DEVOIR LIBRE Nº 4

On veillera à présenter très clairement sa copie, et en particulier encadrer les réponses, tirer un trait entre les questions et répondre de manière concise (mais complète).

Les polynômes de Tchebychev

On désigne par $\mathbb{R}[X]$ l'espace vectoriel des polynômes à coefficient réels, et par $\mathbb{R}_n[X]$ le sous-espace des polynômes de degré inférieur ou égal à n, pour tout entier naturel n.

Soit $(T_n)_{n\in\mathbb{N}}$ la suite de polynômes de $\mathbb{R}[X]$ définie par $T_0=1$, $T_1=X$, puis la relation

$$\forall n \ge 1, T_{n+1} = 2XT_n - T_{n-1}.$$

On utilise dans ce problème une notation identique pour désigner un polynôme et sa fonction polynomiale associée.

I – Étude de la suite de polynômes $(T_n)_{n\in\mathbb{N}}$

- 1. Déterminer les polynômes T_2 et T_3 .
- 2. Déterminer le degré, la parité et le coefficient dominant de T_n pour $n \in \mathbb{N}$. Parité est à prendre au sens fonctionnel.
 - On pourra par exemple démontrer que pour tout $n \in \mathbb{N}$, $T_n(-X) = (-1)^n T_n$.
- 3. Soit n dans \mathbb{N} . Montrer que la famille (T_0, T_1, \dots, T_n) est une base de $\mathbb{R}_n[X]$.
- 4. (a) Soit $(a, b) \in \mathbb{R}^2$.
 - i. Montrer que ch(a+b) = ch a ch b + sh a sh b.
 - ii. En déduire une expression de $\operatorname{ch} a \operatorname{ch} b$ en fonction de $\operatorname{ch} (a+b)$ et $\operatorname{ch} (a-b)$.
 - (b) Établir par récurrence les relations suivantes pour tout nombre réel t

$$\forall n \in \mathbb{N}, T_n(\cos t) = \cos(nt); T_n(\operatorname{ch} t) = \operatorname{ch}(nt)$$

- (c) En déduire que $|T_n(x)| \le 1$ pour $|x| \le 1$.
- (d) Soit n un entier non nul. Montrer que, pour tout x dans $[1,+\infty[$, $T(x) \ge 1$.
- (e) En déduire que, pour tout n entier non nul et pour tout x dans $]-\infty,-1]\cup[1,+\infty[$, $|T_n(x)| \ge 1$.
- (f) Montrer enfin par récurrence que si $x \ge 1$ et $n \in \mathbb{N}^*$, $T_n(x) \le 2^{n-1}x^n$.
- 5. Soit $n \in \mathbb{N}^*$.
 - (a) Résoudre dans $[0, \pi]$ l'équation $T_n(\cos x) = 0$.
 - (b) En déduire que T_n a n racines réelles dans [-1,1].
 - (c) Donner la décomposition de T_n en facteurs irréductibles dans $\mathbb{R}[X]$.

II – Étude de $M(P) = N_{\infty, [-1,1]}(P)$

Pour tout $P \in \mathbb{R}[X]$, on pose $M(P) = N_{\infty,[-1,1]}(P) = \max_{x \in [-1,1]} |P(x)|$.

- 6. Soit $P \in \mathbb{R}[X]$. Justifier l'existence de M(P) en énonçant précisément le théorème utilisé.
- 7. Montrer que pour tout $n \in \mathbb{N}$, $M(T_n) = 1$ (Utiliser 4).
- 8. Soit $n \in \mathbb{N}^*$. Montrer que l'équation $|T_n(x)| = 1$ admet exactement n+1 solutions sur [-1,1], que l'on précisera et notera $\alpha_0,\alpha_1,\ldots,\alpha_n$ de telle sorte que $\alpha_0>\alpha_1>\ldots>\alpha_n$. Soit $n \in \mathbb{N}^*$ fixé. Classiquement, on note L_0,L_1,\ldots,L_n les polynômes de Lagrange associés la famille $(\alpha_i)_{0 \leqslant i \leqslant n}$ de réels deux à deux distincts.
- 9. Rappeler l'expression de L_k et la valeur de $L_k(\alpha_j)$ pour tout couple $(j,k) \in [0,n]^2$.
- 10. Démontrer que $\mathcal{B} = (L_0, L_1, \dots, L_n)$ est une base de $\mathbb{R}_n[X]$.
- 11. Déterminer les coordonnées dans la base \mathscr{B} d'un polynôme P de $\mathbb{R}_n[X]$.
- 12. En déduire que $T_n = \sum_{k=0}^n (-1)^k L_k$.
- 13. Démontrer que pour tout $x \in [1, +\infty[$, $T_n(x) = \sum_{k=0}^n |L_k(x)|$.
- 14. Soit $P \in \mathbb{R}[X]$ un polynôme de degré n et de coefficient dominant égal à 1. En utilisant les questions 4.f et 11, montrer que pour tout $x \in [1, +\infty[$,

$$|P(x)| \leq 2^{n-1} M(P) x^n.$$

En déduire que $M(P) \geqslant \frac{1}{2^{n-1}}$.

15. Donner un polynôme Q_n unitaire de degré n tel que $M(Q_n) = \frac{1}{2^{n-1}}$

III - Étude d'une application linéaire

On définit sur $\mathbb{R}_n[X]$ l'application φ telle que $\varphi(P) = (1 - X^2)P'' - XP'$. On note $\mathscr{B} = (1, X, ..., X^n)$ la base canonique de $\mathbb{R}_n[X]$.

- 16. Montrer que φ est un endomorphisme de $\mathbb{R}_n[X]$.
- 17. Écrire la matrice M de φ dans la base \mathscr{B} .
- 18. (a) Montrer qu'il existe n+1 réels deux à deux distincts λ tels que $M-\lambda I_{n+1}$ n'est pas inversible. On les notera λ_k pour $k \in [0, n]$.
 - (b) Pour $k \in [0, n]$, montrer que $M \lambda_k I_{n+1}$ est de rang au moins n.
 - (c) Déterminer la dimension de l'image et du noyau de $\varphi \lambda_k id$.
- 19. Pour $k \in [0, n]$, on note U_k un élément non nul de $Ker(\varphi \lambda_k id)$.
 - (a) Montrer que si $k \in \{1, ..., n\}$ et si $(U_0, ..., U_{k-1})$ est libre alors $(U_0, ..., U_k)$ l'est aussi.
 - (b) En déduire que $(U_0, ..., U_n)$ est libre.
- 20. (a) Pour tout $x \in \mathbb{R}$, montrer que $\sin x \, T'_n(\cos x) = n \sin(nx)$.
 - (b) Pour tout u de [-1,1], montrer que $(1-u^2)T_n'(u) + n u T_n(u) n T_{n-1}(u) = 0$.

- (c) Montrer que $(1-X^2)T'_n + nXT_n nT_{n-1} = 0$.
- (d) Montrer alors, par récurrence sur n, que $\varphi(T_n) + n^2 T_n = 0$. On pourra appliquer φ à la relation de récurrence définissant les T_n .
- (e) Déterminer une base de $\operatorname{Ker}(\varphi \lambda_k \operatorname{id})$ pour $k \in [0, n]$
- (f) Quelle est la matrice de φ dans la base $(T_0, ..., T_n)$?

IV – Étude d'un produit scalaire sur $\mathbb{R}[X]$

On associe à tout couple (P,Q) de polynômes de $\mathbb{R}[X]$ l'intégrale suivante

$$\langle P, Q \rangle = \int_0^{\pi} P(\cos x) Q(\cos x) \, \mathrm{d}x$$

On pose n entier naturel non nul.

- 21. Montrer que l'application $(P,Q) \mapsto \langle P,Q \rangle$ définit un produit scalaire sur $\mathbb{R}[X]$.
- 22. (a) Soient $p, q \in \mathbb{N}$ tels que $p \neq q$. Calculer $\langle T_p, T_q \rangle$.
 - (b) Calculer $\langle T_0, T_0 \rangle$ et $\langle T_n, T_n \rangle$
 - (c) En déduire que, pour $n \ge 1$, T_n est orthogonal à $\mathbb{R}_{n-1}[X]$, en utilisant la question 3.
 - (d) En utilisant les questions précédentes, montrer que $\langle T_n, X^n \rangle = \frac{\pi}{2^n}$.
- 23. Déterminer une base orthonormale de $\mathbb{R}_n[X]$ pour $\langle \cdot, \cdot \rangle$.

V – Méthode de quadrature de Gauss-Tchebychev

On désigne par n un entier naturel non nul et on pose $x_k = \frac{2k-1}{2n}\pi$ pour $k \in \{1,...,n\}$. Une méthode de quadrature est un procédé numérique pour approcher la valeur d'une intégrale. On associe ici à toute fonction $f: [0,\pi] \to \mathbb{R}$, continue sur $[0,\pi]$, les réels

$$I(f) = \int_0^{\pi} f(\cos x) dx \quad \text{et} \quad S_n(f) = \frac{\pi}{n} \sum_{k=1}^n f(\cos x_k).$$

On se propose de montrer d'abord la convergence de la méthode :

$$S_n(f) \xrightarrow[n \to +\infty]{} I(f).$$

Puis que la méthode est d'ordre 2n, c'est-à-dire que la somme et l'intégrale ont exactement la même valeur pour chaque polynôme de degré au plus 2n-1, mais qu'elles diffèrent pour au moins un polynôme de degré 2n.

On admet la forme générale du théorème sur les sommes de Riemann : Soit f une fonction continue sur un segment [a,b] (a < b). Soit p un entier naturel non nul. On pose pour k dans $\{0,\ldots,p-1\}$, $\alpha_k=a+k\frac{b-a}{p}$. Alors, pour tous c_0,\ldots,c_{p-1} tels que $\forall\,k\in\{0,\ldots,p-1\},\ c_k\in[\alpha_k,\alpha_{k+1}],$

$$\frac{b-a}{p}\sum_{k=0}^{p-1}f(c_k)\xrightarrow[p\to+\infty]{}\int_a^bf(t)\mathrm{d}t.$$

- 24. Montrer que pour toute fonction f continue sur $[0,\pi]$, $S_n(f) \xrightarrow[n \to +\infty]{} I(f)$.
- 25. On note, pour $j \in [0, n]$, $c_j = \sum_{k=1}^n \cos(jx_k)$.
 - (a) Calculer c_0 et c_n .
 - (b) Calculer pour $j \in [1, n-1]$, $\sum_{k=1}^{n} (e^{ij\frac{\pi}{n}})^k$.
 - (c) En déduire que, pour $j \in [1, n-1]$, $c_i = 0$.
- 26. (a) Pour $p \in [0, n-1]$, calculer $I(T_p)$ et $S_n(T_p)$.
 - (b) En déduire que, pour tout P dans $\mathbb{R}_{n-1}[X]$, $I(P) = S_n(P)$.
- 27. Soit P un polynôme de $\mathbb{R}_{2n-1}[X]$. On note Q et R respectivement le quotient et le reste de la division euclidienne de P par T_n .
 - (a) Montrer que $Q \in \mathbb{R}_{n-1}[X]$.
 - (b) En déduire, en utilisant la partie IV que I(P) = I(R).
 - (c) En déduire que, pour $P \in \mathbb{R}_{2n-1}[X]$, $I(P) = S_n(P)$.
- 28. Calculer $I(T_{2n})$ et $S_n(T_{2n})$ et conclure.

FIN DE L'ÉNONCÉ