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Problème des moments

On note E l’ensemble des fonctions f continues, définies sur R, à valeurs
positives ou nulles, et vérifiant l’équation∫

R
f (x)d x = 1.

Lorsqu’elle existe, la fonction caractéristique de f ∈ E est la fonction φ f :R→C

définie par la formule

φ f (t ) =
∫
R

e i t x f (x)d x.

Lorsque pour un entier k Ê 0, la fonction x 7→ |x|k f (x) est intégrable sur R, on
appelle moment d’ordre k de f la quantité

ak ( f ) =
∫
R

xk f (x)d x.

Si, pour tout entier k Ê 0, la fonction x 7→ |x|k f (x) est intégrable sur R, on dit
que f admet des moments de tous ordres.

On admettra que pour tout λ ∈C,∫
R

exp
(
λx − x2

2

)
d x =p

2π exp
(λ2

2

)
.

A. Questions préliminaires.

Les résultats de ces questions, indépendantes les unes des autres, pourront être
utilisés dans la suite du problème.

1) Soit f ∈ E . On suppose, dans cette question, que f admet des moments
de tous ordres.

Montrer l’existence de φ f et de ses dérivées successives que l’on expri-
mera à l’aide de f .

2) Montrer que pour tout réel x et tout entier n Ê 1,∣∣∣∣∣e i x −
n−1∑
m=0

(i x)m

m!

∣∣∣∣∣É |x|n
n!

·

3) Soit a,b ∈R tels que a < b. Montrer que la fonction ha,b définie sur R par

ha,b(t ) =
{

e−i t a −e−i tb

i t si t 6= 0

b −a si t = 0

est continue sur R.
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4) Montrer que pour tout réel t , |ha,b(t )| É b −a.

5) Montrer que pour tout entier k Ê 0, ek Ê kk

k !
·

B. La fonction φ f caractérise f

On considère la fonction R définie pour tout (θ,T ) ∈R×R+ par la formule

R(θ,T ) =
∫ T

−T

sin(θt )

t
d t

et la fonction S définie pour tout T ∈R par la formule

S(T ) =
∫ T

0

sin x

x
d x.

On admet que limT→+∞ S(T ) = π

2
.

6) Exprimer R(θ,T ) à l’aide de S.

7) Soit x, y ∈ R. Calculer la limite de R(x,T )−R(y,T ) quand T → +∞ (on
discutera de cette limite en fonction des signes de x et y).

8) Soit a,b ∈R tels que a < b. Montrer que

lim
T→+∞

1

2π

∫ T

−T
ha,b(t )φ f (t )d t =

∫ b

a
f (t )d t .

9) En déduire qu’étant donné deux fonctions f et g de E , si φ f = φg , alors
f = g .

C. La suite ak( f ) ne caractérise pas toujours f

On définit la fonction f0 par

f0(x) =


1p
2π

exp
(− (ln x)2

2

)
x

pour x > 0,

0 pour x É 0.

10) Montrer que f0 ∈ E .

11) Montrer que f0 admet des moments de tous ordres et calculer ak ( f0) pour
tout k ∈N.

On introduit, pour a ∈ [−1,1], la fonction fa définie sur R par la formule

fa(x) = f0(x) · (1+a sin(2π ln x)).

12) Montrer que fa ∈ E , et que ak ( f0) = ak ( fa) pour tout k ∈N.
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On admet que l'on peut intervertir l'intégrale sur [-T, T] et 
l'intégrale sur     définissant      pour appliquer le TCVD.



D. Une condition sur la suite ak( f )

Dans cette partie, f est une fonction de E qui admet des moments de tous
ordres, et vérifie en outre la condition (U) suivante :

(U) Il existe M > 0 tel que pour tout entier k > 0, 0 É a2k ( f )
1

2k

2k
É M .

On pose bk ( f ) =
∫
R
|x|k f (x)d x pour tout entier k > 0.

13) Montrer que, pour tout entier k Ê 0, on a l’inégalité(
b2k+1( f )

)2 É a2k ( f ) ·a2k+2( f ).

14) En déduire que la suite de terme général
bk ( f )

1
k

k
est majorée par 2M .

15) Montrer que pour tous x et h réels, et pour tout entier n Ê 1,∣∣∣∣∣φ f (x +h)−
n−1∑
m=0

hm

m!
φ(m)

f (x)

∣∣∣∣∣É |h|n
n!

bn( f ).

16) Montrer que, pour un certain A > 0 que l’on exprimera en fonction de M ,
on a l’égalité

φ f (x +h) =
∞∑

m=0

hm

m!
φ(m)

f (x)

pour tout réel x et pour tout h tel que |h| < A.

17) En déduire que si ` est un entier > 0 et g une fonction de E admettant des
moments de tous ordres tels que ak ( f ) = ak (g ) pour tout k ∈N, alors

φ f (x) =φg (x)

pour tout x ∈ [−`A
2 , `A

2 ] (on pourra procéder par récurrence).

18) Conclure.

E. Application

19) Résoudre en f ∈ E le système d’équations suivant :{
a2k ( f ) = (2k −1)a2k−2( f )

a2k−1( f ) = 0

pour tout entier k Ê 1. (On pourra utiliser la fonction caractéristique de f .)

FIN DU PROBLÈME
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