ORAL BLANC Nº 1: MINES-PONTS

Avec préparation de 15 minutes

On appelle nombre de Fermat d'indice $n \in \mathbb{N}$ le nombre $F_n = 2^{2^n} + 1$.

- 1. Soit $(n,m) \in \mathbb{N}^2$ tel que $m \neq n$. Montrer que $F_n \wedge F_m = 1$.
- 2. En déduire qu'il existe une infinité de nombres premiers.
- Sans préparation Soit $(u_n)_{n\geqslant 1}$ une suite réelle ne prenant pas la valeur -1. On définit une suite $(v_n)_{n\geqslant 1}$ en posant $v_n=\dfrac{u_n}{\displaystyle\prod_{k=1}^n(1+u_k)}$.
 - 1. On suppose ici que $u_n \ge 0$ pour tout n. Quelle est la nature de la série de terme général v_n ? Calculer sa somme dans le cas où la série de terme général u_n diverge.
 - 2. On suppose que $u_n = a^{2^n}$ où a est un élément fixé de [0,1[. Calculer la somme de la série de terme général v_n .
 - 3. Étudier la série de terme général v_n pour $u_n = \frac{(-1)^n}{n+1}$, puis pour $u_n = \frac{(-1)^n}{\sqrt{n+1}}$.

27 Mai 2025

ORAL BLANC Nº 1: MINES-PONTS

Avec préparation de 15 minutes

On appelle nombre de Fermat d'indice $n \in \mathbb{N}$ le nombre $F_n = 2^{2^n} + 1$.

- 1. Soit $(n, m) \in \mathbb{N}^2$ tel que $m \neq n$. Montrer que $F_n \wedge F_m = 1$.
- 2. En déduire qu'il existe une infinité de nombres premiers.
- Sans préparation Soit $(u_n)_{n\geqslant 1}$ une suite réelle ne prenant pas la valeur -1. On définit une suite $(v_n)_{n\geqslant 1}$ en posant $v_n=\dfrac{u_n}{\prod (1+u_k)}$.
 - 1. On suppose ici que $u_n \ge 0$ pour tout n. Quelle est la nature de la série de terme général v_n ? Calculer sa somme dans le cas où la série de terme général u_n diverge.
 - 2. On suppose que $u_n = a^{2^n}$ où a est un élément fixé de [0,1[. Calculer la somme de la série de terme général v_n .
 - 3. Étudier la série de terme général v_n pour $u_n = \frac{(-1)^n}{n+1}$, puis pour $u_n = \frac{(-1)^n}{\sqrt{n+1}}$.