CORRIGE DE L’EPREUVE LYON-CACHAN 1997

PARTIE 1

I.1. Soit v' € T, on a

1
py/OW:ﬁZ/}y/opy

yel’

= # Z/)ﬂ/v

yel’
Y

= — p,yﬁ =TT
#F ¥y’ el

car v — 7' est une bijection de I" sur lui-méme. On en déduit que

1
WOW:ﬁzp,\/Oﬂ':ﬂ'

,yﬁel"
i.e. ™ est un projecteur.
Siz € Er alors n(z) =z i.e. Epr C Imm.

Réciproquement : si z € Im alors 7(z) = x et, pour tout 7' € I', p,y omw(z) = py(x) =
m(x) = x et donc x € Er.

Conclusion : on a bien Er = Im .

Enfin, comme la trace d’un projecteur est égale a la dimension de son image (se placer
dans une bonne base), on a Tr(7) = dim Er.

I.2. Soient (F,p) et (E', p') deux I'-espaces tels que Xg = Xg. On a donc Xg(1r) = X (1r)
ce qui signifie que dim £ = dim F'.

En conclusion, on a la formule
dim £ = Tr(p1,.) = X(1p) = dim X.

1.3. L’application trace étant linéaire, on a

Tr(n) = dim Ep = # > Tr(p,) = # > Xp().

vel’ yel’

I.4. Prouvons tout d’abord ’égalité fournie par I'énoncé : si f € KX et si f = > A\e, (ou

zeX
Ar = f(x)). Soit v € I alors

v.f = Z AJ:(V-‘%)

reX

= Z A2z

reX

= Z )\,y—l.yey

yeX
car & — 7.z est une bijection de X sur X. On a donc (7.f)(z) = A1, = f(y!
1
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On a les équivalences suivantes :
f invariant par I' & (Vy € T, v.f = f)
& (Vyel, Vo e X, f(y 'a)= f(z))
& (V(z,y) € X2, 2Ry = f(z) = f(y))
ou encore, f(x) ne dépend que de 'orbite de z.
Notons Xr le sous-espace des invariants de KX (i.e. K¥), Xi,..., X, les orbites de X
1 sii=j
0 sii#j
Les (fi)icp,s forment une famille libre (évident).

sous I'. On définit f; € Xr par f;(X;) = 0;; = {

Si f € Xt alors f = Z f(X;)fi donc la famille (f;)icp1,q est génératrice. On a affaire a

une base d’ou la conclusmn

dim Xt = s nombre d’orbites de X sous I'.

I.5. a. Explicitons p,, :

Siu= ) ey alors py(u) = > Ages, i.e. py induit une permutation des vecteurs
zeX zeX
de la base canonique, sa matrice est une matrice de permutation. Or la trace d’une

matrice de permutation est égale au nombre de 1 sur la diagonale ce qui correspond
ici au nombre de x € X tels que v.x = z. On a bien

Xx(7) =7y

b. On a vu au 4 que s = dim Er ot £ = KX et au 3 que d1mEp—ﬁZXE( 7). Vi
vel’

que Xg(y) = Xx(v) = r,, on obtient la formule :
F ZTV =
yel’
d’ou le résultat demandé en multipliant par #I.
I.6. Avecs=1,ona Y r,=#I. Or,siy=1p, r, =#X > 2.

yel’
Si ry > 1 pour tout v € I' alors

Yor=ri Y 2 HEX A+ (#T—1) > #T+1

el v#1r

ce qui est impossible donc il existe v dans I' tel que r, = 0 et «y est alors sans point fixe.
PARTIE 11

II.1. On peut obtenir ce résultat avec un calcul matriciel. Si A = Ej; est la matrice de f,
V = (vnk), U = (upk) les matrices de U et V' alors

V13Uj1 .. V1Ujn
VEUU = U”u”E

Upihj1 .. Upiljn

et comme Tr(¢) = > v;uj; = Tr(u) Tr(v), on a bien le résultat demandé.
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I1.2. a. On remarque tout d’abord que :

v.(y u)(x) = 7.(v uly' )
= v.[Yu(y 'y )]
= (v7)u ()" x)
[(v7")-ul ()

ce qui donne v.(7y.u) = (yv').u. On vérifie alors que p, est une bijection de L(E, F')
sur lui-méme car p,-10p, = Id. On a donc muni £(E, F') d'une structure de I-espace.
b. Si on note p, € L(F) et p . € L(E) les représentations de I' sur I et E alors :

Yu=pyouop . =1(u)
Xe,r) (1) = Tr(py) = Tr(¢) = Tr(p} ). Tr(p,)
= Xp(y™) Xk (7)

I1.3. a. v+ y~! est une bijection de I" donc

(f.9) = #FZf ‘1#FZf )

yel’ yel’

=9, f)

donc la forme bilinéaire en question est symétrique.
Montrons qu’elle est non dégénérée : i.e. si (f,g) = 0 pour tout g alors f = 0.

_1>: #I siy =+

Soit 4" € I et g définie par g(vy , alors (f,9) = f(o/) =0 et

0 sly #
comme on peut faire cette opération pour tout 7' de I', on en déduit que f = 0.
b. On a
1 _
(X, XF) ﬁZXE(’Y DXE(Y)

vel’

1

= ﬁzxa“m) vule I1.2.b

yel’

=dimL(E, F)r vule 1.3

ou L(E, F)r désigne les applications linéaires I'-invariantes de L(E, F').

Or
pELE,Fr< (Vyel, yo=9)
& (Vyel, Vz € B, y.o(y'z) = p(x))
& (Vyel, Ve e B, p(y ') =" p(x))
&

¢ € homr(E, F))

donc (Xg, Xr) = dimhomr(E, F).
Soit ¢ = Idg alors ¢ # 0 et ¢ € hom(F, E) donc dimhom (F, E))0 i.e., si E # {0}
alors (Xg, Xg) est un entier strictement positif.

I1.4. a. On munit K d’une structure de I'-espace en définissant v.x = x pour tout v € I' et

tout x € K. On a bien évidemment X (y) = 1 et donc la fonction constante 1 est
bien un caractere.
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Vu le 1.3
1
<XE7 Xunit>ﬁ Z XE(7>

yel’

b. Pour montrer que X+ X’ est un caractere, il suffit de définir une structure de I'-espace
sur £ x E' par v.(x,2") = (7.z,v.2'). La matrice de cette application linéaire s’écrit
. M 0
M= 0 M
sur E et E'. Or Tr(M”) = Tr(M) + Tr(M') donc X + X’ est bien un caractere.
c. On reprend les notations du I1.2 alors, avec la structure de I'-espace définie sur K
au a, on a Xgp k) = Xpr = XpXg = Xp-Xunie = Xj; car Xunse(y) = 1 (trace de
I'application identique de K dans K). On a donc

X5 = Xp»

ou M et M’ désignent les matrices des représentations linéaires

ce qui prouve effectivement que X* est un caractere.
d. Si X = Xg et X’ = Xp alors comme (X*)* = X, on a
XX/ — (X*)*X/ — X*E*XF —= XL(E*7F)
donc XX’ est un caractere.

I1.5. On sait que p,2(z) = p(p(z)) i.e. p,2 = (py)% De méme, pour k € N, on a pr = (p,)*.
Si n = #I' alors comme 4" = 1p on peut affirmer que (p,)" = Id. Ceci signifie que les
valeurs propres de p., sont racines de X™ = 1 et donc qu’elles sont de module 1.

On a alors
Tr(pﬂ/—1) = Xp,y—1 = X7
S 1
N A
Ae(py)
= Z Acar |\ =1
Aelpy)
Enfin
1 -1
(X, X) ﬁZX(V)X(V )
yel’
1 *
EZX(V)X ()
yel’
— L STXOG) 2 X > 0
Iy YIAY) =2 AT r
yel’
PARrTIE III

ITI.1. a. Soit = € kerg alors Vy € T, ¢(v.2) = yp(x) = 0 donc y.z € kerp. kerp est un
I'-sous-espace de E.
Conclusion : kerp = {0} ou E et donc ¢ est injective ou nul.
Si y € Imy alors, comme a la question précédente, 7.y € Im ¢ donc Imy est un
[-sous-espace. ¢ est donc soit nul soit surjectif.
Si ¢ est un I'-morphisme entre deux espaces irréductibles alors soit ¢ est nul soit ¢
est injectif et surjectif i.e. ¢ est un I'-isomorphisme.
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b. Si (Xg, XF) > 0 alors, vu le 11.3.b, on sait que hom (E, F') est un espace vectoriel de
dimension > 1 et donc il existe ¢ non nul I-morphisme de E dans F'. On peut dire
alors que F et F' sont [-isomorphes grace a la question précédente.

Si E et F sont I-isomorphes on appelle ¢ un I'-isomorphisme. Soit (eq,...,e,)
une base de E et (¢(e1),...,¢(en)) = (f1,-.., fn) une base de F. On note p, le
morphisme de groupe de I' dans GL(E) et p, celui de I' dans GL(F). On a alors
popy=p,op

On a donc p, = ¢~ 1o pl, o p, les matrices de p, et p, sont semblables, elles ont méme
trace. On a bien Xg = Xp.

La derniere implication est une conséquence directe de la question II.3.b.

p
c. Soit (Xi, ..., X,) une famille de caracteres irréductibles tous distincts. Soit Y \X; =
i=1
0 alors

p
(X, > AXa) = Ae(Xi, Xie) = 0

i=1
donc A = 0, la famille est bien libre.
Comme K' est un espace vectoriel de dimension I' alors le nombre de caracteres
irréductibles est inférieur a #I.
Soit E la classe de T-isomorphie de E et (TP E — Xg, 1 est bien définie (car Xg ne
dépend pas du représentant choisi dans E) et 1 est injective d’ou la bijection.

ITI1.2. a. Prouvons que J?est un [-morphisme :

v (@)= # > Vvt e

yel’

1 _
_ ﬁ Z ,Yn.fh/n 1(7/3:)]
~v' el
= f(y.x)
car v — 7' est une bijection de T'.

1
b. On a 7t(z) = oy S y.m(y~Lx) et donc

vel’
IR 1 -
~ . [fy’ 1.7r(3:)} = ﬁy’ZW[V.W (fy Ly 13:)}
yel ‘% -
€

1 _
= EV’ZV.W (7_17’ 1.3:) car m(y) =y quand y € F

yel’

1
=7 Z v (v )

¥y’ el
=7(z)

et donc, Y &7 [fy’_l.%(a:)} = #I'.7 ce qui signifie que T est un projecteur.

7' er
Size Falorsy oz eFetdone n(ytae)=~"1ta don 7(z)=zie FCImT.
Réciproquement, si 7(z) = z (i.e. € Im7) alors, avec I’égalité établie ci-dessus, on
avymw(y L7 “Lax)=xie w(yla)=7"tx Avecy=1r,

-1

m(x)) = 7(x) et donc .7 (7y
on en déduit que 7(x) = x et en conclusion x € F.
Conclusion : 7 est un projecteur d’image F'.



II1.3.

111.4.

a.

a.
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Id —7 est un projecteur et c’est aussi un I-morphisme. Son image F’ est un
supplémentaire de F' et c’est le noyau de 7. F”’ est I'-stable car si 7(z) = 0 alors
7(vy.x) = 0.

On a donc prouvé I'existence d'un supplémentaire F’ de F' I'-stable.

. On raisonne par récurrence sur la dimension de F.

Si dim F = 1 alors E est nécessairement irréductible.

Hypothese de récurrence : on suppose que tout I'-espace de dimension < n s’écrit
comme somme directe de I'-sous-espaces irréductibles.

Si dimE = n + 1 alors soit F est I'-irréductible et c’est fini, soit £ n’est pas
['-irréductible et donc il existe F' un I'-sous-espace propre de E. Vu la question
précédente, on sait qu’il existe F’ un I'-sous-espace tel que £ = F'® F’. On applique
alors I'hypothese de récurrence a F et F".

Soit £ = Ey & ...® Ej; une décomposition de E en I'-sous-espaces irréductibles. Si
r € F, on écrit x = x1 + - - - + 23 la décomposition de x selon la somme directe de E.
On a alors p(7)(z) = p(v)(z1) + -+ + p(7)(xx). La restriction de p(v) a E; définit
une opération de I' sur F;. Le caractere associé est irréductible et donc, il existe,
pour chaque espace L, un caractere X; irréductible. En rassemblant tous les I'-
sous-espaces [; associés a chaque caractere irréductible X; on aura la décomposition
suivante

Xg =d1 X1+ +dsXs

ou chaque entier d; désigne le nombre de I'-sous-espaces L; I'-isomorphes a V;.
Cette décomposition est unique car les (X;) forment une famille libre.

Ensuite, comme des caracteres irréductibles distincts sont orthogonaux (cf II1.1.b)
on a

(Xg, X Zd (Xp, Xa) = di (X4, X;)
puis
(X, Xg) = Zd Xpg, X;) = idf(xi,xiy
i=1
. Soient F et F' 2 I'-espaces F—lsomorphes et ¢ le I'-isomorphisme et £ = E1 & --- Ej,

la décomposition de E en I'-sous-espaces irréductibles. ¢(FE;) est I-irréductible dans
F' : par I'absurde, si ¢(FE;) n’était pas I'-irréductible, alors il existe H T'-sous-espace
propre de p(E;) et o !(H) est un [-sous-espace propre de E; ce qui est impossible.
Donc F' = @(Ey) @ --- @ ¢(Ey) est une décomposition de F' en somme directe de
['-sous- espaces irréductibles. En reprenant les arguments de la question précédente,

onaXE—Zd( )X etXF—Zd( )X et donc Xg = Xp avec d;(E) = d;(F).

Sid;(F) = d (F ) pour chaque ¢ alors on va pouvoir décomposer E et F' en somme de
['-sous-espaces irréductibles, K = E1®---® Ep et F = F1®---® F}, chaque espace E;
étant I'-isomorphe a F;. Si on appelle p; ces I- isomorphismes alors on définit ¢ un

[-isomorphisme de E sur F' par ¢(z) = Z wi(x;) on x = Z x; est la décomposition
=1
de = dans la somme directe E; @ -- - D Ek

On a bien les équivalences.

Soit A une valeur propre de ¢ alors ¢ — A1d est un I'-morphisme non injectif donc
— Ald =0 (cf I11.1.a) et ¢ est une homothétie.

. Si E est irréductible alors hom - (F, E) est engendré par les homothéties, il est donc

de dimension 1. Or (Xg, Xg) = dimhom ., = 1.
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S

Réciproque : si (Xg, Xg) = 1= d? (X;, X;) alors tous les d; sont nuls sauf 1 et donc
——

= -

E = FE; est irréductible.
Conclusion : E est un I'-espace irréductible ssi (Xg, Xg) = 1.

c. Si I est abélien alors py o py = py 0 p,.
On va alors prouver par récurrence sur la dimension de E que si une famille
d’endomorphismes de E commutent deux a deux alors il existe un vecteur propre
commun a tous ces endomorphismes.
Si dim E = 1 alors c’est évident.
Supposons la propriété vraie pour tout espace vectoriel de dimension inférieure ou
égale a n et toute famille d’endomorphismes (u;).
A Pordre n+ 1 : si tous les endomorphismes sont des homothéties alors c’est gagné.
Sinon, soit u un endomorphisme non réduit a une homothétie et F)(u) un sous-
espace propre de u de dimension inférieure ou égale a n. E)(u) est stable par tous
les endomorphismes u; et donc on peut appliquer la propriété de récurrence a E(u)
et aux endomorphismes de cet espace vectoriel obtenus par restriction des u;.
On applique alors cette propriétés aux p, et on peut conclure : les endomorphismes
P~ ont un vecteur propre en commun.
Soit E/ un espace irréductible et x un vecteur propre commun a tous les p.,. L’espace
Vect(x) est alors un I-sous-espace (p,(x) = Ayx). On en déduit que dim £ = 1.
Si dim E = 1 alors E est bien irréductible.

PARTIE IV

IV.1. a. On fait opérer I sur X x X par v.(z,y) = (7.x,7.y). On a deux orbites, {(z,z), = €
X}et{(z,y), v € X, y € X, x#y}. Sionnote 1, le nombre d’éléments de X x X
fixés par v alors v.(z,y) = (2,y) ssi y.x = x et v.y = y donc 7/, = r2. Il suffit alors
d’appliquer la formule du 1.5.b d’ou

2 _
D r2=2x #I.
vel’
On a vu, toujours au 1.5.b, que Xx () = 7, et on vérifie que -1 = r, donc

(i) = 2 S

vel’

1
ZEZ'@:Q

vel’

b. On écrit que p(ey) = > azye, et donc, si ay.4qy = Ggy, ON &

reX
P(eyy) = § :awﬂ-yex = § :av-w/n/-yev-w/
rzeX r'eX
= E :awﬁyew&/ =7 E Qg yCa
r’'eX r'eX
= 7.¢(ey)

ce qui signifie que ¢ est un ['-morphisme.
La réciproque se fait en remontant les calculs et en utilisant le fait que les e, con-
stituent une base.
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On aura alors une base de hom(K*, KX) en prenant la famille oy = Id et ¢ de

0 ix=
matrice a,, = { "= Y ot donc dimhom (KX, K¥*) =2 = (Xx,Xx) (cfI1.3.b).
1 siz#vy
c. Comme 7. Y e, = Y e,y = Y, €z, on peut dire que V est un I'-sous-espace
zeX zeX zeX

stable de K. On sait alors (IT1.2.b) qu’il existe un I'-sous-espace stable W tel que
KX =V @ W. Comme V est de dimension 1, il est irréductible donc (Xy, Xy/) = 1
(cf II1.4.b).

p
On écrit Xy = Y d;X; et donc
i=1

Xp =Xy +Xw =Xy + > _d;X;
i=1
= (1+do)Xp + Y _ diX;
itk
car il existe k € [1, s tel que Xy = X;. On a alors, avec la relation du I11.3.a,

(X, Xp) = (1+ i) (X, Xie) + D dZ (X5, )
£k
donc di, = 0 et il existe j # k tel que d; = 1, les autres étant nuls. On en déduit que
(Xw, Xw) =1 et que W est irréductible.
Compte tenu de la relation du III.3.a, on en déduit que (Xw, Xw) = 1 et donc que
W est irréductible.

IV.2. Comme +' — 7+ est une permutation de I' et que vy =’ ssi v = 1r on a
#I' siy=1p
Xreg<7> = { .

0 siy# 1p
On en déduit que (Xreg, X) = ﬁ #I' X(1r) = dim X (cf 1.2).
IV.3. On utilise ici le résultat de la question I11.3.a: (Xg, X;) = d;(X;, X;) et en prenant £ = K
dim X; .
on obtient d; = <;mX> vu la question précédente (IV.2).

Enfin, la derniere relation s’obtient en reprenant 1’égalité trouvée au I11.3.a

Xreg: Xreg) Zd2 Xi, Xi)

et comme (Xreg, Xreg) = #1 (cf 11.2.b) on obtlent
L (dimX; |’
#T =2 (& ><~>) o e

(dim X;)
- Z X, Xa)




