Savoir-faire et thèmes classiques – Algèbre modulaire

Savoir-faire

Définir la relation de congruence modulo n , traduire que deux nombres sont congrus modulo n par un argument de divisibilité
Connaître les critères de divisibilité par 2, 3, 4, 5, 8, 9, 10, 11
Obtenir une divisibilité par calcul modulaire
Définir l'anneau ($\mathbb{Z}/n\mathbb{Z},+,\times$) des entiers modulo n , déterminer ses éléments inversibles, les générateur du groupe cyclique additif correspondant, connaître une CNS pour que ce soit un corps (noté alors \mathbb{F}_p)
Calculer effectivement l'inverse d'un élément inversible de $\mathbb{Z}/n\mathbb{Z}$
Résoudre un système linéaire, une équation du second degré dans \mathbb{F}_p
Connaître les deux versions (pratique et théorique) du théorème chinois
Résoudre un système de congruence par théorème chinois ou par résolution d'équations dio- phantienne, être capable en particulier de trouver une solution particulière rapidement
Définir l'indicatrice d'Euler, connaître les images des puissances des nombres premiers, son caractère multiplicatif, en déduire l'expression de $\varphi(n)$ à l'aide des diviseurs premiers de n
Connaître le théorème d'Euler et son corollaire, le petit théorème de Fermat
Calculer les puissances d'un entier modulo n : soit en trouver une cyclicité à la main, soit en utilisant le théorème d'Euler ou le petit théorème de Fermat

Thèmes Classiques

Carrés dans \mathbb{F}_p

Théorème de Wilson

Chiffrement RSA

Expression de $\varphi(n)$ obtenue avec des arguments probabilistes

Identité $n = \sum_{k|n} \varphi(k)$