DEVOIR LIBRE N° 4*: IDÉAUX DE $\mathscr{M}_n(\mathbb{R})$

Notations et définitions

n et p étant deux entiers naturels non nuls, on désigne par $\mathcal{M}_{(p,n)}(\mathbb{R})$ l'espace vectoriel des matrices à p lignes et n colonnes à coefficients réels.

 $\mathcal{M}_n(\mathbb{R})$ désigne l'algèbre des matrices carrées d'ordre n à coefficients réels.

On rappelle que deux matrices A et B appartenant à $\mathcal{M}_{(p,n)}(\mathbb{R})$ sont équivalentes si et seulement s'il existe une matrice P carrée inversible d'ordre p et une matrice Q carrée inversible d'ordre p telles que P et une matrice Q carrée inversible d'ordre P telles que P et une matrice Q carrée inversible d'ordre P telles que P et une matrice P carrée inversible d'ordre P telles que P et une matrice P carrée inversible d'ordre P et une matrice P et une matri

A étant un élément de $\mathcal{M}_{(p,n)}(\mathbb{R})$, on appelle noyau de A, noté $\mathrm{Ker}(A)$, le sous-espace vectoriel de $\mathcal{M}_{(n,1)}(\mathbb{R})$:

$$\operatorname{Ker}(A) = \left\{ X \in \mathcal{M}_{(n,1)}(\mathbb{R}), \ AX = 0 \right\}.$$

On appelle image de A le sous-espace vectoriel de $\mathcal{M}_{(p,1)}(\mathbb{R})$, noté $\mathrm{Im}(A)$:

$$\operatorname{Im}(A) = \left\{ AX, X \in \mathcal{M}_{(n,1)}(\mathbb{R}) \right\}.$$

Un sous-groupe J de $(\mathcal{M}_n(\mathbb{R}),+)$ est appelé un idéal à droite de $\mathcal{M}_n(\mathbb{R})$ si et seulement si :

$$\forall A \in \mathcal{M}_n(\mathbb{R}), \forall M \in J, MA \in J.$$

Un sous-groupe J de $(\mathcal{M}_n(\mathbb{R}),+)$ est appelé un idéal à gauche de $\mathcal{M}_n(\mathbb{R})$ si et seulement si :

$$\forall A \in \mathcal{M}_n(\mathbb{R}), \forall M \in J, AM \in J.$$

Si J est à la fois un idéal à gauche et un idéal à droite, on dit que J est un idéal bilatère de $\mathcal{M}_n(\mathbb{R})$.

On désigne par I la matrice identité d'ordre n.

A. Résultats préliminaires

Soit A appartenant à $\mathcal{M}_n(\mathbb{R})$, on suppose A de rang r.

- 1. Soit u l'endomorphisme de matrice A dans la base canonique de \mathbb{R}^n .
 - a) Soit $(e_{r+1},e_{r+2},\ldots,e_n)$ une base du noyau de u, montrer l'existence d'une famille de vecteurs (e_1,e_2,\ldots,e_r) telle que $(e_1,e_2,\ldots,e_r,e_{r+1},e_{r+2},\ldots,e_n)$ soit une base de \mathbb{R}^n .
 - b) Montrer que le sous-espace vectoriel de \mathbb{R}^n engendré par $(e_1, e_2, ..., e_r)$ est un supplémentaire de $\mathrm{Ker}(u)$.
 - En déduire que le sous-espace vectoriel engendré par (e_1,e_2,\ldots,e_r) est isomorphe à ${\rm Im}(u)$.
 - En déduire que $(u(e_1), u(e_2), ..., u(e_r))$ est une base de Im(u).
 - c) Peut-on compléter la famille $(u(e_1), u(e_2), ..., u(e_r))$ en une base de \mathbb{R}^n ?
 - En déduire que A est équivalente à la matrice $\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$, où I_r désigne la matrice identité d'ordre r et 0 une matrice nulle de taille convenable.
- 2. Soit D une matrice diagonale d'ordre n telle que r éléments de la diagonale sont égaux à 1, les n-r autres sont nuls. Montrer que A est équivalente à D.

B. Application

On considère une application f de $\mathcal{M}_n(\mathbb{R})$ dans \mathbb{R} , différente des constantes 0 et 1, telle que :

$$\forall (A, B) \in (\mathcal{M}_n(\mathbb{R}))^2, f(AB) = f(A)f(B).$$

- **1.** Montrer que pour toute matrice inversible A de $\mathcal{M}_n(\mathbb{R})$, f(A) est non nul.
- 2. A est une matrice de rang r, strictement inférieur à n.
 - a) Montrer l'existence de r+1 matrices, notées $A_1, A_2, ..., A_{r+1}$, toutes équivalentes à A et telles que le produit $A_1A_2...A_{r+1}$ soit nul.
 - b) En déduire que f(A) = 0.
- Que peut-on en conclure pour l'application f?
 Donner un exemple d'une telle application.

C. Idéaux bilatères de $\mathcal{M}_n(\mathbb{R})$

Soit J un idéal bilatère de $\mathcal{M}_n(\mathbb{R})$.

- 1. Montrer que si $I \in J$, alors $J = \mathcal{M}_n(\mathbb{R})$.
- **2.** Montrer que si J contient une matrice inversible alors $J = \mathcal{M}_n(\mathbb{R})$.
- 3. On suppose que J n'est pas réduit au vecteur nul de $\mathcal{M}_n(\mathbb{R})$. Soit A une matrice de rang r (non nul) appartenant à J.
 - a) Montrer que J contient la matrice $\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$.
 - b) Montrer l'existence de n-r+1 matrices, notées $A_1, A_2, ..., A_{n-r+1}$, toutes équivalentes à A et telles que la somme $A_1 + A_2 + \cdots + A_{n-r+1}$ soit une matrice inversible.
- **4.** Quelle conclusion peut-on en tirer pour les idéaux bilatères de $\mathcal{M}_n(\mathbb{R})$?

D. Idéaux à droite de $\mathcal{M}_n(\mathbb{R})$

1. Soit E un sous-espace vectoriel de $\mathcal{M}_{(n,1)}(\mathbb{R})$. On désigne par J_E le sous-ensemble de $\mathcal{M}_n(\mathbb{R})$

$$J_E = \{A \in \mathcal{M}_n(\mathbb{R}), E \text{ contient } \operatorname{Im}(A)\}$$

Montrer que J_E est un idéal à droite de $\mathcal{M}_n(\mathbb{R})$.

2. Soit A un élément de $\mathcal{M}_{(n,p)}(\mathbb{R})$ et B un élément de $\mathcal{M}_{(n,q)}(\mathbb{R})$. On suppose que $\mathrm{Im}(B)$ est contenue dans $\mathrm{Im}(A)$. On veut montrer qu'il existe une matrice C appartenant à $\mathcal{M}_{(p,q)}(\mathbb{R})$ telle que B=AC.

On fixe un supplémentaire S de $\operatorname{Ker}(A)$ dans $\mathcal{M}_{(p,1)}(\mathbb{R})$.

- a) Justifier que l'application ϕ définie par $X\mapsto AX$ définit un isomorphisme de S dans $\mathrm{Im}(A)$.
- b) Soit (e_1,e_2,\ldots,e_q) la base canonique de $\mathcal{M}_{(q,1)}(\mathbb{R})$. Justifier l'existence, pour tout i compris entre 1 et q, d'un unique élément ε_i de S tel que

$$A\varepsilon_i = Be_i$$
.

- c) Soit C l'élément de $\mathcal{M}_{(p,q)}(\mathbb{R})$ dont les colonnes sont les matrices $\varepsilon_1, \varepsilon_2, ..., \varepsilon_q$. On pose $C = [\varepsilon_1 \ \varepsilon_2 \ ... \ \varepsilon_q]$. Montrer que B = AC.
- 3. Soient A, B et C trois éléments de $\mathcal{M}_n(\mathbb{R})$ tels que Im(A)+Im(B) contient Im(C).
 - a) On désigne par D=(A,B) la matrice de $\mathcal{M}_{(n,2n)}(\mathbb{R})$ obtenue en juxtaposant les matrices A et B, c'est-à-dire que les n premières colonnes de D sont celles de A et les n dernières celles de B.
 - Montrer que $\operatorname{Im}(D) = \operatorname{Im}(A) + \operatorname{Im}(B)$.
 - b) En déduire l'existence d'une matrice W appartenant à $\mathcal{M}_{(2n,n)}(\mathbb{R})$ telle que : C=DW.
 - c) En déduire l'existence de deux matrices U et V appartenant à $\mathcal{M}_n(\mathbb{R})$ telles que C = AU + BV.
- **4.** Soit *I* un idéal à droite de $\mathcal{M}_n(\mathbb{R})$.
 - a) Montrer qu'il existe un entier naturel r tel que : $\forall M \in J$, $\operatorname{rang}(M) \leqslant r$ et qu'il existe $M_0 \in J$ tel que $\operatorname{rang}(M_0) = r$.
 - b) Soit M un élément quelconque de J. On suppose que ${\rm Im}(M)$ n'est pas contenue dans ${\rm Im}(M_0)$.
 - En utilisant le sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ $\mathrm{Im}(M)+\mathrm{Im}(M_0)$, montrer l'existence d'un élément de J de rang strictement supérieur à r.
- c) Déduire des questions précédentes que J est contenu dans $J_{\text{Im}(M_0)}$.
- 5. Montrer que $J = J_{\text{Im} M_0}$.

E. Idéaux à gauche de $\mathcal{M}_n(\mathbb{R})$

1. Soit E un sous-espace vectoriel de $\mathcal{M}_{(n,1)}(\mathbb{R})$. On désigne par J_E le sous-ensemble de $\mathcal{M}_n(\mathbb{R})$

$$J_E = \{M \in \mathcal{M}_n(\mathbb{R}), \text{ Ker}(M) \text{ contient } E\}$$

Montrer que J_E est un idéal à gauche de $\mathcal{M}_n(\mathbb{R})$.

2. a) On désigne par u une application linéaire de \mathbb{R}^n dans \mathbb{R}^p , v une application linéaire de \mathbb{R}^n dans \mathbb{R}^q .

On suppose que Ker(v) contient Ker(u).

Montrer qu'il existe une e application linéaire w de \mathbb{R}^p dans \mathbb{R}^q telle que $v=w\circ u$.

- b) Soit $A \in \mathcal{M}_{(p,n)}(\mathbb{R})$, $B \in \mathcal{M}_{(q,n)}(\mathbb{R})$ telles que $\operatorname{Ker}(B)$ contient $\operatorname{Ker}(A)$. Déduire de la question précédente qu'il existe $C \in \mathcal{M}_{(q,p)}(\mathbb{R})$ telle que B = CA.
- 3. Soient A, B et C trois matrices carrées d'ordre n telles que Ker(C) contient $Ker(A) \cap Ker(B)$. Montrer qu'il existe deux matrices carrées d'ordre n, U et V, telles que C = UA + VB.
- **4.** Déterminer les idéaux à gauche de $\mathcal{M}_n(\mathbb{R})$.

 FIN DE L'ÉNONCÉ	