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Partie I

I.1. Soit γ ′ ∈ Γ, on a

ργ′ ◦ π =
1

#Γ

∑

γ∈Γ

ργ′ ◦ ργ

=
1

#Γ

∑

γ∈Γ

ργ′γ

=
1

#Γ

∑

γ”∈Γ

ργ” = π

car γ 7→ γ ′γ est une bijection de Γ sur lui-même. On en déduit que

π ◦ π =
1

#Γ

∑

γ”∈Γ

ργ ◦ π = π

i.e. π est un projecteur.

Si x ∈ EΓ alors π(x) = x i.e. EΓ ⊂ Imπ.

Réciproquement : si x ∈ Imπ alors π(x) = x et, pour tout γ ′ ∈ Γ, ργ′ ◦π(x) = ργ′(x) =
π(x) = x et donc x ∈ EΓ.

Conclusion : on a bien EΓ = Imπ.

Enfin, comme la trace d’un projecteur est égale à la dimension de son image (se placer
dans une bonne base), on a Tr(π) = dimEΓ.

I.2. Soient (E, ρ) et (E ′, ρ′) deux Γ-espaces tels que χE = χ
E′. On a donc χE(1Γ) = χ

E′(1Γ)
ce qui signifie que dimE = dimE ′.

En conclusion, on a la formule

dimE = Tr(ρ1Γ
) = χ(1Γ) = dimχ.

I.3. L’application trace étant linéaire, on a

Tr(π) = dimEΓ =
1

#Γ

∑

γ∈Γ

Tr(ργ) =
1

#Γ

∑

γ∈Γ

χ
E(γ).

I.4. Prouvons tout d’abord l’égalité fournie par l’énoncé : si f ∈ KX et si f =
∑
x∈X

λxex (où

λx = f(x)). Soit γ ∈ Γ alors

γ.f =
∑

x∈X

λx(γ.ex)

=
∑

x∈X

λxeγ.x

=
∑

y∈X

λγ−1 .yey

car x 7→ γ.x est une bijection de X sur X. On a donc (γ.f)(x) = λγ−1x = f(γ−1.x).
1
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On a les équivalences suivantes :

f invariant par Γ ⇔ (∀γ ∈ Γ, γ.f = f)

⇔ (∀γ ∈ Γ, ∀x ∈ X, f(γ−1.x) = f(x))

⇔ (∀(x, y) ∈ X2, xRy ⇒ f(x) = f(y))

ou encore, f(x) ne dépend que de l’orbite de x.

Notons XΓ le sous-espace des invariants de KX (i.e. KX
Γ ), X1, . . . ,Xs les orbites de X

sous Γ. On définit fi ∈ XΓ par fi(Xj) = δij =

{
1 si i = j

0 si i 6= j
.

Les (fi)i∈[1,s] forment une famille libre (évident).

Si f ∈ XΓ alors f =
s∑

i=1

f(Xi)fi donc la famille (fi)i∈[1,s] est génératrice. On a affaire à

une base d’où la conclusion :

dimXΓ = s nombre d’orbites de X sous Γ.

I.5. a. Explicitons ργ :

Si u =
∑
x∈X

λxex alors ργ(u) =
∑

x∈X

λxeγ.x i.e. ργ induit une permutation des vecteurs

de la base canonique, sa matrice est une matrice de permutation. Or la trace d’une
matrice de permutation est égale au nombre de 1 sur la diagonale ce qui correspond
ici au nombre de x ∈ X tels que γ.x = x. On a bien

χ
X(γ) = rγ.

b. On a vu au 4 que s = dimEΓ où E = KX et au 3 que dimEΓ =
1

#Γ

∑
γ∈Γ

χ
E(γ). Vu

que χE(γ) = χ
X(γ) = rγ, on obtient la formule :

1

#Γ

∑

γ∈Γ

rγ = s

d’où le résultat demandé en multipliant par #Γ.

I.6. Avec s = 1, on a
∑
γ∈Γ

rγ = #Γ. Or, si γ = 1Γ, rγ = #X ≥ 2.

Si rγ ≥ 1 pour tout γ ∈ Γ alors

∑

γ∈Γ

rγ = r1Γ
+

∑

γ 6=1Γ

rγ ≥ #X + (#Γ − 1) ≥ #Γ + 1

ce qui est impossible donc il existe γ dans Γ tel que rγ = 0 et γ est alors sans point fixe.

Partie II

II.1. On peut obtenir ce résultat avec un calcul matriciel. Si A = Eij est la matrice de f ,
V = (vhk), U = (uhk) les matrices de U et V alors

V EijU =



v1iuj1 . . . v1iujn

...
...

vpiuj1 . . . vpiujn


 = viiujjEij + · · ·

et comme Tr(ψ) =
∑
i,j

viiujj = Tr(u)Tr(v), on a bien le résultat demandé.
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II.2. a. On remarque tout d’abord que :

γ.(γ ′.u)(x) = γ.(γ ′.u(γ ′
−1
.x))

= γ.[γ ′.u(γ−1γ ′
−1
.x)]

= (γ.γ ′).u
(
(γγ ′)−1.x

)

= [(γγ ′).u](x)

ce qui donne γ.(γ ′.u) = (γγ ′).u. On vérifie alors que ργ est une bijection de L(E,F )
sur lui-même car ργ−1◦ργ = Id. On a donc muni L(E,F ) d’une structure de Γ-espace.

b. Si on note ργ ∈ L(F ) et ρ′
γ−1 ∈ L(E) les représentations de Γ sur F et E alors :

γ.u = ργ ◦ u ◦ ρ′γ−1 = ψ(u)

χ
L(E,F )(γ) = Tr(ργ) = Tr(ψ) = Tr(ρ′γ−1).Tr(ργ)

= χ
E(γ−1).χF (γ)

II.3. a. γ 7→ γ−1 est une bijection de Γ donc

〈f, g〉 =
1

#Γ

∑

γ∈Γ

f(γ)g(γ−1)
1

#Γ

∑

γ∈Γ

f(γ−1)g(γ)

= 〈g, f〉

donc la forme bilinéaire en question est symétrique.
Montrons qu’elle est non dégénérée : i.e. si 〈f, g〉 = 0 pour tout g alors f = 0.

Soit γ ′ ∈ Γ et g définie par g(γ−1) =

{
#Γ si γ = γ ′

0 si γ 6= γ ′
alors 〈f, g〉 = f(γ ′) = 0 et

comme on peut faire cette opération pour tout γ ′ de Γ, on en déduit que f = 0.
b. On a

〈χE, χF 〉 =
1

#Γ

∑

γ∈Γ

χ
E(γ−1)χF (γ)

=
1

#Γ

∑

γ∈Γ

χ
L(E,F )(γ) vu le II.2.b

= dimL(E,F )Γ vu le I.3

où L(E,F )Γ désigne les applications linéaires Γ-invariantes de L(E,F ).
Or

ϕ ∈ L(E,F )Γ ⇔ (∀γ ∈ Γ, γ.ϕ = ϕ)

⇔ (∀γ ∈ Γ, ∀x ∈ E, γ.ϕ(γ−1x) = ϕ(x))

⇔ (∀γ ∈ Γ, ∀x ∈ E, ϕ(γ−1x) = γ−1.ϕ(x))

⇔ (ϕ ∈ hom Γ(E,F ))

donc 〈χE, χF 〉 = dimhom Γ(E,F ).
Soit ϕ = IdE alors ϕ 6= 0 et ϕ ∈ hom Γ(E,E) donc dimhom Γ(E,E)〉0 i.e., si E 6= {0}
alors 〈χE, χE〉 est un entier strictement positif.

II.4. a. On munit K d’une structure de Γ-espace en définissant γ.x = x pour tout γ ∈ Γ et
tout x ∈ K. On a bien évidemment χK(γ) = 1 et donc la fonction constante 1 est
bien un caractère.
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Vu le I.3

〈χE, χunit〉
1

#Γ

∑

γ∈Γ

χ
E(γ)

= dimEΓ

b. Pour montrer que χ+χ′ est un caractère, il suffit de définir une structure de Γ-espace
sur E ×E ′ par γ.(x, x′) = (γ.x, γ.x′). La matrice de cette application linéaire s’écrit

M” =

(
M 0
0 M ′

)
où M et M ′ désignent les matrices des représentations linéaires

sur E et E ′. Or Tr(M”) = Tr(M) + Tr(M ′) donc χ+ χ′ est bien un caractère.
c. On reprend les notations du II.2 alors, avec la structure de Γ-espace définie sur K

au a, on a χ
L(E,K) = χ

E∗ = χ∗
E.χK = χ∗

E.χunit = χ∗
E car χunit(γ) = 1 (trace de

l’application identique de K dans K). On a donc

χ∗
E = χ

E∗

ce qui prouve effectivement que χ∗ est un caractère.
d. Si χ = χ

E et χ′ = χ
F alors comme (χ∗)∗ = χ, on a

χχ′ = (χ∗)∗χ′ = χ∗
E∗
χ

F = χ
L(E∗,F )

donc χχ′ est un caractère.

II.5. On sait que ργ2(x) = ρ(ρ(x)) i.e. ργ2 = (ργ)
2. De même, pour k ∈ N, on a ργk = (ργ)

k.
Si n = #Γ alors comme γn = 1Γ on peut affirmer que (ργ)

n = Id. Ceci signifie que les
valeurs propres de ργ sont racines de Xn = 1 et donc qu’elles sont de module 1.

On a alors

Tr(ργ−1) = χ
ρ

γ−1
= χ∗

=
∑

λ∈(ργ)

1

λ

=
∑

λ∈(ργ)

λ car |λ| = 1

Enfin

〈χ,χ〉 =
1

#Γ

∑

γ∈Γ

χ(γ)χ(γ−1)

=
1

#Γ

∑

γ∈Γ

χ(γ)χ∗(γ)

=
1

#Γ

∑

γ∈Γ

χ(γ)χ(γ) ≥
1

#Γ
|χ(1Γ)|2 > 0

Partie III

III.1. a. Soit x ∈ kerϕ alors ∀γ ∈ Γ, ϕ(γ.x) = γϕ(x) = 0 donc γ.x ∈ kerϕ. kerϕ est un
Γ-sous-espace de E.
Conclusion : kerϕ = {0} ou E et donc ϕ est injective ou nul.
Si y ∈ Imϕ alors, comme à la question précédente, γ.y ∈ Imϕ donc Imϕ est un
Γ-sous-espace. ϕ est donc soit nul soit surjectif.
Si ϕ est un Γ-morphisme entre deux espaces irréductibles alors soit ϕ est nul soit ϕ
est injectif et surjectif i.e. ϕ est un Γ-isomorphisme.
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b. Si 〈χE, χF 〉 > 0 alors, vu le II.3.b, on sait que hom Γ(E,F ) est un espace vectoriel de
dimension ≥ 1 et donc il existe ϕ non nul Γ-morphisme de E dans F . On peut dire
alors que E et F sont Γ-isomorphes grâce à la question précédente.
Si E et F sont Γ-isomorphes on appelle ϕ un Γ-isomorphisme. Soit (e1, . . . , en)
une base de E et (ϕ(e1), . . . , ϕ(en)) = (f1, . . . , fn) une base de F . On note ργ le
morphisme de groupe de Γ dans GL(E) et ρ′γ celui de Γ dans GL(F ). On a alors
ϕ ◦ ργ = ρ′γ ◦ ϕ.
On a donc ργ = ϕ−1 ◦ ρ′γ ◦ϕ, les matrices de ργ et ρ′γ sont semblables, elles ont même
trace. On a bien χE = χ

F .
La dernière implication est une conséquence directe de la question II.3.b.

c. Soit (χ1, . . . , χp) une famille de caractères irréductibles tous distincts. Soit
p∑

i=1

λi
χ

i =

0 alors

〈χk,

p∑

i=1

λi
χ

i〉 = λk〈χk, χk〉 = 0

donc λk = 0, la famille est bien libre.
Comme KΓ est un espace vectoriel de dimension Γ alors le nombre de caractères
irréductibles est inférieur à #Γ.
Soit Ė la classe de Γ-isomorphie de E et ψ : Ė → χ

E, ψ est bien définie (car χE ne
dépend pas du représentant choisi dans Ė) et ψ est injective d’où la bijection.

III.2. a. Prouvons que f̂ est un Γ-morphisme :

γ ′.f̂(x) =
1

#Γ

∑

γ∈Γ

γ ′γ.f(γ−1.x)

=
1

#Γ

∑

γ”∈Γ

γ”.f [γ”−1.(γ ′.x)]

= f̂ (γ ′.x)

car γ 7→ γ ′γ est une bijection de Γ.

b. On a π̂(x) =
1

#Γ

∑
γ∈Γ

γ.π(γ−1.x) et donc

γ ′.π
[
γ ′

−1
.π̂(x)

]
=

1

#Γ
γ ′

∑

γ∈Γ

π
[
γ.π

(
γ−1γ ′

−1
.x

)

︸ ︷︷ ︸
∈F

]

=
1

#Γ
γ ′

∑

γ∈Γ

γ.π
(
γ−1γ ′

−1
.x

)
car π(y) = y quand y ∈ F

=
1

#Γ

∑

γ”∈Γ

γ”.π(γ”−1.x)

= π̂(x)

et donc,
∑

γ′∈Γ

γ ′.π
[
γ ′

−1
.π̂(x)

]
= #Γ.π̂ ce qui signifie que π̂ est un projecteur.

Si x ∈ F alors γ−1.x ∈ F et donc π(γ−1.x) = γ−1.x d’où π̂(x) = x i.e. F ⊂ Im π̂.
Réciproquement, si π̂(x) = x (i.e. x ∈ Im π̂) alors, avec l’égalité établie ci-dessus, on
a γ.π (γ−1.π̂(x)) = π̂(x) et donc γ.π (γ−1;x) = x i.e. π(γ−1.x) = γ−1.x. Avec γ = 1Γ,
on en déduit que π(x) = x et en conclusion x ∈ F .
Conclusion : π̂ est un projecteur d’image F .
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Id−π̂ est un projecteur et c’est aussi un Γ-morphisme. Son image F ′ est un
supplémentaire de F et c’est le noyau de π̂. F ′ est Γ-stable car si π̂(x) = 0 alors
π̂(γ.x) = 0.
On a donc prouvé l’existence d’un supplémentaire F ′ de F Γ-stable.

c. On raisonne par récurrence sur la dimension de E.
Si dimE = 1 alors E est nécessairement irréductible.
Hypothèse de récurrence : on suppose que tout Γ-espace de dimension ≤ n s’écrit
comme somme directe de Γ-sous-espaces irréductibles.
Si dimE = n + 1 alors soit E est Γ-irréductible et c’est fini, soit E n’est pas
Γ-irréductible et donc il existe F un Γ-sous-espace propre de E. Vu la question
précédente, on sait qu’il existe F ′ un Γ-sous-espace tel que E = F ⊕F ′. On applique
alors l’hypothèse de récurrence à F et F ′.

III.3. a. Soit E = E1 ⊕ . . .⊕ Ek une décomposition de E en Γ-sous-espaces irréductibles. Si
x ∈ E, on écrit x = x1 + · · ·+xk la décomposition de x selon la somme directe de E.
On a alors ρ(γ)(x) = ρ(γ)(x1) + · · · + ρ(γ)(xk). La restriction de ρ(γ) à Ei définit
une opération de Γ sur Ei. Le caractère associé est irréductible et donc, il existe,
pour chaque espace Ei, un caractère χ

j irréductible. En rassemblant tous les Γ-
sous-espaces Ei associés à chaque caractère irréductible χj on aura la décomposition
suivante

χ
E = d1

χ
1 + · · · + ds

χ
s

où chaque entier di désigne le nombre de Γ-sous-espaces Ej Γ-isomorphes à Vi.
Cette décomposition est unique car les (χi) forment une famille libre.
Ensuite, comme des caractères irréductibles distincts sont orthogonaux (cf III.1.b)
on a

〈χE, χi〉 =
s∑

p=1

dp〈χp, χi〉 = di〈χi, χi〉

puis

〈χE, χE〉 =
s∑

i=1

di〈χE, χi〉 =
s∑

i=1

d2
i 〈χi, χi〉.

b. Soient E et F 2 Γ-espaces Γ-isomorphes et ϕ le Γ-isomorphisme et E = E1 ⊕ · · ·Ek

la décomposition de E en Γ-sous-espaces irréductibles. ϕ(Ei) est Γ-irréductible dans
F : par l’absurde, si ϕ(Ei) n’était pas Γ-irréductible, alors il existe H Γ-sous-espace
propre de ϕ(Ei) et ϕ−1(H) est un Γ-sous-espace propre de Ei ce qui est impossible.
Donc F = ϕ(E1) ⊕ · · · ⊕ ϕ(Ek) est une décomposition de F en somme directe de
Γ-sous-espaces irréductibles. En reprenant les arguments de la question précédente,

on a χE =
s∑

i=1

di(E)χi et χF =
s∑

i=1

di(F )χi et donc χE = χ
F avec di(E) = di(F ).

Si di(E) = di(F ) pour chaque i alors on va pouvoir décomposer E et F en somme de
Γ-sous-espaces irréductibles, E = E1⊕· · ·⊕Ek et F = F1⊕· · ·⊕Fk chaque espace Ei

étant Γ-isomorphe à Fi. Si on appelle ϕi ces Γ-isomorphismes, alors on définit ϕ un

Γ-isomorphisme de E sur F par ϕ(x) =
k∑

i=1

ϕi(xi) où x =
k∑

i=1

xi est la décomposition

de x dans la somme directe E1 ⊕ · · · ⊕ Ek.
On a bien les équivalences.

III.4. a. Soit λ une valeur propre de ϕ alors ϕ − λ Id est un Γ-morphisme non injectif donc
ϕ− λ Id = 0 (cf III.1.a) et ϕ est une homothétie.

b. Si E est irréductible alors hom γ(E,E) est engendré par les homothéties, il est donc
de dimension 1. Or 〈χE, χE〉 = dimhom γ = 1.
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Réciproque : si 〈χE, χE〉 = 1 =
s∑

i=1

d2
i 〈χi, χi〉︸ ︷︷ ︸

=1

alors tous les di sont nuls sauf 1 et donc

E = Ei est irréductible.
Conclusion : E est un Γ-espace irréductible ssi 〈χE, χE〉 = 1.

c. Si Γ est abélien alors ργ ◦ ργ′ = ργ′ ◦ ργ .
On va alors prouver par récurrence sur la dimension de E que si une famille
d’endomorphismes de E commutent deux à deux alors il existe un vecteur propre
commun à tous ces endomorphismes.
Si dimE = 1 alors c’est évident.
Supposons la propriété vraie pour tout espace vectoriel de dimension inférieure ou
égale à n et toute famille d’endomorphismes (ui).

À l’ordre n+ 1 : si tous les endomorphismes sont des homothéties alors c’est gagné.
Sinon, soit u un endomorphisme non réduit à une homothétie et Eλ(u) un sous-
espace propre de u de dimension inférieure ou égale à n. Eλ(u) est stable par tous
les endomorphismes ui et donc on peut appliquer la propriété de récurrence à Eλ(u)
et aux endomorphismes de cet espace vectoriel obtenus par restriction des ui.
On applique alors cette propriétés aux ργ et on peut conclure : les endomorphismes
ργ ont un vecteur propre en commun.
Soit E un espace irréductible et x un vecteur propre commun à tous les ργ. L’espace
Vect(x) est alors un Γ-sous-espace (ργ(x) = λγx). On en déduit que dimE = 1.
Si dimE = 1 alors E est bien irréductible.

Partie IV

IV.1. a. On fait opérer Γ sur X ×X par γ.(x, y) = (γ.x, γ.y). On a deux orbites, {(x, x), x ∈
X} et {(x, y), x ∈ X, y ∈ X, x 6= y}. Si on note r′γ le nombre d’éléments de X ×X

fixés par γ alors γ.(x, y) = (x, y) ssi γ.x = x et γ.y = y donc r′γ = r2
γ . Il suffit alors

d’appliquer la formule du I.5.b d’où

∑

γ∈Γ

r2
γ = 2 × #Γ.

On a vu, toujours au I.5.b, que χX(γ) = rγ et on vérifie que rγ−1 = rγ donc

〈χX , χX〉 =
1

#Γ

∑

γ∈Γ

χ
X(γ)χX(γ−1)

=
1

#Γ

∑

γ∈Γ

r2
γ = 2

b. On écrit que ϕ(ey) =
∑

x∈X

axyex et donc, si aγ.x,γ.y = ax,y, on a

ϕ(eγ.y) =
∑

x∈X

ax,γ.yex =
∑

x′∈X

aγ.x′,γ.yeγ.x′

=
∑

x′∈X

ax′,yeγ.x′ = γ.
∑

x′∈X

ax′,yex′

= γ.ϕ(ey)

ce qui signifie que ϕ est un Γ-morphisme.
La réciproque se fait en remontant les calculs et en utilisant le fait que les ex con-
stituent une base.
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On aura alors une base de hom Γ(KX ,KX) en prenant la famille ϕ0 = Id et ϕ1 de

matrice ax,y =

{
0 si x = y

1 si x 6= y
et donc dimhom (KX ,KX) = 2 = 〈χX , χX〉 (cf II.3.b).

c. Comme γ.
∑
x∈X

ex =
∑
x∈X

eγ.x =
∑
x∈X

ex, on peut dire que V est un Γ-sous-espace

stable de KX . On sait alors (III.2.b) qu’il existe un Γ-sous-espace stable W tel que
KX = V ⊕W . Comme V est de dimension 1, il est irréductible donc 〈χV , χV 〉 = 1
(cf III.4.b).

On écrit χW =
p∑

i=1

di
χ

i et donc

χ
E = χ

V + χ
W = χ

V +
s∑

i=1

di
χ

i

= (1 + dk)χk +
∑

i6=k

di
χ

i

car il existe k ∈ [1, s] tel que χV = χ
k. On a alors, avec la relation du III.3.a,

〈χE, χE〉 = (1 + dk)
2〈χk, χk〉 +

∑

i6=k

d2
i 〈χi, χi〉 = 2

donc dk = 0 et il existe j 6= k tel que dj = 1, les autres étant nuls. On en déduit que
〈χW , χW 〉 = 1 et que W est irréductible.
Compte tenu de la relation du III.3.a, on en déduit que 〈χW , χW 〉 = 1 et donc que
W est irréductible.

IV.2. Comme γ ′ 7→ γγ ′ est une permutation de Γ et que γγ ′ = γ ′ ssi γ = 1Γ on a

χ
reg(γ) =

{
#Γ si γ = 1Γ

0 si γ 6= 1Γ

On en déduit que 〈χreg, χ〉 =
1

#Γ
.#Γ.χ(1Γ) = dimχ (cf I.2).

IV.3. On utilise ici le résultat de la question III.3.a : 〈χE, χi〉 = di〈χi, χi〉 et en prenant E = KΓ

on obtient di =
dimχ

i

〈χi, χi〉
vu la question précédente (IV.2).

Enfin, la dernière relation s’obtient en reprenant l’égalité trouvée au III.3.a

〈χreg, χreg〉 =
s∑

i=1

d2
i 〈χi, χi〉

et comme 〈χreg, χreg〉 = #Γ (cf II.2.b) on obtient

#Γ =

s∑

i=1

(
dimχ

i

〈χi, χi〉

)2

〈χi, χi〉

=

s∑

i=1

(dimχ
i)

2

〈χi, χi〉


