Du coté des €leves
de Terminale : concours général 2023

Exercice 1 : Soyons rationnels!

: ! ; n : .
Pour tout entier n = 1, on note v(n) le plus grand entier k& tel que oF soit un entier.

On définit la suite (un )n>1 par récurrence, en posant u; = 1 puis, pour tout entier n > 2,
0 Sl p—1 =0;

14+ 2u(n) — siu,_1 # 0.

=

Up—1

1. Donner la valeur des entiers v(1), v(2), v(3) et v(4).

. 5 v o n
2. Démontrer, pour tout entier n > 1, que v(n) = 0 si n est impair et que v(n) = v (—) +1

si n est pair.
3. Calculer les huit premiers termes de la suite (uy, ), >1 et vérifier que ug = 4.
4. Démontrer, pour tout entier n = 1, que u,, est un nombre rationnel strictement positif,

Uy,

que Ug, = Uy 4+ 1et que Uop41 = Uy, + J_

5. Démontrer que tout nombre rationnel strictement positif est égal & un terme u,,.

6. Démontrer que tout nombre rationnel strictement positif est égal a un unique terme u,,.

Exercice 2 : Limite sympathique !

Partie A : Quelques exemples

1. On considére dans cette question, pour tout entier n = 1, 1’équation

; 1
24+ =z —-1=0,
n
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Probléme proposé 129

d’inconnue .

a) Soit n un entier naturel non nul. Démontrer que cette équation admet une unique solution
réelle positive ; on la note x,,. Exprimer x,, en fonction de n.

b) Démontrer que la suite (i, ),,>1 converge ; on note x . sa limite.
¢) Démontrer que . est solution de I’équation

2 —-1=0.

2. On considere dans cette question, pour tout entier n» == 1, I’équation

1
g —g—1=0,
T

d’inconnue y.

a) Soit n un entier naturel non nul. Démontrer que cette équation admet une unique solution
réelle positive ; on la note y,,.

b) Démontrer que la suite (yy, )n>1 diverge.

3. On considere dans cette question, pour tout entier nn = 1, I’équation

1
224 =22—-1=0,
n

d’inconnue z.

a) Soit n un entier naturel non nul.
(i) Etudier les variations de la fonction z — 2% + =22 — 1 sur I'intervalle [0, 400 |.
T

(i1) En déduire que cette équation admet une unique solution réelle positive ; on la note z,.
Démontrer que z,, appartient a I'intervalle | 0, 1 |.

b) Démontrer que la suite (2, ),>1 est convergerite.
TP L 3 ” 3 2 p
On pourra s’intéresser au signe du réel z,, | + ;znﬂ =l

¢) On note zo la limite de la suite (2, )n>1. Démontrer que z~ est solution de 1'équation

28 =1=0,

4. On considére dans cette question, pour tout entier n > 1, I'équation
il ;
P - -1=0,
n
d’inconnue .
a) Soit n un entier naturel non nul. Démontrer que cette équation admet une unique solution
réelle; on la note ¢,,.

b) Lasuite (t,,),,>1 est-elle convergente ? Si oui, quelle est sa limite ?
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130 Probléme proposé

Partie B : Polynomes sympathiques

Dans les deux prochaines parties, on considére un entier d > 1. La fonction P est un poly-
néme de degré au plus d s’il existe des réels ag, aq. .. .. a4 tels que

d—1

P(z) = agz® + ag_12% 1+ - + asz® + a1+ ag

pour tout réel x.
Soit P: . — agz® + ag_12% 1+ -+ + asx? 4+ a;z + ag un polynéme de degré au plus d.
On dit que :

> P est initialement sympathique si ap = —1 et si ar = 0 pour tout entier k tel que
1l k£d;

> P est faussement sympathique si ap = —1 et st a; < 0 pour tout entier k& tel que
Lagk €4

e P est vraiment sympathique si ag = —1 ets’il existeunentierk telque 0 < bk < d—1
et pour lequel @y < 0,a2 < 0,...,a;r < 0etagsq > 0,a542 20,...,aq9 = 0.

Enfin, on dit que P est sympathigue s’il est initialement, faussement ou vraiment sympa-
thique.

5. Quels sont les polynomes qui sont a la fois faussement sympathiques et initialement
sympathiques ?

6. Démontrer que tout polyndme faussement sympathique est

a) strictement négatif sur ’intervalle [ 0, +o00 [ ;

b) décroissant sur I'intervalle [0, +o00 [.

7. Soit P un polyndme vraiment sympathique et initialement sympathique.
a) Démontrer que P est strictement croissant sur I'intervalle | 0, 400 [;

b) Démontrer que I’équation P(x) = 0 admet une unique solution strictement positive.

8. Soit P un polynéme vraiment sympathique mais pas initialement sympathique.

a) Démontrer qu’il existe un réel b > 0, un entier / > 0 et un polynéme () vraiment
sympathique tels que

pour tout réel x.

b) Démontrer qu’il existe un réel r > 0 tel que le polyndme P vérifie les quatre propriétés
suivantes :

> P est décroissant sur I'intervalle [0, 7] ;

> P est strictement croissant sur I'intervalle | r, 400 [:
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Probléme proposé 131

> P est strictement négatif sur 'intervalle [ 0, 7| ;

> I’équation P(z) = () admet une unique solution dans I’intervalle [, +o00 .

9. Quels sont les polyndmes sympathiques P pour lesquels I'équation P(xz) = 0 admet au
moins une solution strictement positive 7 Donner, dans ce cas, le tableau de signes de P sur
I’intervalle [0, 400 |.

Partie C : De la suite dans les idées

On considere désormais des polyn6mes vraiment sympathiques Py, Ps. . .. Puisque ces poly-
nomes sont de degré au plus d, on peut écrire chaque polyndome P, sous la forme

d—1

T 2d ” o -
Pn. DX Adn + d—1,nd +orrt (2 pnd + (1, nE + ao,n.

On suppose en outre, pour tout entier k tel que 0 < k < d, que la suite (ay,,),>1 est
convergente ; on note ay o, sa limite.
On consideére alors le polyndme FP-. défini par

Po:xw— ad,ooar:d - ad_l,oo:f:d'_l + 4 (},2,00.'132 + 81,007 + 09 00+

Enfin, pour tout entier n = 1, on note x,, I’'unique solution strictement positive de [’équation
P, (x) = 0. Ci-dessous, on étudie la convergence éventuelle de la suite (,,),,>1.

10. Soit # un réel fixé. Démontrer que la suite (P,,())n>1 converge vers Po(?).
11. Démontrer que le polyndome P, est sympathique.

12. On suppose dans cette question que le polynéme P, est vraiment sympathique, et on
note . I’'unique solution strictement positive de 1’équation P..(x) = 0.

a) Soit u et v deux réels tels que 0 < u < x5, < v. Démontrer qu’il existe un entier M, ,,
tel que P,,(u) < 0 < P,(v) pour tout entier n = M,, ,.

b) En déduire que la suite (x,,),>1 converge vers x..

13. On suppose dans cette question que le polyndme P est faussement sympathique. Dé-
montrer que (x,,)p>1 diverge vers +o0c.

14. Retrouver les résultats de la partie A.

Exercice 3 : Polynomes et polygones réguliers
Le plan est rapporté a un repére orthonormé R = (07, 7).

Soit k£ un entier tel que k& = 3. Les points My, Mo, ..., M, sont les sommets d’un polygone
régulier de centre O si ces points
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132 Probléme proposé

> sont deux a deux distincts,

e apparaissent dans le sens trigonométrique (c’est-a-dire le sens contraire des aiguilles
d’une montre) sur un méme cercle de centre O, et

> vérifient I’égalité My Mo = MaM3 = -+ = M1 My = My M,.
En particulier, pour £ = 3, il s’agit d’un triangle équilatéral ; pour & = 4, il s’agit d’un carré.

Pour tout entier d = 0, une fonction P est un polynome de degré d s’il existe des réels
ag,@i,...,aq tels que ag # O et

)= aiz®+ a4 125+t agr? +aic+ ag

pour tout réel x; on pourra admettre que, pour un tel polynéme, I'équation P(z) = 0 admet
au plus d solutions réelles.
Quant a elle, la fonction

P:xz—0

est appelée le polynome nul.
Enfin, étant donné un polynéme P (nul ou non), on note Cp la courbe représentative de P
dans le repere R.

Partie A : Triangles équilatéraux

1. Soit P un polyndome de degré 1. Existe-t-il un triangle équilatéral dont les sommets
appartiennent a Cp ?

2. On consideére les points

A 1,? , B —1,? etC 0,—2\—;3

a) Démontrer que A, B et C sont les sommets d’un triangle équilatéral de centre O.

b) Démontrer que les points A, B et (' appartiennent a la courbe représentative du polynéme
3
Q: x> % (3:{:2 —2) .

¢) Démontrer que les points A, B et (' appartiennent a la courbe représentative du polynéme

R:z— ? (3;{:2 - 2) +x (:;:2 - 1) .

d) Démontrer que, pour tout entier d = 2, il existe un polyndéme de degré d dont la courbe
représentative contient les points A, B et C.
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Partie B : Carrés de centre O

Dans les questions 3 et 4, on considére un polynéme P et un carré ABC'D de centre O dont
les quatre sommets appartiennent a Cp.

3. a) Exprimer les coordonnées des points B, C' et D en fonction de celles de A. Démontrer
que les abscisses de A, B, C' et D sont distinctes et non nulles.

b) Démontrer que P est non nul et que son degré vaut au moins 3.

4. On suppose dans cette question qu’il existe des réels a, b et ¢ tels que
P:zoz*+ax’+bz+e.
a) Démontrer que a = Oete = 0.

b) Démontrer que les abscisses respectives de A, B, C' et D sont solutions de I’équation

P(P(z))+x=0.

¢) Démontrer que le polynome
Q: x>zt 4 3b2® + 36%% + b(V? + D+ b* + 1

admet au moins deux racines positives distinctes.
d) Démontrer que b < 0.

e) On suppose qu’il existe deux réels v et Stels que 0 < o < S et
Qz) = (z — a)?*(z - B)?
pour tout réel z. Démontrer qu’alors b = —+/8, puis déterminer les valeurs de « et 3.

5. a) Démontrer qu’il existe un polyndéme P de degré 3 et un carré ABC'D de centre O
dont les sommets appartiennent a Cp.
b) Pour quels entiers d existe-t-il un polynéme de degré d dont la courbe représentative

contient les points A, B, C' et D obtenus en question 5.a) ?

Partie C : Ou ’on prouve que d > k — 1

Soit My Ms -+ - M} un polygone régulier de centre (. On suppose dans cette question qu’il
existe un polynéme P, de degré d, dont la courbe contient les points M, Ms, ..., M. On
souhaite alors démontrer que d = k — 1.

Pour tout ¢, on note (x;. y;) les coordonnées de M; dans le repere R.

6. a) Pourquoi peut-on supposer que xq estinférieurouégala x9, x3..... xpetquey; < 07?
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b) Démontrer que les abscisses x; sont deux a deux distinctes et que les ordonnées ; sont
non nulles.

¢) Démontrer qu’il existe un nombre réel 2 > 0 et un nombre réel ¢ appartenant a I’inter-
valle | 0,7 /k [ tels que x; = —Rcos(f) et y; = —Rsin(h).

d) Démontrerque 1 < Xp < To < Tp_1 < T3 < Tp_o < -+

e) Démontrer que P admet une racine sur chacun des k& — 1 intervalles
|22 Jemes]s oo zia s |-zl 12 2p—sl; s

) Enconclure qued > k — 1.

Partie D : Ou I’on prouve que tout entier d > & — 1 convient

On suppose dans cette partie que les abscisses x; sont deux a deux distinctes et on veut
démontrer que, pour tout entier d > k — 1, il existe un polyndme de degré d dont la courbe
contient les points My, M, ..., M.

7. Soit a et b deux réels. Dans le repere R, on considere les points
A(cos(a),sin(a)), B(cos(a + b),sin(a + b)) et C(—sin(a), cos(a)).
a) Démontrer que le repére R’ = (O; (ﬂ, O‘(} ) est orthonormé.

b) Quelles sont les coordonnées du point B dans le repere R’ ?

¢) En déduire que

cos(a + b) = cos(a) cos(b) — sin(a) sin(b) ;
cos(a — b) = cos(a) cos(b) + sin(a) sin(b).

8. On considére la suite de polynomes définie par 1: . +— 1, T1: © +— x et
Thyo: x> 22T, () — T, (x)

pour tout entier n = 0.
a) Démontrer que T’,(cos(#)) = cos(nf) pour tout entier n = 0 et tout réel 6.

b) Soit # un réel, et soit £ = 1 et j = 0 deux entiers. Démontrer que

Te—1 (cos (9+ QJTW)) — cos(£0) cos (9 + QJTW) = sin(/0) sin (9 + ZJTJH) .

¢) Démontrer que, pour tout entier d > k— 1, il existe un polynéme de degré d dont la courbe
contient les points My, Ms, . .., M.
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Corrigé (par V. Jugé)

Exercice 1 : Soyons rationnels!

1. 9(l)=0,%(2)=1,%(3) =0etv(d) =2,

2. Sin estimpair, la fraction n/2k est irréductible, et son dénominateur vaut 1 si et seulement
si k = 0, donc va(k) = 0.

Si n est pair, n/2 est strictement positif aussi, donc v2(n) = 1. En outre, pour tout
k > 1, le nombre 1/2" est entier si et seulement si (n/2)/2"~! est entier. Par conséquent,

va(n) — 1 = va(n/2).

3. Les premiers termes de la suite (v2(n)),>; sont 0,1,0,2,0,1,0,3. On en déduit, de
proche en proche, que les premiers termes de la suite (u,,) sont 1,2,1/2,3,2/3,3/2,1/3, 4.

4. Une récurrence immédiate montre que chaque terme wu,, est rationnel. Puisque u; > 0,
on s’attache maintenant 2 montrer la propriété P,, selon laquelle uop, = up + 1 > 0 et
tops1 = ug/(up + 1) > 0 pour tout k compris entre 1 et n.

La question précédente nous permet de vérifier P;. En outre, pour tout entier n = 1 tel
que P, est vraie, on vérifie que

1 U + 1
Uspgo = 1+ 2u9(2n + 2) — =34 2v(n+1)— Sl
U2n+1 Un
) 1
= |14 2vs(n+ 1)—; +1l=up1+1
T
1 1 Up+1
Uz = 1+ 209(2n + 3) — =1- = —,
r ( ) U2n+2 Un+1 + Un+1 + 1

En particulier, us,, 12 et us, ;3 sont strictement positifs, ce qui démontre P,, 1.

5. Démontrons par récurrence sur p + ¢ que toute fraction irréductible p/q > 0 est égale a
un terme u,,. En effet,

ssip=q,onap/qg=1=wu1;

* sip > ¢, 'hypotheése de récurrence indique qu’il existe un terme w,, égala (p — q)/q,
etalors p/q = uan ;

» sip < g, ’hypothese de récurrence indique qu’il existe un terme w,, égal a p/(q — p),
etalors p/q = g, 1.

6. Il s’agit de montrer que tout rationnel strictement positif est égal 2 un unique terme ,,.
Pour ce faire, on démontre par récurrence sur 7, que nul terme u,, n’est égal a un terme wuy,
tel que £ < n. En effet, les termes u; > 1 sont ceux pour lesquels £ est pair, et les termes
up < 1 sont ceux pour lesquels ¢ est impair et £ £ 1. Par conséquent,
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e siupg=Uy = L,onsaifquek=n=1;
* siur = uy, > 1, on sait que k et n sont pairs, et que Ukj2 = Up /2
* siu, = u, <1, on saitque k et n sont impairs, et qUe U(r_1)/2 = U(n—1)/2-

Dans les trois cas, on atteint une absurdité, ce qui conclut I’hérédité et la récurrence.

Exercice 2 : Limite sympathique !

Partie A : Quelques exemples

1
1. a) Sil'onpose A, =1+ el les solutions de 1’équation sont
T

1 1
— — An et — — An-
2n 2n *

La premiére est négative, en tant que somme de deux termes négatifs. L’autre est positive

puisque A,, > ypct

1
b) 1l suffit de remarquer que ~5 — 0 tandis que A,, — 1, de sorte que x,, — 1.
n

¢) On vérifieque 22, — 1 =12 —1=0.

= ‘ : : . n
2. a) Cette fois-ci, on pose A,, = nz/fl + n, et notre équation a pour solutions 3 + /A,

La premiére est négative car A,, > n?/4 = (n/2)?, et I’autre est strictement positive.

b) y, =2 n/2doncy, — +oo.

3. a) Lafonction f,, : z > 2% + 2% /n — 1 est de dérivée 32> + 22/n > 0 sur R donc f,

est strictement croissante sur R, Comme f,, est continue, strictement négative en 0 et tend
vers 400 en +00, le théoréme de la bijection indique que f,, amet une unique racine sur R’ .
Enfin, f,(1) = 1/n > 0 donc z, < 1.

b)

: 1
= — sk 2 3 2 -
0 = fﬂ-'f'] (z'ﬂ"f'l) — Z'rL+1 + Zn-{—l —-deit zn-{—l =+ ;Zn-{—l =l

1
n+1
Cela signifie en fait que f,,(z,) = 0 < f.(zn+1) et comme f, est croissante, on en déduit
que 2n+1 2 Zn.

1
¢) Lorsque n — +o0,ona — — O et z,, — 2z, donc
Tl

3, .2 : 3 2 3
znta/m—1—=2 42, x0-1=2_—1.

Comme z3 + z2 /n — 1 = 0 pour tout n > 1, cela signifie bien que 23, — 1 = 0.
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4. a) On étudie les variations de la fonction g,, : t — t°/n — t* — 1. Puisque g/,(t) =

3t 2n . : —
‘3—(t - %) la fonction g,, est croissante sur | — 0o, 0] et décroissante sur [0, 2r/3]. Comme

g;i([)) —"1, on en déduit que g, est strictement négative sur les deux intervalles | — oo, 0]
et [0,2n/3].

Par ailleurs, g,, est strictement croissante sur [2n/3, +o0c[. Puisque I’on vient de montrer
que g, (2n/3) < 0, et comme g, tend vers +oo au voisinage de 400, elle admet une unique
racine sur [2n/3, +o0].

b) t, —» +oocart, = 2n/3.
5. P(X) = —1 est I'unique polynéme a la fois faussement et initialement sympathique.
6. a) C'estune somme de termes négatifs, dont I'un vaut —1.

b) Sa dérivée est une somme de termes négatifs, donc négative.

7. a) Sa dérivée est une somme de termes positifs non tous nuls, donc elle est strictement
positive.

b) P estcontinue et strictement croissante, vaut —1 en 0, et il existe un terme a; > 0, de
sorte que
P(x) 2 -1+ a;x" = 400

lorsque © — +oc0. Le théoréme de la bijection conclut.

8. a) L'entier { est le plus petit entier tel que ap; | < 0, puis b = —(¢ + 1)ay, 1. On a alors

d d d—¥i-1
P(X)=) iaX'= Y e X" =X )" (i+0+1)ai+L+1X°
i=0 i=f+1 i=0
d—£—-1
=bX%| -1+ Z (i4+ L+ a1 X4/b ],
i=1

et (Q(X') est vraiment sympathique.

b) On procede par récurrence sur deg P. Si deg P = 0, P est initialement sympathique
donc c’est gagné.

Si deg P = 3, le polynéme (J(.X) obtenu a la question précédente est vraiment sympa-
thique.

On va alors distinguer deux cas, selon que ()(X) est initialement sympathique ou non.

Si () est initialement sympathique, la question 7 nous dit que () est strictement croissant
sur [0, +00[ et admet une unique racine strictement positive, disons r. Sinon, () n’est pas
initialement sympathique, et I’hypothése de récurrence sur () nous permet d’affirmer que
() admet une racine unique racine r > 0 telle que @ est strictement négatif sur [0, r[ et
strictement croissant, donc positif, sur |r, +o0c].

Dans les deux cas, les polyndmes P’ et Q sont strictement négatifs sur |0, r| et strictement
positifs |r, +00[. Par conséquent,
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> P est décroissant sur I'intervalle [0, 7];

> P est strictement croissant sur 'intervalle [r, +oo];

> P est strictement négatif sur I'intervalle [0, |, car il y est majoré par P(0) = —1;

> P admet une unique racine dans I'intervalle [r,+oc[, car on vient de montrer que

P(r) <0, et P(x) = 400 quand z — +o0.

9. Ce sont les polyndmes vraiment sympathiques, et ils ont une unique racine strictement
positive. Le tableau de signes est

x 0

T +00
P(x) = I

Partie C : De la suite dans les idées

10. C’est immédiat par opérations (addition et multiplication) sur les limites.

11. Lasuite (ao,n)n>1 est constante et égale a —1, donc ap, -« = —1. Si tous les coefficients
(k+1,0c SONt négatifs ou nuls, le polyndme Po. (X ) est faussement sympathique.

Sinon soit & le plus petit entier tel que ag 41,00 > 0.

I existe un entier N = 1 tel que a1, > 0 pour tout n = N. Mais alors, puisque
P, (X) est sympathique, on sait que ag42, = 0,...,aq4, = 0. Par conséquent, les limites
(k42,00 - « - » Qd.oc SONt positives ou nulles. En particulier, notre choix de £ indique bien que
P (X)) est sympathique.

12. a) Ona vu précédemment que P, (u) < 0 < P (v). Puisque P, (u) — Py (u) <

0
et P,(v) = Py(v) > 0, il existe un réel M, , tel que P,(u) < Pa(u)/2 < 0 et P,(v) >
P (v)/2 > 0 pour tout n > M, ,,.

b) Puisque P,(u) < 0 < P,(v) lorsque n > M, ,, on saitque u < x,, < v. Ceci étant
valable pour tout intervalle ouvert | u, v [ contenant ., on en conclut que =,, — T.

13. Soitt > 0 un réel. Comme P, (X)) est faussement sympathique, Pa.(t) < 0. Avec
le méme raisonnement qu’en question 12.a), il existe un réel M; tel que P, (¢) < 0 lorsque
n = M;. Par conséquent, x,, = t.Ceci étant valable pour tout £, on en conclut que x,, = +0c.

14. Dans les cas 1) et 3), nos polyndOmes vraiment sympathiques convergent vers un poly-
nome P-. vraiment sympathique, donc leurs racines convergent vers la racine de P..

Dans les cas 2) et 4), leur limite P, est faussement sympathique, donc leurs racines
divergent vers +oc.

Exercice 3 : Polynomes et polygones réguliers

Partie A : Triangles équilatéraux
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1. Non, car Cp est une droite.

2. a) On vérifie que OA* = OB?* = OC? = 4/3, que AB*> = BC? = CA? = 2etque A,
B, C sont bien listées dans le sens trigonométrique.

b) 1l suffit de vérifier que

(‘?(le?—z):?;
‘?(Sx(—l)‘z—z):@;

V3 ~2v3\° V3
k?(“(T) 2330-

c¢) Il suffit de vérifier que R(x) — Q(x) = 0 lorsque x vaut —1, 0 ou 1.

d) 1l suffit de choisir Q () lorsque d = 2, et Ry(x) = Q(x) + :L'd_g(R(iff) —Q(z)) =
Q(z) + 97 %(? — 1) lorsque d > 3.

Partie B : Carrés de centre O

3. a) Puisque B, C et D s’obtiennent a partir de A via une rotation de centre O et d’angle
90°, 180° ou 270°, on en déduit que les coordonnées de nos quatre points sont, disons,
Aw,y) B(-yx) C(-z,—y) Dy, —a).
Si deux sommets de coordonnées (u,v) et (u',v") ont méme abscisse, cela signifie que
v = P(u) = P(u") = v, donc qu’il s’agissait en fait du méme sommet.
Par ailleurs, si I’un est d’abscisse nulle, cela signifie que = 0 ou y = 0, donc le sommet

opposé sera aussi d’abscisse nulle, alors qu’on vient de démontrer que les abscisses difféerent
toutes.

b) Soit P: t + at® + bt + ¢ un polyndme de degré au plus 2 dont on supposera falla-
cieusement que sa courbe contient les quatre points A, B, C, D. On sait alors que

y=P(z)=az’>+br+c 2 = P(z) — FP(—p) = 2bz
x=P(-y)=ay®* -by+c 2x = P(—y) — P(y) = —2by
—y=P(—z)=az® —bx+c —y=P(—z)=ax’ —bz+ec
—2=P(y) =ay? +by +c —z=Py) =ay’ +by+c

, C’est-a -dire

En particulier, 4zy = —4b%zy, et puisque x et y sont non nuls, on en conclut que b*> = —1,
ce qui est impossible, démontrant par la ['invalidité de notre supposition.

4. a) Cette fois-ci, on constate que

y=P(z) =2°+az’ + bz +c 0=y —y = P(z) + P(—z) =2ax" + 2¢

z=P(-y)=—y +ay’ —by+c . Jo=z—2=P(—y)+ P(y) =2ay” +2c
, . ,i.e. , :

—y = P(-z) = -z +ax? —bx+e —y=P(—z) = —z+ar’ —bzr+ec

—z=P(y) =9y’ +ay’ +by+c —z=Py) =9’ +ay’ +by+c
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Ainsi, —ar’=c= —a’gz. Or, © # +y, car nos abscisses sont deux a deux distinctes. Ainsi,
z? # 3%, donca =c = 0.

b) 1l suffit de vérifier que

P(P(z)+z2=Ply)+z=—24+2=0
P(P(-y)—y=Plx)—y=y-y=0
P(P(-z)—xz=P(-y)—z=z—2=0
P(P(y))+y=P(-z)+y=-y+y=0

¢) On commence par remarquer que P(P(X))+X = (X?>4+bX)? +b(X? +bX)+ X =
X? 4 3bX7T + 307 X5 + X2 + b X3 + 02X + X = XQ(X?) admet = et +y pour racines
non nulles. Par conséquent, 22 et y2, qui différent 1’un de I’ autre, sont deux racines positives
de Q.

d) Sib = 0, le polynome () est strictement positif sur R>g.

e) 11 s’agit de trouver o < 3 tels que
QX)) = X*-2(a+ BX®+ (a® + 408+ B2 X? — 2(a+ B)afX +a?B2
Cela revient a faire en sorte que
—2(a+ ) = 3b, a® + 4B + B2 = 3b?%, — 2(a®B + af?) = b(b* + 1) et 0a?B% = b% + 1.

Or, le terme —2(a?3 + a3?) se factorise comme —2a3(c + 3). On souhaite donc que
—2(a+8) = 3b, puis que 3ba S = b(b*>+1) et, comme b < 0, que oS = (b2+1)/3. L égalité
a? 3% = b2 +1 se réécrit alors comme (b% +1)2 = 9(b2+1), c’est-a-dire (b +1)(b*—8) = 0.
Comme b < 0, cela nous assure que b = —+/8. Ainsi, a + 8 = 3v2etaf = 3.

Ainsi, « et 8 sont les deux racines du polyndme (X — a)(X — 8) = X2 — 3v2 + 3,

donc, puisque o < 3,
3V2-v6 . 3v2+6

t 8
2 ' 2

o =

5. a) Au vu des questions précédentes, on choisit P(X) = X* — 2 BN puis © = /o et
y = P(x). Puisque P(P(z)) + =z = 2Q(2?) = 2Q(a) = 0, on vérifie alors que P(y) =
P(P(x)) = —z. Enfin, comme P est impair, on a bien P(—z) = —y et P(—y) = x, ce qui
conclut.

b) On a démontré en question 3b que d = 3. Réciproquement, si on note (z,y) les
coordonnées du point A obtenu en question précédente, et si on pose P(X) = X* — 94/8X,
le polynéme P convient si d = 3.

Enfin, si d > 4, le polynéme Q(X) = P(X) + X4 (X — z)(X — P(z))(X + z)(X +
P(x)) convient. Ainsi, les entiers recherchés sont les entiers d > 3.

Partie C : Ou ’on prouve que d > k — 1
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6. a) Supposer x; minimal nécessite uniquement de renuméroter les points a partir d’un

sommet M; d’abscisse minimale, ce qui ne change ni le polygone, ni P. Supposer y; négatif
ou nul nécessite éventuellement d’appliquer au polygone et a Cp une symétrie par rapport a
I’axe des abscisses, ce qui revient a transformer P en —FP. Ces deux suppositions sont donc
bénignes.

b) Si deux abscisses x; et x; coincident, les deux points M; et M; ont méme ordonnée
y; = P(x;) = P(x;) = y;, donc i = j. Par ailleurs, si une ordonnée y; est nulle, les deux
points M, _; et M, sont symétriques par rapport a I’axe (OM;), qui n’est autre que 1’axe
des abscisses. Ainsi, x; 1 = x;41, ce qui est impossible.

¢) 1l suffit de choisir I? égal a la distance O M. Dans ces conditions, chaque point M; a
pour coordonnées (— R cos(0;), —Rsin(6,)), et ;4.1 — 0; = 2w /k.
Puisque y; < 0 et xy < xy, on sait que 0 < 7 < et que cos(fy) < cos(f;). Puisque
0 = 01 — 2w /k, on constate alors que
> si 27w /k < 0y, U'inégalité 0 < 0, < 64
> sim/k € 0 < 2n/k, 'inégalité 0
cos(fy) = cos(2m/k — 0;) < cos(#).

Ainsi, comme prévu, on peut choisir # = 6, €0, 7/k .

7 contredit 1’inégalité cos(6y) < cos(61);

NN

2r/k — 07 < 0y < 7 contredit I’inégalité

d) Posonsa = 64 etb = 2m/k — 61. On vient de démontrer que 0 < a < b < 2wy, et
que x; = —Rcos(a(i + 1) + bi), tandis que x,_; = —R cos(ai + b(i + 1)). Puisque cos est
décroissanteetque a < b < a+ b < a+2b < 2a+ 2b < 2a+ 3b < -- -, le résultat désiré
s’ensuit.

e) Le choix de ¢ impose les inégalités y1 < 0, yr > 0,92 < 0,yx—1 > 0,y3 < 0,.
théoréme des valeurs intermédiaires démontre alors immédiatement le résultat désiré.

Jf) On vient d’exhiber k& — 1 racines distinctes pour le polynéme P (X ), qui est donc de
degré d = k — 1.

Partie D : Ou I’on prouve que tout entier d > k — 1 convient

On suppose dans cette partie que les abscisses x; sont deux a deux distinctes et on veut
démontrer que, pour tout entier d > k — 1, il existe un polynéme de degré d dont la courbe
contient les points My, Moy, ..., M.

7. a) 1l suffit de vérifier que OA? = cos(a)® +sin(a)® = 1, 0C? = sin(a)*+cos(a)* = 1
et que (ﬁl (ﬁ — cos(a) sin(a) + sin(a) cos(a) = 0.

b) Soit X le point de coordonnées (1,0) dans le repere R. Le repére R’ est obtenu en
appliquant a ‘R une rotation de centre O et d’angle a. Le point B est obtenu en appliquant a
X une rotation de centre () et d’angle a + b, ¢’est-a -dire en appliquant 2 A une rotation de
centre O et d’angle B. Par conséquent, ses coordonnées dans R’ sont (cos(b),sin(b)).

¢) Pour la premiere égalité, il suffit de vérifier que cos(a + b) = (ﬁ 7= (cos(b) (ﬁ +

sin(b) O‘é -7 =cos(b)OA -7+ sin(b) O‘(‘}; = cos(b) cos(a) — sin(b) sin(a). Pour la seconde,
on procéde de méme, mais en remplacant b par —b.
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8. a) On procede par récurrence forte. Le résultat est acquis pour n = O et n = 1 puis, s’il

est acquis pour deux entiers n et n — 1, on constate alors que

Thi2(cos(8)) = 2cos(f) cos((n + 1)0) — cos(nd)
= (cos(#) cos((n + 1)8) — sin(f) sin((n + 1)6))
+ (cos(#) cos((n + 1)8) + sin(#) sin((n + 1)8)) — cos(nf)
= cos((n + 2)0) + cos(nd) — cos(n#) = cos((n + 2)8),

ce qui conclut la récurrence.

b) Posons m = 0 + 2j7 /. 11 suffit de vérifier que
sin(£0) sin(m) + cos(£8) cos(m) = cos(£d — m) = cos(£0 + 2jm — m)
= cos((£ — 1)m) = Ty_1(cos(m)).

¢) Le raisonnement effectué aux questions 6.a) a c) est toujours valide. On peut donc
supposer qu’il existe un réel R > 0 etunréel 0 < @ < m/k pour lesquels chaque point M
est de coordonnées

(:ﬂj:‘yj) = (—RCOS (9+ @) . —Rsin (9+ 2(j ; 1)“)) .

Notons en particulier que sin(k6) > 0.

On pose alors
 —RT,_y(—x/R) — cos(kf)x
P(X) = sin(k0) '

En effet, I’égalité obtenue en question 8.b) indique précisément que

Ti—1 (cos (9 e L;lh)) — cos(k6) cos (9 + @)
sin(k0)

= —Rsin (9+ @) =45

Pla;) =—Bx

Enfin, une récurrence immédiate sur n démontre que T, (X ) est de degré n. Puisque
k = 3, 1e polyndme P(X) est de degré k& — 1. On conclut donc en choisissant, lorsque d > k,
le polynéme

P(X) —|—Xd_k(X — o) (X — ) (X —23) - (X — ).
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