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e Partie I

A. J, # D car 0 € J,.
Soient A et B dans J,. (A+ B)(0)(z) = A(o)(x) + B(o)(z) =0, donc A+ B € J,.
Soient A dans J, et B dans K[X]. (AB)(0)(z) = (B(o) o A(0))(x) = B(c)(0) = 0, donc AB € J,.

J est donc un idéal de K[X] et, par définition méme d’une SRL, il n’est pas réduit & {0}.

B.1) La seule sRL d’ordre 0 est la suite nulle.
Les srRL d’ordre 1 sont les suites géométriques.

(X —1)2 € J, ssi Xpyo—2Tpi1+2, =0 pour tout n € N, donc ssi x est de la forme n — an+b et X —1¢€ J,
ssi o est constante. Les SRL dont le polynéme minimal est (X — 1)? sont donc les suites de la forme n — an+b
avec (a,b) € K*x K ; autrement dit, ce sont les suites arithmétiques non constantes.

B.2) (X +1)% € J,, donc le polynéme minimal de z est de la forme (X + 1)¥, avec k € [0, 3].
x n’est pas une suite géométrique de raison —1, donc k > 2.
On vérifie immédiatement par récurrence que x,o + 2x,41 + x, = 0 pour tout n € N.

On en conclut que le polynéme minimal de  est (X + 1)? et que 'ordre minimal de x est 2.

C.1) Ra(K) = Ker A(c) donc Ra(K) est un sous-e.v. de KN et il est stable par o car o et A(o) commutent.
Ra(K) — K?

L’application linéaire
x> (0,1, ..., Tp_1

) est clairement bijective, donc dim R 4(K) = dimK? = p.

C.2) z € Rx»(K) ssi z, =0 pour n > p donc la famille (ex)ockh<p—1, OU €x = (0k,n)nen, est une base de Rx»(K).

K, 1[X] — KN
Q — (Q)A"),

sur N, donc est nul) et Im¢ = E4(K). Il en résulte que E4(K) est un sous-e.v. de dimension p de K",

C.3) a) L’application 1 : { est linéaire, injective (car si @ € Ker ) alors @) s’annule

b) Notons A, = (X — A)P. Selon C.1) et a), R4, (K) et E4,(K) sont de dimension p ; il suffit donc de montrer
que Ea,(K) C R4, (K), ce que I'on va faire par récurrence sur p.

Pour p =1 c’est évident : Rx_x(K) est ’ensemble des suites géométriques de raison A, i.e. Ex_(K).

b1 (K) 22 = Q(n) A", avee Q € K, [X].
Posons y = Ay (0)(z) = (¢ — AId)(z). On a Ay1(0)(z) = (4pA1)(0)(z) = (Ap(o) 0 A1(0) ) (z) = Ap(o)(y).
D’autre part, y, = Zpi1 — Az, = Q(n+ 1) A" = AQ(n) A" = A (Q(n+1) — Q(n) ) A™.

Le polynome A (Q(X +1)—-Q(X )) est de degré inférieur ou égal & p — 1 donc, par hypothese de récurrence,
y € Ra,(K) et par conséquent = € Ry, , (K).

Supposons 'inclusion démontrée au rang p et considérons = € F 4

p+1

D. Notons A9 = 0. Les polynoémes A, = (X — Ag)™*, avec 0 < k < d, sont deux & deux premiers entre eux donc,
d d
d’apres le théoréme des noyaux, Ker A(o) = @ Ker Ai(0), c’est-a-dire R4(K) = @ R4, (K).
k=0 k=0
On a vu en C.2) que R 4,(0) est 'ensemble des suites nulles & partir du rang mq (y compris si mg = 0) et en C.3)
que pour k € [1,d], Ra, (o) est 'ensemble des suites de la forme n — Q(n) A}’ avec Q € K,,, —1[X]. Il en résulte
aussitot que R 4(K) est I'ensemble des suites de la forme indiquée dans ’énoncé.
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e Partie II

A1) z € Rp(K) donc, d’apres 1.C.1), o¥(x) € Rp(K) pour tout k € N.
p—1 p—1
Soient ag, ...,a,—1 € Ktels que Y aj o*(z) = 0. Le polynome A = >~ a, X" appartient & J, il est donc multiple
k=0 k=0
de B, mais deg A < p =deg B, donc A =0 et les a; sont tous nuls.

(o*(x) )0<k<p71 est donc une famille libre de cardinal p de I'e.v. R(K) qui est de dimension p (¢f I.C.1)) ; c’est
par conséquent une base de Rp(K).

Pour n < p, (c*(z)) est libre en tant que sous-famille d’une famille libre, donc est de rang n.

0<k<n—1
Pour n > p, (Uk(x))ogkgn—l

est de rang dim Rp(K) = p.

est génératrice de Rp(K) en tant que sur-famille d’une famille génératrice, donc

A.2) Une suite de Rp(K) est entierement déterminée par ses p premiers termes, et a fortiori par ses n premiers termes
(puisque n = p) ; p, est donc injective. D’autre part, @, est évidemment linéaire.

Selon A.1), la famille (ak (J;)) est de rang p donc, par injectivité de ¢,, son image par ¢, est aussi de

0<k<n—1

rang p. Or, (cpn (O’k (2) ) >O<k<n71 est la famille des vecteurs-colonne de H,,(z) ; par conséquent, rg (Hn(iﬂ)) =p.

B.1) On sait que m est supérieur ou égal & l'ordre minimal de = donc, d’apres A.2), le rang de H,,(z), c’est-a-dire p,
est égal a 'ordre minimal de z.
Toujours d’apres A.2), rg (Hp+1(z)) = p, donc par le théoreme du rang, Ker (Hp+1(17)) est une droite vectorielle.
Soit b = (bg, ...,bp_1,bp,) une base de cette droite vectorielle ; si b, était nul, (b, ...,by,_1) serait un vecteur
non nul de Ker (Hp(x)), ce qui est impossible puisque Hp(z) est inversible ; donc b, # 0 et, quitte & remplacer
b par b/b,, on peut supposer que b, = 1.

bo ) Tp—1 Tp

B.2) L'égalité Hp,qq1(x) . : =0 se traduit par by +.o by + = 0, soit encore par
p—1 : : :
1 Tp Top—1 T2p

p P
> b ppt1 (0%(x)) =0 (ot b, = 1), et enfin par @11 (Z bk ak(x)> = 0.
k=0 k=0

P P
Comme ¢, est injective, > by o®(x) = 0 ; le polynéme minimal de z divise donc le polynéme B = > by X*.
k=0 k=0
Ces deux polynomes étant unitaires de degré p, ils sont égaux.

C.1) On écrit une procédure MAPLE utilisant une table locale.

suite := proc(n)
local x,k :
x[0] :=1: x[1] :=1 : x[2] :=1 : x[3] := 0 :
for k from 4 to n
do
x[k] := x[k-1] - 2*x[k-3]
end do :
return([seq(x[k],k=0..n)])
end proc :
1 1 1 0
N 1 1 0 -2
C.2) On calcule x4 = —2 et x5 = x¢ = —4, Aot Hy(z) = 1 0 -2 4
0 —2 —4 —4

On constate ensuite que rg (H4(x)) = 3. Comme z est par construction une SRL d’ordre 4, la question B.1)
montre que 'ordre minimal de x est 3 et la question A.2) que rg (Hn(x)) =3 pour tout n > 3.
Par ailleurs, on a directement rg(H;(z)) = rg(Ha(z)) = 1.
0
C.3) On trouve Ker (Hy(z)) = Vect ; donc, d’apres B.1), le polynéme minimal de x est X3 —2X? +2X et la

1
relation de récurrence minimale de x est : Vn € N, x,,43 — 22,49 + 22,41 = 0.
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C4) X3 -2X?2+2X = X(X —1—14)(X —1+1i). On peut appliquer I.D en prenant K = C et on en déduit que,
pour n > 1, x, est de la forme (1 +4)" + S(1 —4)™, ou «a et 3 sont deux constantes complexes.

Avec r1 = x9 =1 on trouve azlzi et 6:111' donc, pour n € N* :

o o A=) +d)"+ A+ —a9)" +i)" (1)t
n 1 2

= Re ((1 + i)"‘l) _ (ﬁ)n—l COS%M.

C.5) Changer x¢ ne modifie pas les x,, pour n > 1. La nouvelle suite = appartient donc toujours & R xs_sx242x (K).

1/2 1 1
On a maintenant Hz(z)= | 1 1 0 | et on constate que rg(Hs(z)) = 2.
1 0 -2
On en déduit que I'ordre minimal de x est 2 et que rg (Hn(x)) = 2 pour tout n > 2. Evidemment, rg (H1 (m)) =1.
2
Ensuite, on trouve Ker (Hg(ac)) = Vect [ —2 |, donc le polynome minimal de 2 est X? —2X + 2 et sa relation
1

de récurrence minimale est : Vn € N, x,, 42 — 22,41 + 22, = 0.

e Partie III

A.1) Une matrice de Hankel est symétrique réelle, donc (ortho-)diagonalisable dans M,,(R) ; en particulier, elle possede
n valeurs propres réelles comptées avec leur ordre de multiplicité.

A.2) Par I'absurde, supposons qu'’il existe a € R?"~! tel que Spo (H(a)) = (A L),
Comme H(a) est diagonalisable, on aurait H(a) = A, d’ot ag = A et ap =0 pour 1 < k < n— 1 d’apres
la premiere colonne et ay = A d’apres la deuxiéme colonne ; c’est impossible puisque n > 3 et A # 0.

oo}
=
SN—
N
=
>~
2
I
+
=
—~
=
I
bl
ii=
3
ol
E
I
bl
I
o
Q
no
=

M=
5
I
=
I
M=
T~
3
3
\&/
I
M=
~
[INgE

2 _ 2
ai+j2> = > A
1 0<s,

i=1 i=1 \j=1 i=1 i,j<n—1
2n—2 n—1 2n—2
=y ( > a,f)zZ(k—Fl)a,f—F (2n—k—1)ap.
k=0 \0<i,j<n—1 k=0 k=n

i+ji=k

(En effet, pour k € [0, n — 1] (resp. k € [n, 2n — 2]), il existe k + 1 (resp. 2n — k — 1) couples (i, j) € [0, n — 1]?
tels que i+ j = k.)

B.2) (v,w) =Y vjw; = > agi—2 = Y, A; d’apres B.1).
i=1 i=1 i=1
n P n p—1 n—1
o] =Y 02 =Y (2i-1Dagi_o+ X (2n—2i+1)agi_,= > (2i+1)as+ > (2n—2i—1)az,
i=1 i=1 i=p+1 i=0 i=p
2p—2 2n—2 n—1 2n—2 n
< (k+Da2+ > 2n—k—1)a? < > (k+1)af+ > 2n—k—1)a? = \? d’apres B.1).
k=0 k=2p k=0 k=n i=1

(La premiére majoration est grossiére (on a ajouté les termes d’indice impair, qui sont positifs) et la seconde est
justifiée par les inégalités 2p —2<n—1 et 2p > n.)

B3) Y (AM—A)2=3 X N-A)P=1 0% (WVHAar-2a) =3 (n )IPEER'D SPEECD IO Aj>
1<i<j<n 1<ij<n 1<i,j<n i=1 j=1 i=1  j=1
n 2 n
=ndY A\ — ( > )\i> =n Y A? — (v,w)? d’apres égalité du B.2).
i i=1 i=1
L’inégalité de Cauchy-Schwarz et 'inégalité du B.2) donnent alors :

Y (=) zn 2&2 = llPlw]? = n ;Af - (ZIA2> [w]|* = K, ;Aﬁ

1<i<j<n

B.4) Pourn =3, ||w|®> = 1+%+1 = % et I'inégalité (I11.1) devient (Aa—A1)2+(A3—A1)2+(N3—A2)? > %(Af+/\§+>\§),

ce qui se rééerit 2(A2 + A7 + A2) = 3(A1 A2 + A1 A3 + A2A3) apres développement et regroupement.
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C.1) B est diagonalisable et rg B =3 de fagon évidente donc, d’apres le théoréeme du rang, 0 est valeur propre de B
d’ordre n — 3 (si n > 4).
D’autre part, en notant (E;)1<i<n la base canonique de M,, 1(R), BE, = —2E,, B(E1 + Ezp_1) = E1 + Egp_1
et B(E1 — Eop—1) = —(E1 — Egp—1) donc le spectre ordonné de B est (1,0, ...,0,—1, —2).

C.2) Les seules colonnes de M B éventuellement non nulles sont les colonnes 1,p et 2p — 1 et les termes diagonaux
correspondants sont agp_2, —2a2p—2 €t agp_2, donc tr(MB) = 0.
L’application de (I11.2) & M et B donne alors —2X; — Ag + A\, KO0 < A1 — A1 — 2.

1
D.1) On remarque que a — ¢ est valeur propre de M associée & ( 0 ) Cela va permettre de factoriser x ;.
-1
xm = X3—(2a40) X%+ (a? — 20> — ® +2ac) X +* +2ab* —a’c—2b%c = (X —a+c) (X2 = (a+2c) X —2b? +c*+ac).

a2 2 /g2 2
On en déduit les valeurs propres de M : a — ¢, a+2c+2a + 8b ot @t2c 2a + 867,

:Al,a—C:)\g et a+26_2a2+8b2 :)\3.
)\1+2§\2+)\3
A=A+ A3
9(AL — Ag)® — (A1 42X + Ag)?
72

D.2) Cherchons (a,b,¢) € R? tel que &+ 2c+ 5 a? + 8b

a+2c = A+ A3 a@ =
Cela équivaut a a—c = A ou encore a c =

\/02+8b2=>\1—)\3 b2:

De plus, 9()\1 - )\3)2 — ()\1 +2X + )\3)2 = (3()\1 — )\3) + (/\1 + 22 + )\3)) (3()\1 - )\3) — ()\1 + 22 + )\3))
=4(2X1 + A3 — A3)(A1 — A3 — 2)3) > 0, d’apres les hypotheses.
Le systeme étudié possede donc une unique solution telle que b > 0.

D.3) On déduit du D.2) que lorsque n = 3, (IIL.3) est une condition nécessaire et suffisante d’existence d’une matrice
de Hankel de spectre ordonné (A1, Az, Az).
Pour montrer que la condition (ITI.1) n’est pas suffisante, il suffit de prouver I’existence d'un réel A > 1 tel que
202 —6A+12>0
1< A<

Comme 2)2 — 6 + 1 vaut 1 pour A = 3, tout réel A strictement inférieur & 3 et assez proche de 3 est solution
du systeme précédent.

(A, 1,1) vérifie (II1.1) mais pas (II1.3). Cela conduit au systeme {




