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• Partie I

A. Jx 6= ∅ car 0 ∈ Jx.

Soient A et B dans Jx. (A+B)(σ)(x) = A(σ)(x) +B(σ)(x) = 0, donc A+B ∈ Jx.

Soient A dans Jx et B dans K[X]. (AB)(σ)(x) =
(
B(σ) ◦A(σ)

)
(x) = B(σ)(0) = 0, donc AB ∈ Jx.

Jx est donc un idéal de K[X] et, par définition même d’une srl, il n’est pas réduit à {0}.

B.1) La seule srl d’ordre 0 est la suite nulle.

Les srl d’ordre 1 sont les suites géométriques.

(X−1)2 ∈ Jx ssi xn+2−2xn+1 +xn = 0 pour tout n ∈ N, donc ssi x est de la forme n 7−→ an+ b et X−1 ∈ Jx
ssi x est constante. Les srl dont le polynôme minimal est (X − 1)2 sont donc les suites de la forme n 7−→ an+ b

avec (a, b) ∈ K∗×K ; autrement dit, ce sont les suites arithmétiques non constantes.

B.2) (X + 1)3 ∈ Jx, donc le polynôme minimal de x est de la forme (X + 1)k, avec k ∈ [[0, 3]].

x n’est pas une suite géométrique de raison −1, donc k > 2.

On vérifie immédiatement par récurrence que xn+2 + 2xn+1 + xn = 0 pour tout n ∈ N.

On en conclut que le polynôme minimal de x est (X + 1)2 et que l’ordre minimal de x est 2.

C.1) RA(K) = KerA(σ) donc RA(K) est un sous-e.v. de KN et il est stable par σ car σ et A(σ) commutent.

L’application linéaire

{
RA(K) −→ Kp
x 7−→ (x0, x1, . . ., xp−1)

est clairement bijective, donc dimRA(K) = dimKp = p.

C.2) x ∈ RXp(K) ssi xn = 0 pour n > p donc la famille (ek)06k6p−1, où ek = (δk,n)n∈N, est une base de RXp(K).

C.3) a) L’application ψ :

{
Kp−1[X] −→ KN

Q 7−→
(
Q(n)λn

)
n∈N

est linéaire, injective (car si Q ∈ Kerψ alors Q s’annule

sur N, donc est nul) et Imψ = EA(K). Il en résulte que EA(K) est un sous-e.v. de dimension p de KN.

b) Notons Ap = (X − λ)p. Selon C.1) et a), RAp(K) et EAp(K) sont de dimension p ; il suffit donc de montrer

que EAp(K) ⊂ RAp(K), ce que l’on va faire par récurrence sur p.

Pour p = 1 c’est évident : RX−λ(K) est l’ensemble des suites géométriques de raison λ, i.e. EX−λ(K).

Supposons l’inclusion démontrée au rang p et considérons x ∈ EAp+1
(K) : xn = Q(n)λn, avec Q ∈ Kp[X].

Posons y = A1(σ)(x) = (σ − λ Id)(x). On a Ap+1(σ)(x) = (ApA1)(σ)(x) =
(
Ap(σ) ◦A1(σ)

)
(x) = Ap(σ)(y).

D’autre part, yn = xn+1 − λxn = Q(n+ 1)λn+1 − λQ(n)λn = λ
(
Q(n+ 1)−Q(n)

)
λn.

Le polynôme λ
(
Q(X + 1)−Q(X)

)
est de degré inférieur ou égal à p− 1 donc, par hypothèse de récurrence,

y ∈ RAp(K) et par conséquent x ∈ RAp+1(K).

D. Notons λ0 = 0. Les polynômes Ak = (X − λk)mk , avec 0 6 k 6 d, sont deux à deux premiers entre eux donc,

d’après le théorème des noyaux, KerA(σ) =
d⊕
k=0

KerAk(σ), c’est-à-dire RA(K) =
d⊕
k=0

RAk
(K).

On a vu en C.2) que RA0
(σ) est l’ensemble des suites nulles à partir du rang m0 (y compris si m0 = 0) et en C.3)

que pour k ∈ [[1, d]], RAk
(σ) est l’ensemble des suites de la forme n 7−→ Q(n)λnk avec Q ∈ Kmk−1[X]. Il en résulte

aussitôt que RA(K) est l’ensemble des suites de la forme indiquée dans l’énoncé.
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• Partie II

A.1) x ∈ RB(K) donc, d’après I.C.1), σk(x) ∈ RB(K) pour tout k ∈ N.

Soient a0, . . ., ap−1 ∈ K tels que
p−1∑
k=0

ak σ
k(x) = 0. Le polynôme A =

p−1∑
k=0

akX
k appartient à Jx, il est donc multiple

de B, mais degA < p = degB, donc A = 0 et les ak sont tous nuls.(
σk(x)

)
06k6p−1 est donc une famille libre de cardinal p de l’e.v. RB(K) qui est de dimension p (cf I.C.1)) ; c’est

par conséquent une base de RB(K).

Pour n 6 p,
(
σk(x)

)
06k6n−1 est libre en tant que sous-famille d’une famille libre, donc est de rang n.

Pour n > p,
(
σk(x)

)
06k6n−1 est génératrice de RB(K) en tant que sur-famille d’une famille génératrice, donc

est de rang dimRB(K) = p.

A.2) Une suite de RB(K) est entièrement déterminée par ses p premiers termes, et a fortiori par ses n premiers termes

(puisque n > p) ; ϕn est donc injective. D’autre part, ϕn est évidemment linéaire.

Selon A.1), la famille
(
σk(x)

)
06k6n−1 est de rang p donc, par injectivité de ϕn, son image par ϕn est aussi de

rang p. Or,
(
ϕn
(
σk(x)

))
06k6n−1

est la famille des vecteurs-colonne de Hn(x) ; par conséquent, rg
(
Hn(x)

)
= p.

B.1) On sait que m est supérieur ou égal à l’ordre minimal de x donc, d’après A.2), le rang de Hm(x), c’est-à-dire p,
est égal à l’ordre minimal de x.

Toujours d’après A.2), rg
(
Hp+1(x)

)
= p, donc par le théorème du rang, Ker

(
Hp+1(x)

)
est une droite vectorielle.

Soit b = (b0, . . ., bp−1, bp) une base de cette droite vectorielle ; si bp était nul, (b0, . . ., bp−1) serait un vecteur

non nul de Ker
(
Hp(x)

)
, ce qui est impossible puisque Hp(x) est inversible ; donc bp 6= 0 et, quitte à remplacer

b par b/bp, on peut supposer que bp = 1.

B.2) L’égalité Hp+1(x)


b0
...

bp−1
1

 = 0 se traduit par b0


x0
...
...
xp

+ . . . + bp−1


xp−1

...

...
x2p−1

+


xp
...
...
x2p

 = 0, soit encore par

p∑
k=0

bk ϕp+1

(
σk(x)

)
= 0 (où bp = 1), et enfin par ϕp+1

(
p∑
k=0

bk σ
k(x)

)
= 0.

Comme ϕp+1 est injective,
p∑
k=0

bk σ
k(x) = 0 ; le polynôme minimal de x divise donc le polynôme B =

p∑
k=0

bkX
k.

Ces deux polynômes étant unitaires de degré p, ils sont égaux.

C.1) On écrit une procédure Maple utilisant une table locale.

suite := proc(n)

local x,k :

x[0] := 1 : x[1] := 1 : x[2] := 1 : x[3] := 0 :

for k from 4 to n

do

x[k] := x[k-1] - 2*x[k-3]

end do :

return([seq(x[k],k=0..n)])

end proc :

C.2) On calcule x4 = −2 et x5 = x6 = −4, d’où H4(x) =

 1 1 1 0
1 1 0 −2
1 0 −2 −4
0 −2 −4 −4

.

On constate ensuite que rg
(
H4(x)

)
= 3. Comme x est par construction une srl d’ordre 4, la question B.1)

montre que l’ordre minimal de x est 3 et la question A.2) que rg
(
Hn(x)

)
= 3 pour tout n > 3.

Par ailleurs, on a directement rg
(
H1(x)

)
= rg

(
H2(x)

)
= 1.

C.3) On trouve Ker
(
H4(x)

)
= Vect

 0
2
−2

1

 donc, d’après B.1), le polynôme minimal de x est X3 − 2X2 + 2X et la

relation de récurrence minimale de x est : ∀n ∈ N, xn+3 − 2xn+2 + 2xn+1 = 0.

– 2 –



C.4) X3 − 2X2 + 2X = X(X − 1 − i)(X − 1 + i). On peut appliquer I.D en prenant K = C et on en déduit que,

pour n > 1, xn est de la forme α(1 + i)n + β(1− i)n, où α et β sont deux constantes complexes.

Avec x1 = x2 = 1 on trouve α = 1− i
4 et β = 1 + i

4 donc, pour n ∈ N∗ :

xn =
(1− i)(1 + i)n + (1 + i)(1− i)n

4 =
(1 + i)n−1 + (1− i)n−1

2 = Re
(
(1 + i)n−1

)
= (
√

2)n−1 cos
(n− 1)π

4 ·

C.5) Changer x0 ne modifie pas les xn pour n > 1. La nouvelle suite x appartient donc toujours à RX3−2X2+2X(K).

On a maintenant H3(x) =

 1/2 1 1
1 1 0
1 0 −2

 et on constate que rg
(
H3(x)

)
= 2.

On en déduit que l’ordre minimal de x est 2 et que rg
(
Hn(x)

)
= 2 pour tout n > 2. Evidemment, rg

(
H1(x)

)
= 1.

Ensuite, on trouve Ker
(
H3(x)

)
= Vect

(
2
−2

1

)
, donc le polynôme minimal de x est X2 − 2X + 2 et sa relation

de récurrence minimale est : ∀n ∈ N, xn+2 − 2xn+1 + 2xn = 0.

• Partie III

A.1) Une matrice de Hankel est symétrique réelle, donc (ortho-)diagonalisable dansMn(R) ; en particulier, elle possède
n valeurs propres réelles comptées avec leur ordre de multiplicité.

A.2) Par l’absurde, supposons qu’il existe a ∈ R2n−1 tel que Spo
(
H(a)

)
= (λ, λ, . . ., λ).

Comme H(a) est diagonalisable, on aurait H(a) = λIn, d’où a0 = λ et ak = 0 pour 1 6 k 6 n − 1 d’après
la première colonne et a2 = λ d’après la deuxième colonne ; c’est impossible puisque n > 3 et λ 6= 0.

B.1)
n∑
i=1

λi = tr(M) =
n∑
k=1

mk,k =
n−1∑
k=0

a2k.

n∑
i=1

λ2i = tr
(
M2

)
=

n∑
i=1

(
n∑
j=1

mi,jmj,i

)
=

n∑
i=1

(
n∑
j=1

a 2
i+j−2

)
=

∑
06i,j6n−1

a 2
i+j .

=
2n−2∑
k=0

( ∑
06i,j6n−1
i+j=k

a 2
k

)
=
n−1∑
k=0

(k + 1) a 2
k +

2n−2∑
k=n

(2n− k − 1) a 2
k .

(En effet, pour k ∈ [[0, n− 1]] (resp. k ∈ [[n, 2n− 2]]), il existe k + 1 (resp. 2n− k − 1) couples (i, j) ∈ [[0, n− 1]]2

tels que i+ j = k.)

B.2) 〈v, w〉 =
n∑
i=1

viwi =
n∑
i=1

a2i−2 =
n∑
i=1

λi d’après B.1).

‖v‖2 =
n∑
i=1

v 2
i =

p∑
i=1

(2i− 1) a 2
2i−2 +

n∑
i=p+1

(2n− 2i+ 1) a 2
2i−2 =

p−1∑
i=0

(2i+ 1) a 2
2i +

n−1∑
i=p

(2n− 2i− 1) a 2
2i

6
2p−2∑
k=0

(k + 1) a 2
k +

2n−2∑
k=2p

(2n− k − 1) a 2
k 6

n−1∑
k=0

(k + 1) a 2
k +

2n−2∑
k=n

(2n− k − 1) a 2
k =

n∑
i=1

λ 2
i d’après B.1).

(La première majoration est grossière (on a ajouté les termes d’indice impair, qui sont positifs) et la seconde est

justifiée par les inégalités 2p− 2 6 n− 1 et 2p > n.)

B.3)
∑

16i<j6n
(λi−λj)2 = 1

2
∑

16i,j6n
(λi−λj)2 = 1

2
∑

16i,j6n
(λ 2
i +λ 2

j −2λiλj) = 1
2

(
n

n∑
i=1

λ 2
i +n

n∑
j=1

λ 2
j −2

n∑
i=1

λi ·
n∑
j=1

λj

)
= n

n∑
i=1

λ 2
i −

(
n∑
i=1

λi

)2
= n

n∑
i=1

λ 2
i − 〈v, w〉2 d’après l’égalité du B.2).

L’inégalité de Cauchy-Schwarz et l’inégalité du B.2) donnent alors :∑
16i<j6n

(λi − λj)2 > n
n∑
i=1

λ 2
i − ‖v‖2‖w‖2 > n

n∑
i=1

λ 2
i −

(
n∑
i=1

λ 2
i

)
‖w‖2 = Kn

n∑
i=1

λ 2
i .

B.4) Pour n = 3, ‖w‖2 = 1+1
3+1 = 7

3 et l’inégalité (III.1) devient (λ2−λ1)2+(λ3−λ1)2+(λ3−λ2)2 > 2
3(λ 2

1 +λ 2
2 +λ 2

3 ),

ce qui se réécrit 2(λ 2
1 + λ 2

2 + λ 2
3 ) > 3(λ1λ2 + λ1λ3 + λ2λ3) après développement et regroupement.
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C.1) B est diagonalisable et rgB = 3 de façon évidente donc, d’après le théorème du rang, 0 est valeur propre de B

d’ordre n− 3 (si n > 4).

D’autre part, en notant (Ei)16i6n la base canonique de Mn,1(R), BEp = −2Ep,,B(E1 + E2p−1) = E1 + E2p−1
et B(E1 − E2p−1) = −(E1 − E2p−1) donc le spectre ordonné de B est (1, 0, . . ., 0,−1,−2).

C.2) Les seules colonnes de MB éventuellement non nulles sont les colonnes 1, p et 2p − 1 et les termes diagonaux

correspondants sont a2p−2,−2a2p−2 et a2p−2, donc tr(MB) = 0.

L’application de (III.2) à M et B donne alors −2λ1 − λ2 + λn 6 0 6 λ1 − λn−1 − 2λn.

D.1) On remarque que a− c est valeur propre de M associée à

(
1
0
−1

)
. Cela va permettre de factoriser χM .

χM = X3−(2a+c)X2+(a2−2b2−c2+2ac)X+c3+2ab2−a2c−2b2c = (X−a+c)
(
X2−(a+2c)X−2b2+c2+ac

)
.

On en déduit les valeurs propres de M : a− c, a+ 2c+
√
a2 + 8b2

2 et a+ 2c−
√
a2 + 8b2

2 ·

D.2) Cherchons (a, b, c) ∈ R3 tel que a+ 2c+
√
a2 + 8b2

2 = λ1, a− c = λ2 et a+ 2c−
√
a2 + 8b2

2 = λ3.

Cela équivaut à

{
a+ 2c = λ1 + λ3
a− c = λ2√
a2 + 8b2 = λ1 − λ3

ou encore à


a = λ1 + 2λ2 + λ3

3

c = λ1 − λ2 + λ3
3

b2 =
9(λ1 − λ3)2 − (λ1 + 2λ2 + λ3)2

72 ·
De plus, 9(λ1 − λ3)2 − (λ1 + 2λ2 + λ3)2 =

(
3(λ1 − λ3) + (λ1 + 2λ2 + λ3)

)(
3(λ1 − λ3)− (λ1 + 2λ2 + λ3)

)
= 4(2λ1 + λ2 − λ3)(λ1 − λ2 − 2λ3) > 0, d’après les hypothèses.

Le système étudié possède donc une unique solution telle que b > 0.

D.3) On déduit du D.2) que lorsque n = 3, (III.3) est une condition nécessaire et suffisante d’existence d’une matrice

de Hankel de spectre ordonné (λ1, λ2, λ3).

Pour montrer que la condition (III.1) n’est pas suffisante, il suffit de prouver l’existence d’un réel λ > 1 tel que

(λ, 1, 1) vérifie (III.1) mais pas (III.3). Cela conduit au système

{
2λ2 − 6λ+ 1 > 0
1 6 λ < 3.

Comme 2λ2 − 6λ + 1 vaut 1 pour λ = 3, tout réel λ strictement inférieur à 3 et assez proche de 3 est solution
du système précédent.
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