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Probléme des moments

On note E 'ensemble des fonctions f continues, définies sur R, a valeurs
positives ou nulles, et vérifiant I'équation

f fxX)dx=1.
R

Lorsqu’elle existe, la fonction caractéristique de f € E estla fonction ¢pr:R — C
définie par la formule

Gr(H) = fR e’ f(x)dx.

Lorsque pour un entier k = 0, la fonction x — |x|¥ f(x) est intégrable sur R, on
appelle moment d’ordre k de f la quantité

ax(f) = fokf(x)dx.

Si, pour tout entier k = 0, la fonction x — | x|k f(x) est intégrable sur R, on dit
que f admet des moments de tous ordres.
On admettra que pour tout A € C,

x? A?
f exp(Ax— ?) dx=V2n exp(?).
R

A. Questions préliminaires.

Les résultats de ces questions, indépendantes les unes des autres, pourront étre
utilisés dans la suite du probleme.

1) Soit f € E. On suppose, dans cette question, que f admet des moments
de tous ordres.
Montrer I'existence de ¢ et de ses dérivées successives que I'on expri-
mera a I'aide de f.

2) Montrer que pour tout réel x et tout entier n =1,

n-1(;,\m n
oix_ y (ix) - |lx™
m=o m! n!

3) Soit a, b € R tels que a < b. Montrer que la fonction h, ; définie sur R par

eita _ —ith

e .
hap(8) = 7 si t#0
b—a si t=0

est continue sur R.



4) Montrer que pour toutréel ¢, [h, (1) < b - a.
k

k
5) Montrer que pour tout entier k =0, ek > R

B. Lafonction ¢ caractérise f

On considere la fonction R définie pour tout (6, T) € R x R* par la formule

T .
RO, T):f sm(Bt)dt
T t

et la fonction S définie pour tout T € R par la formule

T -
S(T) :f SIDY dx.
0 X

. b4
On admet que lim7_. 1, S(T) = 7
6) Exprimer R(0, T) al’aide de S.

7) Soit x,y € R. Calculer la limite de R(x,T) — R(y,T) quand T — 400 (on
discutera de cette limite en fonction des signes de x et y).

8) Soit a, b e R tels que a < b. Montrer que

On admet que l'on peut intervertir l'intégrale sur [-T, T] et 1 T b
f(ndt.
a

l'intégrale sur R définissant ¢y pour appliquer le TCVD. Tl—1>IPoo g r ha, b ( t ) (,b f ( r ) dt=

9) En déduire qu’étant donné deux fonctions f et g de E, si ¢5 = ¢pg, alors

f=g

C. Lasuite ai(f) ne caractérise pas toujours [

On définit la fonction fj par
(In x)?

1 exp( 5 )
o) =4 vVan X

pour x >0,

0 pour x < 0.

10) Montrer que fj € E.

11) Montrer que fy admet des moments de tous ordres et calculer a( fy) pour
tout k € N.

On introduit, pour a € [-1, 1], la fonction f, définie sur R par la formule
fa(x) = fo(x)-(1 + asin@7Inx)).

12) Montrer que f, € E, et que ax(fy) = ar(f,) pour tout k € N.



D. Une condition sur la suite a;(f)

Dans cette partie, f est une fonction de E qui admet des moments de tous
ordres, et vérifie en outre la condition (U) suivante :

i (f)7F
(U) Il existe M > 0 tel que pour tout entier k>0, 0< %T < M.

On pose bi(f) = f lekf(x)dx pour tout entier k > 0.
R
13) Montrer que, pour tout entier k = 0, on a I'inégalité
(b2k+1(f))2 < api(f) - azg2(f).

bk(f)%

14) En déduire que la suite de terme général est majorée par 2M.

15) Montrer que pour tous x et & réels, et pour tout entier n =1,

<+m-Eﬂﬁ<m(><&ﬁb<>
Prix mzom!(pf NS ntf)-

16) Montrer que, pour un certain A > 0 que I'on exprimera en fonction de M,

on a 'égalité
(o] hm

Grx+h) = n;o%(b}m) (x)

pour tout réel x et pour tout h tel que |h| < A.

17) En déduire que si ¢ est un entier > 0 et g une fonction de E admettant des
moments de tous ordres tels que ay(f) = ar(g) pour tout k € N, alors

¢ (x) = Pglx)
(A (A

pour tout x € [-57, 5°] (on pourra procéder par récurrence).

18) Conclure.

E. Application

19) Résoudre en f € E le systeme d’équations suivant :

ari(f) = 2k -1 azk—2(f)
azie-1(f) =0

pour tout entier k = 1. (On pourra utiliser la fonction caractéristique de f.)

FIN DU PROBLEME



