DL 3 - EXERCICE E3A + PROBLÈME CCINP

Exercice: E3A - Algèbre linéaire

Dans tout l'exercice, n est un entier naturel non nul. Soit φ l'application qui à tout polynôme P de $\mathbb{R}_n[X]$ associe $\varphi(P) = \int_0^1 P(t) \ dt$.

- 1. Démontrer que $\mathcal{B} = (1, X-1, X(X-1), \dots, X^{n-1}(X-1))$ est une base de $\mathbb{R}_n[X]$.
- 2. Généralités sur φ
 - 2.1. Démontrer que φ est une forme linéaire sur $\mathbb{R}_n[X]$.
 - 2.2. Déterminer $\operatorname{Im} \varphi$ et la dimension du noyau de φ .
- 3. On considère alors l'application ψ qui à tout polynôme P de $\mathbb{R}_n[X]$ associe le polynôme Q tel que $\forall x \in \mathbb{R}$, $Q(x) = \int_0^x P(t) dt$.
 - 3.1. Justifier que l'application ψ est linéaire.
 - 3.2. Démontrer que Im $\psi = \text{Vect}(X, X^2, ..., X^{n+1})$
 - 3.3. Démontrer que : $P \in \text{Ker } \varphi \Leftrightarrow \psi(P) \in \text{Vect}(X(X-1),...,X^n(X-1))$.
 - 3.4. Donner alors une base de $Ker \varphi$.
- 4. On note $\mathcal{H} = \mathcal{L}(\mathbb{R}_n[X], \mathbb{R})$.
 - 4.1. Donner la dimension de \mathcal{H} .
 - 4.2. Pour $k \in [\![0,n]\!]$, soit ψ_k la forme linéaire sur $\mathbb{R}_n[X]$ qui à tout polynôme P de $\mathbb{R}_n[X]$ associe $\frac{P^{(k)}(0)}{k!}$. Démontrer que la famille (ψ_0,\ldots,ψ_n) est une base de \mathscr{H} .
 - 4.3. Déterminer les composantes de φ dans cette base.

Problème CCINP - Comparaison de convergences

Dans tout le problème, $\sum f_n$ est une série de fonctions définies sur un intervalle I de \mathbb{R} et à valeurs réelles.

Partie I

Une série de fonctions $\sum f_n$ converge absolument sur I lorsque, pour tout $x \in I$, la série $\sum |f_n(x)|$ converge. Dans les deux premières questions on supposera, pour simplifier les démonstrations, que toutes les fonctions f_n sont bornées sur I.

- 1. (a) Rappeler la définition de la convergence normale de la série de fonctions $\sum f_n$ sur I.
 - (b) On suppose que la série de fonctions $\sum f_n$ converge normalement sur I, démontrer que $\sum f_n$ converge absolument sur I.

- 2. On suppose que la série de fonctions $\sum f_n$ converge normalement sur I, démontrer que $\sum f_n$ converge uniformément sur I. On pourra démontrer que la suite des restes converge uniformément sur I vers la fonction nulle ou utiliser toute autre méthode.
- 3. On pose pour $x \in [0,1]$, $f_n(x) = (-1)^n \left(\frac{x^2 + n}{n^2}\right)$.

 Démontrer que la série de fonctions $\sum f_n$ converge simplement puis converge uniformément sur [0,1] mais ne converge absolument en aucune valeur de [0,1].
- 4. Si la série de fonctions $\sum f_n$ converge absolument sur I, a-t-on nécessairement $\sum f_n$ qui converge uniformément sur I?

 On attend une réponse détaillée et on pourra utiliser une série usuelle présente dans le formulaire de développements limités.

Partie II

Dans toute cette partie, $(\alpha_n)_{n\geqslant 1}$ est une suite décroissante de réels positifs, I=[0;1[et pour tout $x\in I$, $f_n(x)=\alpha_n x^n(1-x)$.

- 5. Justifier que la suite $(\alpha_n)_{n\geqslant 1}$ est bornée et que la série de fonctions $\sum_{n\geqslant 1}f_n$ converge simplement sur I.
- 6. (a) Calculer pour $n \ge 1$, $||f_n||_{\infty} = \sup_{x \in I} |f_n(x)|$.
 - (b) Démontrer que la série de fonctions $\sum_{n\geq 1} f_n$ converge normalement sur I si et seulement si la série de réels positifs $\sum_{n\geq 1} \frac{\alpha_n}{n}$ converge.
- 7. (a) Calculer pour tout $x \in I$, $\sum_{k=n+1}^{\infty} x^k$.
 - (b) Si on suppose que la suite $(\alpha_n)_{n\geqslant 1}$ converge vers 0, démontrer que la série de fonctions $\sum_{n\geqslant 1} f_n$ converge uniformément sur I.

 On pourra observer que pour $k\geqslant n+1, \alpha_k\leqslant \alpha_{n+1}$.
 - (c) Réciproquement, démontrer que si la série de fonctions $\sum_{n\geqslant 1}f_n$ converge uniformément sur I alors la suite $(\alpha_n)_{n\geqslant 1}$ converge vers 0.
- 8. Dans chacun des cas suivants, donner, en détaillant, un exemple de suite décroissante de réels positifs $(\alpha_n)_{n\geqslant 1}$ telle que :
 - (a) La série de fonctions $\sum_{n\geq 1} f_n$ converge normalement sur I.
 - (b) La série de fonctions $\sum_{n\geq 1}^{\infty} f_n$ ne converge pas uniformément sur I.
 - (c) La série de fonctions $\sum_{n\geqslant 1}f_n$ converge uniformément sur I mais ne converge pas normalement sur I.
- 9. Résumer à l'aide d'un schéma toutes les implications possibles, pour une série de fonctions quelconque, entre les convergences : normale, uniforme, absolue et simple sur *I*.