de rayon R , sur l’intervalle ]−R , R [.

Dans le cas réel, lien avec la série de Taylor.

Développement de exp(z ) sur C.
Développement de 1

1− z
sur {z ∈C, |z |< 1}.

CONTENUS CAPACITÉS & COMMENTAIRES
Développements usuels dans le domaine réel. Les étudiants doivent connaître les développements en

série entière des fonctions exponentielle, hyperboliques,
circulaires, Arctan, x 7→ ln(1+ x ) et x 7→ (1+ x )α.
Les étudiants doivent savoir développer une fonction
en série entière à l’aide d’une équation différentielle li-
néaire.

2. Probabilités
Extrait du programme officiel :

Cette section généralise aux variables aléatoires discrètes l’étude menée en première année des variables aléa-
toires à valeurs dans un ensemble fini. Cette généralisation nécessite d’introduire des notions générales de théorie
des probabilités, lesquelles font l’objet d’un exposé a minima. En particulier :

Æ la notion de tribu, introduite pour donner un cadre rigoureux, n’appelle aucun développement théorique ;

Æ la construction d’espaces probabilisés n’est pas un objectif du programme ;

Æ les diverses notions de convergence (presque sûre, en probabilité, en loi) sont hors programme.

La théorie des familles sommables permet une extension très naturelle des notions et résultats vus en première
année. Cette extension est effectuée rapidement, de manière à libérer du temps pour les exemples et exercices.
L’objectif de l’enseignement est en effet de renforcer la compréhension de l’aléatoire, en lien avec d’autres parties
du programme. On pourra ainsi faire travailler les étudiants sur divers objets aléatoires (permutations, graphes, ma-
trices...) les inégalités de concentration et des exemples de processus à temps discret (marches aléatoires, chaînes
de Markov...).

La notion de variable à densité est hors programme.
La notion d’espérance conditionnelle est hors programme.

CONTENUS CAPACITÉS & COMMENTAIRES
b) Espaces probabilisés

Tribu sur un ensemble Ω. Espace probabilisable (Ω,A ). La manipulation de tribus n’est pas un objectif du pro-
gramme.

Événements. Généralisation du vocabulaire relatif aux événements in-
troduit en première année.

Probabilité sur un espace probabilisable, σ-additivité.
Espace probabilisé (Ω,A , P ).
Continuité croissante, continuité décroissante. Application : pour une suite (An )n∈N d’événements (non

nécessairement monotone), limites quand n tend vers
l’infini de

P
� n⋃

k=0

Ak

�
et P
� n⋂

k=0

Ak

�
.

Propriété de sous-additivité de P pour une réunion dé-
nombrable d’événements.
Événements négligeables, événements presque sûrs.
Une réunion (resp. intersection) finie ou dénombrable
d’événements négligeables (resp. presque sûrs) est un
événement négligeable (resp. presque sûr).

Systèmes quasi-complets d’événements.
Tout développement supplémentaire sur ces notions est
hors programme.

c) Probabilités conditionnelles et indépendance

Extension des résultats vus en première année : probabi-
lité conditionnelle, formule des probabilités composées,
formule des probabilités totales, formule de Bayes.

Notations PB (A), P (A|B ).



CONTENUS CAPACITÉS & COMMENTAIRES
Par définition, les événements A et B sont indépendants
si P (A ∩B ) = P (A)P (B ).

Lorsque P (B ) > 0, l’indépendance de A et B s’écrit
P (A |B ) = P (A).

Famille d’événements indépendants. L’indépendance deux à deux n’implique pas l’indépen-
dance.

Si A et B sont indépendants, A et B le sont aussi.

d) Espaces probabilisés discrets

Si Ω est un ensemble, une distribution de probabilités dis-
crètes sur Ω est une famille d’éléments de R+ indexée
par Ω et de somme 1.

Support d’une distribution de probabilités discrète ; le
support est au plus dénombrable.

Probabilité définie sur A =P (Ω) associée à une distribu-
tion de probabilités discrètes sur Ω.

Si Ω est au plus dénombrable, on obtient ainsi toutes les
probabilités sur P (Ω).

e) Variables aléatoires discrètes

Une variable aléatoire discrète X définie sur l’espace
probabilisé (Ω,A , P ) et à valeurs dans E est une applica-
tion définie sur Ω, à valeurs dans l’ensemble E , telle que
X (Ω) soit au plus dénombrable et que, pour tout x ∈ X (Ω),
l’ensemble X −1({x }) appartienne àA .

Notations (X = x ), (X ∈ A), {X = x }, {X ∈ A}.
Lorsque E =R, la variable aléatoire X est dite réelle.
Notations (X ¶ x ), (X ¾ x ), (X < x ), (X > x ) (et analogues
avec accolades) pour une variable aléatoire réelle X .

Loi PX d’une variable aléatoire discrète X . La loi de X peut au besoin être définie sur un ensemble
contenant X (Ω).

Dans ce qui suit, toutes les variables aléatoires sont sup-
posées discrètes.
La probabilité PX est déterminée par la distribution de
probabilités discrète (P (X = x ))x∈X (Ω).
Notation X ∼ Y . La notation X ∼ Y ne suppose pas que X et Y sont défi-

nies sur le même espace probabilisé.
Variable aléatoire f (X ).
Si X ∼ Y alors f (X )∼ f (Y ).
Loi conditionnelle d’une variable aléatoire X sachant un
événement A.
Couple de variables aléatoires. Loi conjointe, lois margi-
nales.
Détermination des lois marginales à partir de la loi
conjointe.

Un couple est une variable aléatoire à valeurs dans un
produit.
Notation P (X = x , Y = y ).
Extension aux n-uplets de variables aléatoires.

f) Variables aléatoires indépendantes

Couple de variables aléatoires indépendantes, famille
finie de variables aléatoires indépendantes.

Notation X ⊥⊥ Y .
Les variables aléatoires X et Y sont indépendantes si et
seulement si la distribution de probabilités de (X , Y ) est
le produit des distributions de probabilités de X et Y . Ex-
tension aux n-uplets de variables aléatoires.

Famille quelconque de variables aléatoires indépen-
dantes.
Fonctions de variables aléatoires indépendantes : si
X ⊥⊥ Y , alors f (X )⊥⊥ g (Y )

Extension au cas de plus de deux variables.

Lemme des coalitions :
si les variables aléatoires X1, . . . , Xn sont indépendantes,
les variables aléatoires f (X1, . . . , Xm ) et g (Xm+1, . . . , Xn ) le
sont aussi.

Extension au cas de plus de deux coalitions.

Existence d’espaces probabilisés portant une suite de
variables indépendantes de lois discrètes données.

La démonstration est hors programme.
Suites i.i.d. Modélisation du jeu de pile ou face infini :
suite i.i.d. de variables de Bernoulli.

g) Lois usuelles

Pour p dans ]0,1[, loi géométrique de paramètre p . Notations G (p ), X ∼G (p ).
Variable géométrique de paramètre p . Interprétation comme rang du premier succès dans le

jeu de pile ou face infini.
Pour λ dans R∗+, loi de Poisson de paramètre λ. Notations P (λ), X ∼P (λ).

CONTENUS CAPACITÉS & COMMENTAIRES
Variable de Poisson de paramètre λ. Interprétation en termes d’événements rares.

h) Espérance d’une variable aléatoire réelle ou complexe

Si X est une variable aléatoire à valeurs dans R+∪{+∞},
l’espérance de X est la somme, dans [0,+∞], de la fa-
mille (x P (X = x ))x∈X (Ω).

Notation E(X ).

Pour une variable aléatoire à valeurs dans N ∪ {+∞},
égalité E(X ) =

+∞∑
n=1

P (X ¾ n ).

Une variable aléatoire complexe X est dite d’espérance
finie si la famille (x P (X = x ))x∈X (Ω) est sommable ; dans ce
cas, la somme de cette famille est l’espérance de X .

Notation E(X ). Variables centrées.
La notation X ∈ L 1 signifie que X est d’espérance finie.
On ne soulèvera aucune difficulté quant à la définition
précise de L 1.

Espérance d’une variable géométrique, d’une variable
de Poisson.
Formule de transfert : soit X une variable aléatoire dis-

crète, f une fonction définie sur X (Ω) à valeurs com-
plexes ; alors f (X ) est d’espérance finie si et seulement
si la famille
�
f (x ) P (X = x )
�

x∈X (Ω)
est sommable ; si tel est le

cas : E
�
f (X )
�
=
∑

x∈X (Ω)

f (x ) P (X = x ).

Linéarité, positivité, croissance, inégalité triangulaire. Caractérisation des variables aléatoires à valeurs dans
R+ d’espérance nulle.

Si |X |¶ Y et si Y ∈ L 1, alors X ∈ L 1.
Si X et Y sont dans L 1 et indépendantes, alors X Y est
dans L 1 et :

E(X Y ) = E(X ) E(Y ).

Extension au cas de n variables aléatoires.

i) Variance d’une variable aléatoire réelle, écart type et covariance

Si E
�
X 2
�
<+∞, X est d’espérance finie. La notation X ∈ L 2 signifie que X 2 est d’espérance finie.

On ne soulèvera aucune difficulté quant à la définition
précise de L 2.

Inégalité deCauchy-Schwarz : si X et Y sont dans L 2, X Y
est dans L 1 et E(X Y )2 ¶ E

�
X 2
�

E
�
Y 2
�
.

Cas d’égalité.

Pour X ∈ L 2, variance et écart type de X . Notations V(X ),σ(X ). Variables réduites.
Caractérisation des variables aléatoires de variance
nulle.

Relation V(X ) = E
�
X 2
�−E(X )2.

Relation V(a X + b ) = a 2 V(X ). Si σ(X ) > 0, la variable aléatoire X −E(X )
σ(X )

est centrée ré-
duite.

Variance d’une variable géométrique, d’une variable
de Poisson.
Covariance de deux variables aléatoires de L 2.
Relation Cov(X , Y ) = E(X Y ) − E(X )E(Y ). Cas de variables
indépendantes.
Variance d’une somme de n variables aléatoires, cas
de variables décorrélées.

j) Inégalités probabilistes et loi faible des grands nombres

Inégalité de Markov.
Inégalité de Bienaymé-Tchebychev.
Loi faible des grands nombres : si (Xn )n¾1 est une suite i.i.d.
de variables aléatoires de variance finie, alors, pour tout
ϵ > 0,

P

�����Sn

n
−m

����¾ ϵ� −→n→∞ 0,

où Sn =
n∑

k=1

Xk et m = E(X1).

Utilisation des inégalités de Markov et de Bienaymé-
Tchebychev pour établir des inégalités de concentra-
tion.



Pas de fonction génératrice cette semaine.
Semaine prochaine : Fonctions génératrices, révisions des espaces préhilbertiens réels.

3. Questions de cours
(i) Liste des développements en série entière des fonctions usuelles au programme.
(ii) Pour chaque loi au programme (Bernoulli, Binomiale, Géométrique, Poisson) : Loi, situation

type (si adapté), espérance et variance (avec justifications).
(iii) ∗ Développement en série entière de x 7→ (1+ x )α à l’aide d’une équation différentielle.
(iv) ∗ Inégalité de Markov. Inégalité de Bienaymé-Tchebychev. Loi faible des grands nombres.
(v) ∗ Fonction de répartition et fonction caractéristique

1. Soit X une variable aléatoire réelle. On appelle fonction de répartition de X la fonction

FX : x ∈R 7→P(X ¶ x ).

a. Montrer que FX est croissante et déterminer ses limites en ±∞.
b. Montrer que pour tout x ∈R, FX (t )−−−→

t→x+
P(X ¶ x ) et FX (t )−−−→

t→x−
P(X < x ).

c. En déduire que deux variables aléatoires réelles ont même loi si et seulement si
leurs fonctions de répartition sont égales.

2. On appelle fonction caractéristique d’une variable aléatoire X prenant ses valeurs
dans Z, l’application φX :R→C donnée par φX (t ) =E

�
eit X
�

.

a. Vérifier que φX est définie, continue sur R et 2π-périodique.
b. On suppose que X admet une espérance. Vérifier que φX est de classe C 1 sur R

et exprimer E(X ) à l’aide de φ′X .
Que peut-on dire si X est de variance finie? Exprimer alors V(X ) à l’aide de φX .

(vi) ∗ Inégalités de Chernov et de Tchebychev-Cantelli
(a) Soit X une variable aléatoire discrète réelle centrée et vérifiant |X | ¶ 1. Montrer que

pour tout λ> 0,
E
�
eλX
�
¶ exp

�
λ2

2

�
.

(b) Soit X une variable aléatoire discrète réelle qui admet un moment d’ordre 2. Montrer
que pour tout λ> 0,

P(X ¾ E(X )+λ)¶ V(X )
V(X )+λ2

.

(vii) Beaucoup d’exercices CCINP cette semaine.
Les membres du groupe ∗ peuvent éventuellement aussi être interrogés sur les exercices
18, 19, 24, 32, 47, 97, 100, 102, 103, 104, 108.

4. Exercices CCINP

� CCINP 2 : On pose f (x ) =
3x +7

(x +1)2
.

1. Décomposer f (x ) en éléments simples.
2. En déduire que f est développable en série entière sur un intervalle du type ]−r, r [ (où

r > 0).
Préciser ce développement en série entière et déterminer, en le justifiant, le domaine
de validité D de ce développement en série entière.

3. (a) Soit
∑

an x n une série entière de rayon R > 0.

On pose, pour tout x ∈ ]−R , R [, g (x ) =
+∞∑
n=0

an x n .

Exprimer, pour tout entier p , en le prouvant, ap en fonction de g (p )(0).
(b) En déduire le développement limité de f à l’ordre 3 au voisinage de 0.

� CCINP 18 : On pose : ∀n ∈N∗, ∀ x ∈R, un (x ) =
(−1)n x n

n
.

On considère la série de fonctions
∑
n¾1

un .

1. Étudier la convergence simple de cette série.
On note D l’ensemble des x où cette série converge et S (x ) la somme de cette série
pour x ∈D .

2. (a) La fonction S est-elle continue sur D ?
(b) Étudier la convergence normale, puis la convergence uniforme de cette série sur

D .
(c) Étudier la convergence uniforme de cette série sur [0, 1].

� CCINP 19
1. (a) Justifier, oralement, à l’aidedu théorèmededérivation des séries de fonctions, que

la somme d’une série entière de la variable réelle est dérivable sur son intervalle
ouvert de convergence.
Remarque : On pourra utiliser, sans le démontrer, que la série

∑
an x n et la série∑

nan x n ont même rayon de convergence.
(b) En déduire le développement en série entière à l’origine, de la fonction de la va-

riable réelle x 7→ 1

(1− x )2
.

2. (a) Donner le développement en série entière à l’origine de la fonction de la variable
complexe z 7→ 1

1− z
.

(b) Rappeler les résultats sur le produit de Cauchy de deux séries entières.
(c) En déduire le développement en série entière à l’origine, de la fonction de la va-

riable complexe z 7→ 1

(1− z )2
.

� CCINP 22 :
1. Que peut-on dire du rayon de convergence de la somme de deux séries entières? Le

démontrer.
2. Développer en série entière au voisinage de 0, en précisant le rayon de convergence,

la fonction f : x 7−→ ln (1+ x ) + ln (1−2x ).

La série obtenue converge-t-elle pour x =
1

4
? x =

1

2
? x =−1

2
?

En cas de convergence, la somme de cette série est-elle continue en ces points?

� CCINP 23 : Soit (an )n∈N une suite complexe telle que la suite
� |an+1|
|an |
�

n∈N
admet une limite.

1. Démontrer que les séries entières
∑

an x n et
∑
(n + 1)an+1 x n ont le même rayon de

convergence.
On le note R .

2. Démontrer que la fonction x 7−→
+∞∑
n=0

an x n est de classe C 1 sur l’intervalle ]−R , R [.



� CCINP 24 :

1. Déterminer le rayondeconvergencede la série entière
∑ x n

(2n )!
. Onpose S (x ) =

+∞∑
n=0

x n

(2n )!
.

2. Rappeler, sans démonstration, le développement en série entière en 0 de la fonction
x 7→ ch(x ) et préciser le rayon de convergence.

3. (a) Déterminer S (x ).
(b) On considère la fonction f définie sur R par :

f (0) = 1, f (x ) = ch
p

x si x > 0, f (x ) = cos
p−x si x < 0 .

Démontrer que f est de classe C∞ sur R.

� CCINP 32 : Soit l’équation différentielle : x (x −1)y ′′+3x y ′+ y = 0.
1. Trouver les solutions de cette équation différentielle développables en série entière sur

un intervalle ]−r, r [ de R, avec r > 0. Déterminer la somme des séries entières obtenues.
2. Est-ce que toutes les solutions de x (x − 1)y ′′ + 3x y ′ + y = 0 sur ]0;1[ sont les restrictions

d’une fonction développable en série entière sur ]−1,1[?

� CCINP 47 : Pour chacune des séries entières de la variable réelle suivantes, déterminer le
rayon de convergence et calculer la somme de la série entière sur l’intervalle ouvert de
convergence :

1.
∑
n¾1

3n x 2n

n
. 2.

∑
an x n avec
�

a2n = 4n

a2n+1 = 5n+1

� CCINP 51 :

1. Montrer que la série
∑ (2n )!
(n !)224n (2n +1)

converge.

On se propose de calculer la somme de cette série.

2. Donner le développement en série entière en 0 de t 7−→ 1p
1− t

en précisant le rayon
de convergence.
Remarque : dans l’expression du développement, on utilisera la notation factorielle.

3. En déduire le développement en série entière en 0 de x 7−→Arcsin x ainsi que son rayon
de convergence.

4. En déduire la valeur de
+∞∑
n=0

(2n )!
(n !)224n (2n +1)

.

� CCINP 97 : Soit (X , Y ) un couple de variables aléatoires à valeurs dans N2 dont la loi est
donnée par

∀( j , k ) ∈N2, P
�
(X , Y ) = ( j , k )
�
=
( j +k )
�

1

2

� j+k

e j ! k !
.

1. Déterminer les lois marginales de X et de Y . Les variables X et Y sont-elles indépen-
dantes?

2. Prouver que E
�
2X+Y
�
existe et la calculer.

� CCINP 98 : Un secrétaire effectue, une première fois, un appel téléphonique vers n corres-
pondants distincts.
On admet que les n appels constituent n expériences indépendantes et que, pour chaque
appel, la probabilité d’obtenir le correspondant demandé est p (où p ∈ ]0,1[).
Soit X la variable aléatoire représentant le nombre de correspondants obtenus.
1. Donner la loi de X . Justifier.
2. Le secrétaire rappelle une seconde fois, dans les mêmes conditions, chacun des n−X

correspondants qu’il n’a pas pu joindre au cours de la première série d’appels. On
note Y la variable aléatoire représentant le nombre de personnes jointes au cours de
la seconde série d’appels.
(a) Soit i ∈ ¹0, nº. Déterminer, pour k ∈N, P(Y = k | X = i ).
(b) Prouver que Z = X + Y suit une loi binomiale dont on déterminera le paramètre.

Indication : on pourra utiliser, sans la prouver, l’égalité suivante :
�

n − i

k − i

��
n

i

�
=

�
k

i

��
n

k

�
.

(c) Déterminer l’espérance et la variance de Z .

� CCINP 99 :
1. Rappeler l’inégalité de Bienaymé-Tchebychev.
2. Soit (Yn ) une suite de variables aléatoires indépendantes, de même loi et et telle que

∀n ∈N, Yn ∈ L 2. On pose Sn =
n∑

k=1

Yk .

Prouver que ∀a ∈ ]0,+∞[ , P

�����Sn

n
−E (Y1)

����¾ a

�
¶ V (Y1)

na 2
.

3. Application
Oneffectue des tirages successifs, avec remise, d’une boule dans une urne contenant
2 boules rouges et 3 boules noires.
À partir de quel nombre de tirages peut-on garantir à plus de 95% que la proportion
de boules rouges obtenues restera comprise entre 0,35 et 0,45?
Indication : considérer la suite (Yi ) de variables aléatoires de Bernoulli où Yi mesure
l’issue du i e tirage.

� CCINP 100 : Soit λ ∈ ]0,+∞[. Soit X une variable aléatoire discrète à valeurs dans N∗. On
suppose que ∀n ∈N∗, P(X = n ) =

λ

n (n +1)(n +2)
.

1. Décomposer en éléments simples la fraction rationnelle R définie par R (x ) =
1

x (x +1)(x +2)
.

2. Calculer λ.
3. Prouver que X admet une espérance, puis la calculer.
4. X admet-elle une variance? Justifier.



� CCINP 102 : Soit N ∈N∗. Soit p ∈ ]0,1[. On pose q = 1−p .
On considère N variables aléatoires X1, X2, · · · , XN définies sur un même espace probabilisé
(Ω,A ,P), indépendantes et de même loi géométrique de paramètre p .
1. Soit i ∈ ¹1, N º. Soit n ∈N∗. Déterminer P (X i ¶ n ), puis P (X i > n ).
2. On considère la variable aléatoire Y définie par Y = min

1¶i¶N
(X i ) c’est-à-dire ∀ω ∈Ω,

Y (ω) =min (X1(ω), · · · , XN (ω)) ,

min désignant « le plus petit élément de ».
(a) Soit n ∈N∗. Calculer P(Y > n ). En déduire P(Y ¶ n ), puis P(Y = n ).
(b) Reconnaître la loi de Y . En déduire E(Y ).

� CCINP 103 : Remarque : les questions 1. et 2. sont indépendantes.
Soit (Ω,A ,P) un espace probabilisé.
1. (a) Soit (λ1,λ2) ∈ (]0,+∞[)2.

Soit X1 et X2 deux variables aléatoires définies sur (Ω,A ,P).
On suppose que X1 et X2 sont indépendantes et suivent des lois de Poisson, de
paramètres respectifs λ1 et λ2.
Déterminer la loi de X1+X2.

(b) En déduire l’espérance et la variance de X1+X2.
2. Soit p ∈ ]0,1]. Soit λ ∈ ]0,+∞[.

Soit X et Y deux variables aléatoires définies sur (Ω,A ,P).
On suppose que Y suit une loi de Poisson de paramètre λ.
On suppose que X (Ω) =N et que, pour tout m ∈N, la loi conditionnelle de X sachant
(Y =m ) est une loi binomiale de paramètre (m , p ).
Déterminer la loi de X .

� CCINP 104 : Soit n un entier naturel supérieur ou égal à 3.
On dispose de n boules numérotées de 1 à n et d’une boîte formée de trois compartiments
identiques également numérotés de 1 à 3.
On lance simultanément les n boules.
Elles viennent toutes se ranger aléatoirement dans les 3 compartiments.
Chaque compartiment peut éventuellement contenir les n boules.
On note X la variable aléatoire qui à chaque expérience aléatoire fait correspondre le
nombre de compartiments restés vides.
1. Préciser les valeurs prises par X .
2. (a) Déterminer la probabilité P(X = 2).

(b) Finir de déterminer la loi de probabilité de X .
3. (a) Calculer E(X ).

(b) Déterminer la limite de E(X ) lorsque n→+∞. Interpréter ce résultat.

� CCINP 105 :
1. Énoncer et démontrer la formule de Bayes pour un système complet d’événements.
2. On dispose de 100 dés dont 25 sont pipés (c’est-à-dire truqués). Pour chaque dé pipé,

la probabilité d’obtenir le chiffre 6 lors d’un lancer vaut 1

2
.

(a) On tire un dé au hasard parmi les 100 dés. On lance ce dé et on obtient le chiffre
6. Quelle est la probabilité que ce dé soit pipé?

(b) Soit n ∈N∗. On tire un dé au hasard parmi les 100 dés. On lance ce dé n fois et on
obtient n fois le chiffre 6. Quelle est la probabilité pn que ce dé soit pipé?

(c) Déterminer la limite de (pn ). Interpréter ce résultat.

� CCINP 107 : On dispose de deux urnes U1 et U2.
L’urne U1 contient deux boules blanches et trois boules noires.
L’urne U2 contient quatre boules blanches et trois boules noires.
On effectue des tirages successifs dans les conditions suivantes :
⋆ On choisit une urne au hasard et on tire une boule dans l’urne choisie.
⋆ On note sa couleur et on la remet dans l’urne d’où elle provient.
⋆ Si la boule tirée était blanche, le tirage suivant se fait dans l’urne U1.
⋆ Sinon le tirage suivant se fait dans l’urne U2.

Pour tout n ∈ N∗, on note Bn l’événement « la boule tirée au ne tirage est blanche » et on
pose pn =P(Bn ).
1. Calculer p1.

2. Prouver que : ∀n ∈N∗, pn+1 =− 6

35
pn +

4

7
.

3. En déduire, pour tout entier naturel n non nul, la valeur de pn .

� CCINP 108 : Soient X et Y deux variables aléatoires définies sur unmêmeespaceprobabilisé
(Ω,A , P ) et à valeurs dans N.
On suppose que la loi du couple (X , Y ) est donnée par ∀(i , j ) ∈N2, P ((X = i )∩(Y = j )) =

1

e 2i+1 j !

1. Déterminer les lois de X et de Y .
2. (a) Prouver que 1+X suit une loi géométrique et en déduire l’espérance et la variance

de X .
(b) Déterminer l’espérance et la variance de Y .

3. Les variables X et Y sont-elles indépendantes?
4. Calculer P (X = Y ).
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