
CORRIGÉ DU CONCOURS GÉNÉRAL 2025 DE LA RMS

Exercice 1 : Addition sur une parabole
1. La droite passant par A et B coupe ∆ en un point de coordonnées (x ;−1) tel que (x ;−1)− �xA ; x 2

A

�
soit

colinéaire à
�
xB ; x 2

B

�− �xA ; x 2
A

�
= (xB − xA) (1; xA + xB ). Comme xB 6= xA (sinon on aurait yB = yA), on en déduit

que (x − xA ;−1− x 2
A) est proportionnel à (1; xA + xB ), c’est-à-dire x − xA =

−1− x 2
A

xA + xB
. Après simplification on

obtient
xA⊕B =

xA xB −1

xA + xB

2. On a
x(A⊕B )⊕C =

xA⊕B xC −1

xA⊕B + xC
=

xA xB xC − (xA + xB + xC )
xA xB + xB xC + xC xA −1

.

Comme l’expression est invariante par permutation circulaire, elle vaut x(B⊕C )⊕A, et comme l’opération
⊕ est symétrique d’après la question 1, elle vaut xA⊕(B⊕C ).

3. (a) La tangente en A a pour équation y = yA + 2xA (x − xA) = 2xA x − x 2
A. Elle coupe ∆ au point (xA⊕A ;−1)

tel que −1= 2xA xA⊕A − x 2
A, ce qui se simplifie en

xA⊕A =
x 2

A −1

2xA
.

(b) Le calcul est le même qu’à la question 2 , en remplaçant xB par xA.
4. (a) Montrons par récurrence que xn 6= 0 pour tout n . L’assertion est vraie pour n = 0 car x0 = 3. Soit n ∈N

tel que xn 6= 0, montrons xn+1 6= 0. Comme xn 6= 0 on a xn+1 =
x 2

n −1

2xn
. Supposons par l’absurde xn+1 = 0.

Alors x 2
n = 1. Nécessairement n ¾ 1 et, d’après la relation de récurrence, xn−1 6= 0 et xn =

x 2
n−1−1

2xn−1
.

On en déduit que x 2
n−1 − 1 = ±2xn−1, puis (xn−1±1)2 = 2. Or, une récurrence immédiate montre que

xk ∈Q pour tout k , d’où une contradiction. On a ainsi montré que xn 6= 0 pour tout n .
(b) Si la suite (xn ) convergeait vers un nombre ℓ ∈R, en passant à la limite l’égalité xn+1 (2xn ) = x 2

n − 1 il
viendrait 2ℓ2 = ℓ2−1, donc ℓ2 =−1, ce qui est impossible.

5. Les points E (c ) sont nécessairement de la forme
�
x ; x 2
�
avec x =

a

b
, b ∈ ¹1; e c º et a ∈ ¹−e c ; e c º, donc E (c )

est de cardinal ¶ e c (2e c +1).
6. Si un nombre premier p divise à la fois a 2 − b 2 et a b , alors p divise a ou b . S’il divise a alors p | a 2 donc

p | a 2− �a 2− b 2
�
= b 2, d’où p | b , ce qui contredit le fait que a et b sont premiers entre eux. De même on

montre que p |b =⇒ p |a .
7. Soient a ∈Z∗ et b ∈N∗ premiers entre eux tels que xP =

a

b
, alors

xP⊕P =
a 2− b 2

2a b
.

Si a 2 = b 2 alors, comme a et b sont premiers entre eux, on a xP =±1 et xP⊕P = 0 donc h (P ⊕P ) = h (P ) = 0.
Supposons dorénavant a 2 6= b 2 et soit c = H (xP ) = max(|a |, |b |). Si a 2 − b 2 est impair alors il est à la fois
premier avec a b et avec 2 , donc la dfraction a 2− b 2

2a b
est irréductible.

Par conséquent H (xP⊕P ) =max
���a 2− b 2
�� , 2|a b |	. Alors H (xP⊕P )¶max

�
c 2, 2c 2
	
= 2c 2.

D’autre part, si |a |, |b |¾ c /2 alors H (xP⊕P )¾ 2|a b |¾ c 2, et si |a |< c /2 ou |b |< c /2 alors

H (xP⊕P )¾
��a 2− b 2
��¾ c 2− (c /2)2 = 3c 2/4.

Ainsi, lorsque a 2− b 2 est impair on a dans tous les cas H (xP ⊕ xP )/H (xP )
2 ∈ [3/4; 2].
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Si a 2− b 2 est pair alors la fraction
a 2−b 2

2

a b
est irréductible donc

H (xP⊕P ) =max
���a 2− b 2
��/2, |a b |	

D’après le même calcul que plus haut on a H (xP ⊕ xP )/H (xP )
2 ∈ [3/8;1]. Par conséquent on a pour tout

P tel que xP ∈Q∗ :
H (xP ⊕ xP )/H (xP )

2 ∈ [3/8;2].

En passant au logarithme, il vient

m +h (P ⊕P )¶ 2h (P )¶ h (P ⊕P )+M

avec m = ln(1/2) et M = ln(8/3).
8. (a) La suite vn =

∑n−1
k=0 |uk+1−uk | est croissante et majorée, donc converge.

(b) Comme −|un+1−un |¶ un+1−un ¶ |un+1−un |, en additionnant |un+1−un | il vient
0¶ un+1−un + |un+1−un |¶ 2 |un+1−un | .

(c) Soit wn = un + vn . Les inégalités précédentes indiquent que 0¶wn+1−wn ¶ 2 (vn+1− vn ) donc la suite
(wn ) est croissante. De plus, en additionnant ces inégalités entre 0 et n − 1, il vient wn −w0 ¶ 2vn ,
donc la suite (wn ) est majorée. Par conséquent elle converge.

(d) Comme un = (un + vn )− vn , la suite (un ) converge.
9. D’après la question 7, on a m +h (An+1)¶ 2h (An )¶ h (An+1) +M donc, en divisant par 2n+1, on voit que la

suite (tn ) définie par tn =
h (An )

2n
vérifie

m

2n+1
+ tn+1 ¶ tn ¶ tn+1+

M

2n+1

On en déduit que |tn+1− tn |¶ m ′
2n+1

où m ′ =max(|M |, |m |), et donc
n−1∑
k=0

|tk+1− tk |¶m ′
n−1∑
k=0

2−(k+1) ¶m ′

D’après la question 8, la suite (tn ) converge.

Exercice 2 : Suite positive et suite bornée
1. (a) Si α¾ 1 alors u2 = 1−α¶ 0 donc aucun réel de l’intervalle [ 1;+∞ [ ne vérifie la propriété P .

(b) Comme un+2 ¾ u 2
n+1, une récurrence double immédiate montre que un > 0 pour tout n . Par consé-

quent, les réels appartenant à ] −∞; 0] vérifient tous la propriété P .
2. (a) Montrons la propriété 0< un+1 ¶ un ¶ 1 par récurrence sur n .

Elle est satisfaite pour n = 0. Supposons-la vraie au rang n − 1 pour un certain n ∈N∗, alors un+1 > 0
puisque α vérifie la propriété P , et un+1 = u 2

n −αu 4
n−1 ¶ u 2

n ¶ un ¶ 1 par hypothèse de récurrence,
donc la propriété est vraie au rang n .

(b) La suite (un ) étant décroissante et minorée (par 0), elle converge. Soit ℓ ∈ [0,1] sa limite. En faisant
tendre n vers +∞ dans la relation de récurrence un+2 = u 2

n+1 −αu 4
n , il vient ℓ = ℓ2 −αℓ4. Si ℓ > 0 alors

on obtient 1= ℓ−αℓ3 < ℓ ce qui est contradictoire. Donc (un ) tend vers 0 .

(c) xn+1 =
u 2

n+1−αu 4
n

u 2
n+1

= 1− α
x 2

n

.

(d) On a x0 = 1 et x1 = 1−α ¶ x0. La fonction f (x ) = 1− α
x 2

est croissante sur R∗+. Or pour tout n , xn ∈ R∗+
et xn+1 = f (xn ) donc une récurrence immédiate montre que xn+1 ¶ xn pour tout n . La suite (xn )
est donc décroissante et minorée (par 0), donc convergente. L’égalité xn+1 x 2

n = x 2
n − α entraîne

x 3∞ = x 2∞−α, ce qui équivaut à x 2∞ (1− x∞) =α.
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(e) Étudions la fonction g (x ) = x 2(1− x ) sur [0;1]. Comme g ′(x ) = x (2−3x ), la fonction g est croissante sur�
0;

2

3

�
et décroissante sur

�
2

3
;1
�
, par conséquent

α= g (x∞)¶ g
�

2

3

�
=

4

27
.

3. On a vu que les réels vérifiant la propriété P appartiennent à
�
−∞;

4

27

�
et que les réels appartenant

à ] −∞;0 ] vérifient tous la propriété P . Réciproquement, soit α ∈
�
0;

4

27

�
. Comme g est strictement

décroissante et continue sur
�

2

3
; 1
�
, il existe un et un seul réel x∞ ∈

�
2

3
; 1
�
tel que g (x∞) =α. Comme f est

croissante sur R+, pour tout x ∈ [x∞;1] on a x∞ = f (x∞)¶ f (x )¶ f (1)¶ 1. Par conséquent, une récurrence
immédiate montre que xn ∈ [x∞;1] pour tout n . Comme xn−1 =

un

u 2
n−1

pour tout n ¾ 1, on en déduit que

un > 0. Conclusion : l’ensemble des réels vérifiant la propriété P est
�
−∞;

4

27

�
.

4. (a) Supposons α < 0, alors pour tout n ¾ 0, on a un+2 = u 2
n+1 −αu 4

n > u 2
n+1. Par récurrence immédiate on

en déduit que un ¾ 1 pour tout n . On a alors u 2
n+1 ¾ un+1, ce qui entraîne que (un ) est croissante. Si

elle était bornée, sa limite ℓ vérifierait ℓ¾ u2 > 1, et aussi ℓ= ℓ2−αℓ4 > ℓ2 > ℓ, ce qui est contradictoire.
Donc aucun réel de l’intervalle ] −∞;0 [ ne vérifie la propriété B .

(b) Soit α ∈ [0;1]. Soit n tel que |un | ¶ 1 et |un+1| ¶ 1. Alors un+2 ¶ u 2
n+1 ¶ 1, et un+2 ¾ −αu 4

n ¾ −u 4
n ¾ −1. Par

récurrence on en déduit que |un | ¶ 1 pour tout n . Conclusion : tout réel de l’intervalle [0;1] vérifie
la propriétéB .

5. (a) Montrons par récurrence que pour tout n ¾ 1, vn = |un−1| ou vn = |un |. La propriété est vraie pour
n = 1. Supposons-la vraie au rang n . Si vn = |un | alors vn+1 =max (|un+1| , vn ) est égal à |un | ou |un+1|. Si
vn = |un−1| alors |un |¶ |un−1| donc

|un+1|=
��u 2

n −αu 4
n−1

��¾αu 4
n−1−u 2

n ¾ 2u 4
n−1−u 2

n−1.

Or |un−1| = vn ¾ |u0| = 1 donc u 4
n−1 ¾ u 2

n−1, ce qui implique |un+1| ¾ u 2
n−1 ¾ |un−1| = vn . Par conséquent,

vn+1 =max (vn , |un+1|) = |un+1|, ce qui montre la propriété au rang n +1. Par récurrence, elle est vraie
pour tout n .

(b) Supposons par l’absurde que α vérifie la propriété B . La suite (vn ) étant croissante et bornée, elle
converge vers une limite ℓ. On a ℓ¾ 1 puisque v0 = 1. Comme ℓ

α−1
< ℓ, il existe N tel que vN >

ℓ

α−1
.

Soit n ¾N . Si vn = |un−1| alors
vn+1 = |un+1|=

��u 2
n −αu 4

n−1

��
¾αu 4

n−1−u 2
n ¾αu 4

n−1−u 2
n−1 =
�
αv 2

n −1
�

v 2
n ¾ (α−1)vn > ℓ,

ce qui est impossible. Par conséquent, pour tout n ¾N on a vn = |un |. En faisant tendre n vers +∞
dans l’égalité |un+2|=

��u 2
n+1−αu 4

n

��, il vient
ℓ=
��ℓ2−αℓ4
��= �αℓ2−1
�
ℓ2 ¾ (α−1)ℓ > ℓ

ce qui est contradictoire. Par conséquent α ne vérifie pas la propriétéB .
6. (a) On a directement

P
�

11−2α

7

�
=
−8α4+132α3−726α2+1429α−882

343
=
(2−α)Q (α)

73
.

(b) Pour tout x ¾ 1, P ′(x ) = 3αx 2 − 1 ¾ 3α − 1 ¾ 3 − 1 > 0 donc P est strictement croissante sur [1;+∞[.
Par ailleurs, les racines de Q ′ sont 13

2
et 19

6
. Comme elles sont strictement plus grandes que 2, et

comme le coefficient dominant de Q est strictement positif, on a Q ′(x )> 0 pour tout x ¶ 2 donc la
fonction Q est strictement croissante sur [ 1;2 ].

(c) On a Q (9/7) = 6651/343> 0 donc Q (α)> 0.
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(d) Comme u2 = 1−α, on a

−u3− 11−2α

7
=−(1−α)2+α− 11−2α

7
= (2−α)
�
α− 9

7

�
¾ 0

donc −u3 ¾ (11−2α)/7.
(e) Comme Q (α) > 0, d’après la question a) on a P ((11− 2α)/7) > 0. D’ après la question d) et la crois-

sance de P , on en déduit P (−u3)> 0. Comme dans la question 5, définissons vn =max{|u0| , . . . , |un |}.
Montrons qu’on a encore pour tout n ¾ 1 :

vn = |un | ou vn = |un−1| (Pn )

Les assertions (P1) et (P2) sont vraies car u0 = u1. Montrons (P3). Ona−u3 ¾ (11−2α)/7¾ 1 et |u2|=α−1< 1
donc v3 =−u3 = |u3|. Soit n ¾ 3 telle que (Pn ) soit vraie, etmontrons (Pn+1). Comme vn+1 =max (vn , |un+1|),
c’est évident si vn = |un |. Supposons vn = |un−1|. Alors

|un+1|¾αu 4
n−1−u 2

n ¾αv 4
n − v 2

n = vn (1+P (vn )) .

Or vn ¾−u3 donc P (vn )¾ P (−u3)> 0, par conséquent |un+1|¾ vn .
On en déduit que vn+1 =max (vn , |un+1|) = |un+1|.
On a ainsi montré par récurrence que (Pn ) est vraie pour tout n ¾ 1.
Supposons maintenant par l’absurde que α vérifie la propriété B . Alors la suite (vn ) est croissante
majorée. Soit ℓ sa limite. Pour tout n ¾ 0 on a αu 4

n −u 2
n+1 =−un+2 ¶ ℓ donc αu 4

n ¶ u 2
n+1+ ℓ¶ ℓ2+ ℓ. On a

aussi αu 4
n−1 ¶ ℓ2+ ℓ pour tout n ¾ 1 donc

αv 4
n =max
�
αu 4

n ,αu 4
n−1

�
¶ ℓ2+ ℓ.

En passant à la limite, il vient αℓ4 ¶ ℓ2+ ℓ. Comme ℓ¾ |u0|> 0, on peut simplifier par ℓ, ce qui donne
αℓ3 ¶ ℓ+1, soit P (ℓ)¶ 0. Or P (ℓ)¾ P (v3)¾ P (|u3|)> 0, ce qui est contradictoire. Conclusion : aucun réel
de l’intervalle

�
9

7
;2
�
ne vérifie la propriétéB .

7. (a) Montrons par récurrence sur k ¾ 1 que un+k = u 2k−1

n+1Sk (xn ). C’est évident pour k = 1. Montrons-le pour
k = 2 :

u 2
n+1S2 (xn ) = u 2

n+1

�
1−αx 4

n

�
= u 2

n+1

�
1−αu 4

n/u
2
n+1

�
= un+2.

Supposons maintenant la propriété vraie aux rangs k et k −1 pour un certain k ¾ 2. Alors

un+k+1 = u 2
n+k −αu 4

n+k−1 = u 2k

n+1Sk (xn )
2−αu 2k

n+1Sk−1 (xn )
2 = u 2k

n+1Sk+1 (xn ) ,

ce qui prouve la propriété au rang k +1.
(b) Notons (Pn ) la propriété : 1¶ un+1 ¶ u 2

n < t (α)2un+1. Soit n vérifiant (Pn ). Les inégalités

1< S4(x )¶ S3(x )
2 ¶ t (α)2S4(x )

sont équivalentes, d’après la question précédente, à

1<
un+4

u 8
n+1

¶
�

un+3

u 4
n+1

�2
< t (α)2

un+4

u 8
n+1

,

ce qui se simplifie en
u 8

n+1 < un+4 ¶ u 2
n+3 < t (α)2un+4

Or (Pn ) entraîne que un+1 ¾ 1, donc les inégalités précédentes impliquent (Pn+3). Comme (P0) est
vraie, on en déduit par récurrence immédiate que (P3k ) est vraie pour tout k . D’autre part, on
vient de voir que si n vérifie (Pn ) alors u 8

n+1 < un+4. Pour n = 0 cela entraîne u4 > 1. D’autre part, pour
n = 3k on obtient u 8

3k+1 < u3(k+1)+1 donc par récurrence immédiate, u3k+1 > u 8(k−1)
4 , ce qui montre

que α ne vérifie pas la propriétéB .
8. (a) S4(x ) = S3(x )2−αS2(x )4 ¶ S3(x )2 car α¾ 0.
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(b) Posons α= 1+β avec 0<β < 2/7. Soit x ∈ [1; t (α)]. On a

1−αt (α)4 ¶ 1−αx 4 = S2(x )¶ 1−α< 0

donc 0< (α−1)2 ¶ S2(x )2 ¶
�
αt (α)4−1
�2, ce qui donne

0< S2(x )
2 ¶ (α(α+2)/3−1)2

En remplaçant α par 1+β , il vient

0< S2(x )
2 ¶ ((1+β )(3+β )/3−1)2 =β 2(β +4)2/9<

2β

7×9

�
2

7
+4
�2
=

200

343
β .

Or 200

343
<

7

12
donc on obtient bien

0< S2(x )
2 ¶ 7(α−1)

12

(c) On a S3(x ) = S2(x )2−α et

S4(x ) = S3(x )
2−αS2(x )

4 = (1−α)S2(x )
4−2αS2(x )

2+α2

donc il suffit de montrer que f
�
S 2

2

�
< 0 où f (x ) = (α− 1)x 2 + 2αx + 1−α2. Comme f est un polynôme

du second degré avec coefficient dominant strictement positif, l’ensemble des x tels que f (x )< 0
est un intervalle ouvert, donc il suffit de montrer qu’il contient 0 et 7(α−1)/12.
On a clairement f (0) = 1−α2 < 0. On a

f (7(α−1)/12) =
(α−1)
�
49α2−74α−95

�
144

donc il suffit de montrer que 49α2 − 74α− 95 < 0. Notons g (α) ce polynôme du second degré, alors
g (1) =−120< 0 et g (9/7) =−764/7< 0, ce qui conclut.

(d) Posons x = t (α). On a S3(x ) = S2(x )2−α¶ 7(α−1)/12−α=−(5α+7)/12.

Montrons l’inégalité S3(x )2 ¶
2+ x 4

3
S4(x ). Celle-ci équivaut à

S3(x )
2 ¶ 2+ (α+2)/3

3

�
S3(x )

2−αS2(x )
4
�

,

ce qui se simplifie en
α−1

9
S3(x )

2 ¾ α(α+8)
9

S2(x )
4.

Or S3(x )2 ¾ (5α+7)2/144 et S2(x )2 ¶ 7(α−1)/12 donc il suffit de montrer que

(α−1)(5α+7)2

9×144
¾ α(α+8)

9
×
�

7(α−1)
12

�2
L’inégalité se simplifie en (5α+7)2 ¾α(α+8)×49(α−1).

Or α(α+8)¶ 9

7
× 56

7
=

585

49
donc il suffit de montrer que (5α+7)2 ¾ 585(α−1).

La fonction α 7→ (5α+7)2−585(α−1) ayant pour dérivée 10(5α+7)−585¶ 940

7
−585< 0 pour tout α< 9/7,

il suffit de vérifier que l’inégalité est vraie pour α= 9/7, ce qui est le cas puisque�
5× 9

7
+7
�2
=

8836

49
>

1170

7
= 585
�

9

7
−1
�

(e) Soit T (x ) =
S4(x )
S3(x )2

. On a T (x ) = 1−αS2(x )4

S3(x )2
, donc T a le même sens de variation que x 7→ S3(x )2

S2(x )4
. Or

S3(x )< 0 (voir la première ligne de la réponse à la question d) donc T a le même sens de variation
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que −S3(x )
S2(x )2

=−1+
α

S2(x )2
. Puisque S2(x ) = 1−αx 4 est décroissante négative, x 7→ S2(x )2 est croissante

donc T est décroissante. f ) On a déjà montré à la question c que 1< S4(x ) pour tout x ∈ [1; t (α)]. Il
reste à voir que 1¶ S3(x )2

S4(x )
¶ t (α)2, ce qui équivaut à

1

t (α)2
¶ T (x )¶ 1

Comme T est décroissante sur [1; t (α)], il suffit de vérifier que T (1) ¶ 1 et que T (t (α)) ¾ 1

t (α)2
. La

première inégalité a été démontrée à la question a) et la deuxième à la question d).
9. On a montré que les réels 6= 2 qui vérifient la propriété B sont ceux qui appartiennent à [0;1]. ll reste à

examiner le cas α = 2. La suite vérifie alors un = −1 pour tout n ¾ 2, donc 2 vérifie la propriété B . On en
déduit que l’ensemble des réels qui vérifient la propriétéB est [0;1]∪{2}.

Exercice 3
1. Une fonction constante f (x ) = c vérifie E si c =

1

2
+
p

c − c 2. En retranchant 1

2
et en élevant au carré,

il vient c 2 − c +
1

4
= c − c 2, ce qui équivaut à l’équation du second degré c 2 − c +

1

8
= 0. Cette dernière

admet pour solutions c =
2±p2

4
. Or c =

1

2
+
p

c − c 2 ¾ 1

2
donc nécessairement c =

2+
p

2

4
. Réciproquement

vérifions que cette valeur convient. Par construction on a
�

c − 1

2

�2
= c − c 2. Comme c >

1

2
on en déduit

c − 1

2
=
p

c − c 2.

2. On effectue le changement de fonction inconnue f (x ) = (1+ g (x ))/2. L’équation fonctionnelle devient
g (x + 1) =
p

1− g (x )2. La racine carrée est bien définie si g (x ) ∈ [−1;1]. D’autre part, comme g (x + 1) est
une racine carrée pour tout x , la fonction g ne prend que des valeurs positives. Par conséquent g est
à valeurs dans [0;1]. Pour une telle fonction, en élevant au carré on constate que l’équation équivaut
à

g (x +1)2+ g (x )2 = 1

En remplaçant x par x + 1 il vient g (x + 2)2 + g (x + 1)2 = 1, donc g (x + 2) = g (x ). Par conséquent f est 2
-périodique.

3. Cela revient à chercher g :R→ [0,1] continue telle que g (0) = 0 et, pour tout x , g (x +1)2+g (x )2 = 1. Il suffit
de poser g (x ) =
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