I Inégalités d'interpolation des dérivées

I.A - $Cas\ particulier\ K=1$

La norme infinie des fonctions continues sur un segment (compact) existe bien selon le théorème des bornes atteintes.

Q 1. Soit $f \in C^1([0,1])$. Soit $x \in [0,1]$.

Selon l'inégalité des accroissements finis appliquée à f dérivable sur l'intervalle [0,1]. On a

$$|f(x) - f(x_1)| \le ||f'||_{\infty} \cdot |x - x_1| \le ||f'||_{\infty}$$

Par inégalité triangulaire, on a donc $|f(x)| \leq ||f'||_{\infty} + 1 \cdot |f(x_1)|$

Comme c'est vrai pour tout $x \in [0, 1]$, on a alors

$$||f||_{\infty} \leqslant ||f'||_{\infty} + 1 \cdot |f(x_1)|$$

Ceci montre l'inégalité d'interpolation (I.2) avec C = 1

Q 2. Pour $C \in]0,1[$ et la fonction $f: x \mapsto 1$ l'inégalité d'interpolation (I.2) est fausse car

$$||f||_{\infty} = 1 > C = 0 + C \times 1 = ||f'||_{\infty} + C \cdot |f(x_1)|$$

I.B - Cas particulier K=2

Q 3. Soit $x \in [0,1]$ et $f \in \mathcal{C}^2([0,1])$. L'égalité des accroissements finis appliquée à f dérivable sur $]x_1, x_2[$ et continue sur $[x_1, x_2]$, nous fournit $c \in]x_1, x_2[$ tel que $f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$

Ainsi l'inégalité des accroissements finis appliquée à f' de de classe \mathcal{C}^1 nous donne :

$$\left| f'(x) - \frac{f(x_2) - f(x_1)}{x_2 - x_1} \right| = \left| f'(x) - f'(c) \right| \le \left\| f'' \right\|_{\infty} \cdot |x' - c|$$

Ce qui permet de conclure : $\left| f'(x) - \frac{f(x_2) - f(x_1)}{x_2 - x_1} \right| \leq ||f''||_{\infty}$

Q 4. Avec l'inégalité triangulaire et comme $x_2 - x_1 > 0$, on en déduit que

$$\forall x \in [0,1], \ \left| f'(x) \right| \le \left| \frac{f(x_2) - f(x_1)}{x_2 - x_1} \right| + \left\| f'' \right\|_{\infty} \le \left\| f'' \right\|_{\infty} + \frac{\left| f(x_1) \right| + \left| f(x_2) \right|}{x_2 - x_1}$$

on a bien $||f'||_{\infty} \le ||f''||_{\infty} + \frac{|f(x_1)| + |f(x_2)|}{x_2 - x_1}$

Q 5. Soit $f \in \mathcal{C}^2([0,1])$. Avec $C = 1 + \frac{1}{x_2 - x_1}$, on a $C \geqslant \frac{1}{x_2 - x_1}$, on déduit de Q4 que

$$||f'||_{\infty} \le ||f''||_{\infty} + C(|f(x_1)| + |f(x_2)|)$$

On a selon I.2 selon Q2 et Q4:

$$||f||_{\infty} \le ||f'||_{\infty} + 1 \cdot |f(x_1)| \le ||f''||_{\infty} + \frac{|f(x_1)| + |f(x_2)|}{x_2 - x_1} + 1 \cdot |f(x_1)|$$

Comme C $\geqslant \frac{1}{x_2 - x_1}$, on a alors $||f||_{\infty} \leqslant ||f''||_{\infty} + C |f(x_1)| + C |f(x_2)|$

Dans le cas K = 2, on a bien montré l'inégalité d'interpolation (I.3) avec C = $1 + \frac{1}{x_2 - x_1}$

I.C - Cas général par interpolation de Lagrange

Q 6. On a facilement $\forall P, Q \in \mathbb{R}_{K-1}[X], \ \forall \lambda \in \mathbb{R}, \ \psi(\lambda P + Q) = \lambda \Psi(P) + \Psi(Q) \text{ ainsi } \psi \in \mathcal{L}\left(\mathbb{R}_{K-1}[X], \mathbb{R}^K\right)$.

Soit $P \in \ker (\Psi)$. On a $\Psi(P) = 0$.

Donc $P(x_1) = \cdots = P(x_K) = 0$. Ainsi P admet au moins K racines distinctes.

Or $deg(P) \leq K - 1$, d'où P = 0.

L'autre inclusion étant évidente, on a $\ker(\Psi) = \{0\}$ d'où Ψ est injective.

Comme $\dim (\mathbb{R}_{K-1}[X]) = K = \dim (\mathbb{R}^K)$, on conclut que

l'application Ψ est un isomorphisme d'espaces vectoriels

Q 7. Je note (e_1, \ldots, e_K) la base canonique de \mathbb{R}^K .

Pour $i \in [1, K]$, je pose $L_i = \Psi^{-1}(e_i)$ de sorte que

$$L_i \in \mathbb{R}_{K-1}[X] \text{ et } \forall j \in [1, K], \ L_i(x_j) = \delta_{i,j}$$

Ainsi
$$P = \sum_{j=1}^{K} f(x_j) L_j \in \mathbb{R}[X]$$
 vérifie $\forall \ell \in [1, K], P(x_\ell) = \sum_{j=1}^{K} f(x_j) \delta_{j,\ell} = f(x_\ell)$

On aurait pu poser $L_i = \prod_{\substack{j=1 \ j \neq i}}^K \frac{X - x_j}{x_i - x_j}$ mais cela ne semble pas être dans l'esprit du sujet.

Q 8. On procède par récurrence bornée.

<u>L'initialisation</u> est obtenu par Q7, qui nous donne K réels $x_1 < \cdots < x_K$ de [0,1] en lesquels $f^{(0)} - P^{(0)}$ s'annule.

<u>Pour l'hérédité</u> : soit $k \in [0, K-2]$ tel qu'il existe au moins K-k réels distincts que je note $y_1 < \cdots < y_{K-k}$ de [0, 1] en lesquels la fonction $f^{(k)} - P^{(k)}$ s'annule.

Soit $j \in [1, K - k]$. On a $f^{(k)} - P^{(k)}$ est dérivable sur $[y_j, y_{j+1}]$ et $f(y_j) = f(y_{j+1})$.

Rolle nous fournit alors $z_j \in]y_j, y_{j+1}[$ tel que $(f^{(k+1)} - P^{(k+1)})(z_j) = 0.$

Comme $y_1 < z_1 < y_2 < z_2 \cdots < y_{K-k-1} < z_{K-k-1} < y_{K-k}$, on a obtenu K - k - 1 = K - (k+1) points d'annulation de $f^{(k+1)} - P^{(k+1)}$. Ce que l'on voulait.

On peut <u>conclure</u> la récurrence : pour tout $k \in [0, K-1]$,

il existe au moins K -k réels distincts de [0,1] en lesquels la fonction $f^{(k)} - P^{(k)}$ s'annule

Q 9. Soit $k \in [0, K-1]$. On a $f^{(k)} - P^{(k)} \in \mathcal{C}^{K-k}([0,1], \mathbb{R}) \subset \mathcal{C}^1([0,1], \mathbb{R})$.

On peut appliquer Q1 pour $x_1' \in [0,1]$:

$$\|f^{(k)} - P^{(k)}\|_{\infty} \le \|(f^{(k)} - P^{(k)})'\|_{\infty} + |(f^{(k)} - P^{(k)})(x_1')|$$

Je choisis $x_1' \in [0,1]$ tel que $(f^{(k)} - P^{(k)})(x_1') = 0$, ce qui est possible selon Q8 car $K - k \ge 1$.

On en déduit l'inégalité $\boxed{ \left\|f^{(k)}-\mathbf{P}^{(k)}\right\|_{\infty} \leqslant \left\|f^{(k+1)}-\mathbf{P}^{(k+1)}\right\|_{\infty}}$

Q 10. Par croissance de la suite $(\|f^{(k)} - P^{(k)}\|_{\infty})_{0 \le k \le K}$ (selon Q9), et comme $P^{(K)} = 0$ car $deg(P) \le K - 1$, alors :

$$\forall k \in [0, K-1], \|f^{(k)} - P^{(k)}\|_{\infty} \le \|f^{(K)} - P^{(K)}\|_{\infty} = \|f^{(K)}\|_{\infty}$$

Par inégalité triangulaire, on a donc $\forall k \in \llbracket 0, \mathbf{K} - 1 \rrbracket, \ \left\| f^{(k)} \right\|_{\infty} \leqslant \left\| f^{(\mathbf{K})} \right\|_{\infty} + \left\| \mathbf{P}^{(k)} \right\|_{\infty}.$ Ainsi

$$\forall k \in \llbracket 0, \mathbf{K} - 1 \rrbracket, \ \left\| f^{(k)} \right\|_{\infty} \leqslant \left\| f^{(\mathbf{K})} \right\|_{\infty} + \sum_{i=0}^{\mathbf{K} - 1} \left\| \mathbf{P}^{(i)} \right\|_{\infty}$$

En utilisant Q7, on a

$$\forall i \in \llbracket 0, \mathbf{K} - 1 \rrbracket, \ \left\| \mathbf{P}^{(i)} \right\|_{\infty} = \left\| \sum_{\ell=1}^{\mathbf{K}} f(x_{\ell}) \mathbf{L}_{\ell}^{(i)} \right\|_{\infty} \leqslant \sum_{\ell=1}^{\mathbf{K}} |f(x_{\ell})| \left\| \mathbf{L}_{\ell}^{(i)} \right\|_{\infty} \leqslant \left(\max_{1 \leqslant j \leqslant \mathbf{K}} \left\| \mathbf{L}_{j}^{(i)} \right\|_{\infty} \right) \sum_{\ell=1}^{\mathbf{K}} |f(x_{\ell})| \left\| \mathbf{L}_{\ell}^{(i)} \right\|_{\infty} \leqslant \left(\max_{1 \leqslant j \leqslant \mathbf{K}} \left\| \mathbf{L}_{j}^{(i)} \right\|_{\infty} \right) \sum_{\ell=1}^{\mathbf{K}} |f(x_{\ell})| \left\| \mathbf{L}_{\ell}^{(i)} \right\|_{\infty} \leqslant \left(\max_{1 \leqslant j \leqslant \mathbf{K}} \left\| \mathbf{L}_{j}^{(i)} \right\|_{\infty} \right) \sum_{\ell=1}^{\mathbf{K}} |f(x_{\ell})| \left\| \mathbf{L}_{\ell}^{(i)} \right\|_{\infty} \leqslant \left(\max_{1 \leqslant j \leqslant \mathbf{K}} \left\| \mathbf{L}_{j}^{(i)} \right\|_{\infty} \right) \sum_{\ell=1}^{\mathbf{K}} |f(x_{\ell})| \left\| \mathbf{L}_{\ell}^{(i)} \right\|_{\infty} \leqslant \left(\max_{1 \leqslant j \leqslant \mathbf{K}} \left\| \mathbf{L}_{j}^{(i)} \right\|_{\infty} \right) \sum_{\ell=1}^{\mathbf{K}} |f(x_{\ell})| \left\| \mathbf{L}_{\ell}^{(i)} \right\|_{\infty} \leqslant \left(\max_{1 \leqslant j \leqslant \mathbf{K}} \left\| \mathbf{L}_{j}^{(i)} \right\|_{\infty} \right) \sum_{\ell=1}^{\mathbf{K}} |f(x_{\ell})| \left\| \mathbf{L}_{\ell}^{(i)} \right\|_{\infty} \leqslant \left(\max_{1 \leqslant j \leqslant \mathbf{K}} \left\| \mathbf{L}_{j}^{(i)} \right\|_{\infty} \right) \sum_{\ell=1}^{\mathbf{K}} |f(x_{\ell})| \left\| \mathbf{L}_{\ell}^{(i)} \right\|_{\infty} \leqslant \left(\max_{1 \leqslant j \leqslant \mathbf{K}} \left\| \mathbf{L}_{j}^{(i)} \right\|_{\infty} \right) \sum_{\ell=1}^{\mathbf{K}} |f(x_{\ell})| \left\| \mathbf{L}_{\ell}^{(i)} \right\|_{\infty} \leqslant \left(\max_{1 \leqslant j \leqslant \mathbf{K}} \left\| \mathbf{L}_{j}^{(i)} \right\|_{\infty} \right) \right\|_{\infty}$$

En posant $C = \sum_{i=0}^{K-1} \left(\max_{1 \leqslant j \leqslant K} \left\| L_j^{(i)} \right\|_{\infty} \right)$ qui ne dépend que de x_1, \dots, x_K , on a :

$$\forall k \in [0, K-1], \|f^{(k)}\|_{\infty} \leq \|f^{(K)}\|_{\infty} + C \sum_{\ell=1}^{K} |f(x_{\ell})|$$

On trouvé une constante C>0 pour laquelle l'inégalité d'interpolation (I.1) est vérifiée

II Dérivation \mathcal{C}^{K} pour les séries de fonctions

II.A - Énoncé général

Q 11. Soit $k \in [0, K-1]$. Q10 nous donne C > 0 tel que :

$$\forall n \in \mathbb{N}, \ \left\| f_n^{(k)} \right\|_{\infty} \le \left\| f_n^{(K)} \right\|_{\infty} + C \sum_{\ell=1}^K |f_n(x_{\ell})|$$

Les séries $\sum \|f_n^{(\mathrm{K})}\|_{\infty}$ et $\sum |f_n(x_\ell)|$ $(1 \leqslant \ell \leqslant \mathrm{K})$ sont convergentes selon (H1) et (H2)

donc la série
$$\sum_{n\geqslant 0}\left(\left\|f_n^{(\mathrm{K})}\right\|_{\infty}+\mathrm{C}\sum_{\ell=1}^{\mathrm{K}}|f_n(x_\ell)|
ight)$$
 converge par linéarité

Par comparaison de séries à termes positifs, la série $\sum_{n\geqslant 0}\left\|f_n^{(k)}\right\|_\infty$ converge.

d'où la série $\sum f_n^{(k)}$ converge normalement sur [0,1] par définition.

Q 12. Je définis la fonction
$$\sigma$$
 :
$$\left\{ \begin{array}{ccc} [0,1] & \longrightarrow & [a,b] \\ t & \longmapsto & (1-t)a+tb \end{array} \right. .$$

De sorte que σ est continue strictement croissante sur l'intervalle [0,1] telle que $\sigma(0) = a$ et $\sigma(1) = b$. Ainsi σ est bijective de [0,1] vers [a,b].

Je pose pour $n \in \mathbb{N}$, $g_n = f_n \circ \sigma$ et pour $\ell \in [1, K]$, $y_\ell = \sigma^{-1}(x_\ell)$. De sorte que $g_n^{(k)}(y_\ell) = (b-a)^k f_n^{(k)}(x_\ell)$.

Comme σ est affine, g_n est de classe \mathcal{C}^{K} de dérivées : $\forall k \in [0, \mathrm{K}], \ g_n^{(k)} = (b-a)^k f_n^{(k)} \circ \sigma$.

Soit $h:[a,b]\to\mathbb{R}$ une fonction bornée. Je note $\|h\|_{\infty,[a,b]}=\sup_{t\in[a,b]}|h(t)|$.

On remarque que comme σ est bijective que : $\{|h(t)| \mid t \in [a,b]\} = \{|h(\sigma(x))| \mid x \in [0,1]\}$.

Ainsi $\|h\|_{\infty,[a,b]} = \|h \circ \sigma\|_{\infty,[0,1]} = \|h \circ \sigma\|_{\infty}$. D'où

$$\forall n \in \mathbb{N}, \ \forall k \in [0, K], \ \|g_n^{(k)}\|_{\infty} = \|(b-a)^k f_n^{(k)}\|_{\infty, [a,b]} = (b-a)^k \|f_n^{(k)}\|_{\infty, [a,b]}$$

donc
$$\forall n \in \mathbb{N}, \ \forall k \in [0, K], \ \|f_n^{(k)}\|_{\infty, [a,b]} = \frac{1}{(b-a)^k} \|g_n^{(k)}\|_{\infty}$$
 $(\star).$

On vérifie maintenant les hypothèses pour utiliser Q11 :

- $y_1 < \cdots < y_K$ sont des réels distincts de l'intervalle [0,1] car σ^{-1} est également strictement croissante.
- (g_n) est une suite de fonctions de classe \mathcal{C}^{K} sur [0,1] vérifiant les deux hypothèses :
 - (H1) la série de fonctions $\sum g_n^{(K)}$ converge normalement sur [a,b]; car $\sum \|g_n^{(K)}\|$ converge selon (\star) et car $\sum \|f_n^{(K)}\|_{\infty,[a,b]}$ converge.
 - (**H2**) pour tout $\ell \in [1, K]$ la série numérique $\sum g_n(y_\ell) = \sum f_n(x_\ell)$ est absolument convergente.

Ainsi la série $\sum g_n^{(k)}$ converge normalement sur [0,1], pour tout $k \in [0,K-1]$.

D'où pour $\sum \|f_n^{(k)}\|_{\infty,[a,b]}$ converge pour tout $k \in [0, K-1]$ en utilisant (\star)

d'où la série
$$\sum f_n^{(k)}$$
 converge normalement sur $[a,b]$, pour tout $k \in [0,K-1]$

- Q 13. (i) Pour tout $n \in \mathbb{N}$, la fonction f_n est de classe \mathcal{C}^K sur [a, b].
 - (ii) Soit $k \in [0, K 1]$.

La série de fonction $\sum f_n^{(k)}$ converge normalement donc simplement sur [a,b] selon Q12 de somme F_k .

(ii) La série de fonction $\sum f_n^{(\mathrm{K})}$ converge normalement donc uniformément sur [a,b] de somme F_{K} .

Avec (i), (ii) et (iii), par théorème de cours :

$$\mathbf{F}_0$$
 est de classe $\mathcal{C}^{\mathbf{K}}$ sur $[a,b]$ et $\mathbf{F}_0^{(k)}=\mathbf{F}_k$ pour tout $k\in [\![1,\mathbf{K}]\!]$

II.B - Application sur un exemple

Q 14. Soit $n \in \mathbb{N}^*$.

Existence: La fonction $x \mapsto (-1)^n 2^{-nx^2}$ est continue par théorème généraux sur l'intervalle $]0, +\infty[$. Le théorème fondamental nous fournit alors une primitive sur $]0, +\infty[$ qui y est donc continue. Cette primitive admet donc une primitive g_n vérifiant donc $\forall x > 0$, $g''_n(x) = (-1)^n 2^{-nx^2}$ Je considère alors la fonction affine h_n telle que $h_n(1) = g_n(1)$ et $h_n(2) = g_n(2)$ et je pose $f_n = g_n - h_n$ Alors f_n est de classe $f_n \in \mathcal{C}^2([0, +\infty[)]$ vérifiant $f_n(1) = 0$, $f_n(2) = 0$ et $\forall x > 0$, $f''_n(x) = (-1)^n 2^{-nx^2}$

Unicité: On note f_n et g_n vérifiant la condition voulue et je note $d_n = f_n - g_n$.

On a alors $d_n \in \mathcal{C}^2(\]0, +\infty[\)$ vérifiant $d_n(1)=0, \, d_n(2)=0$ et $\forall x>0, \, d_n''(x)=0.$

Donc d_n est polynomiale de degré ≤ 1 avec au moins deux racines, d'où $d_n=0$

Ainsi $f_n = g_n$ ce qui prouve l'unicité.

Il existe une unique fonction $f_n \in \mathcal{C}^2(]0, +\infty[)$ vérifiant $f_n(1) = 0$, $f_n(2) = 0$ et $\forall x > 0$, $f''_n(x) = (-1)^n 2^{-nx^2}$

Q 15. Soit $[\alpha, \beta]$ un segment de $]0, +\infty[$.

Je pose $a = \min(\alpha, 1)$ et $b = \max(\beta, 1)$.

On veut appliquer II.A sur le segment [a, b] avec K = 2:

- 1 < 2 sont des réels distincts de [a, b];
- $-(f_n)_{n\geqslant 1}$ est une suite de fonctions de classe \mathcal{C}^2 sur [a,b] vérifiant les deux hypothèses :
 - (H1) La série $\sum_{n\geq 1} f_n^{(2)}$ converge normalement sur [a,b] car

$$\forall x \in [a, b], \ \left| f_n^{(2)}(x) \right| \leqslant 2^{-na^2}$$

et car la série géométrique $\sum\limits_{n \geqslant 1} 2^{-na^2}$ converge car $2^{-a^2} \in [0,1[\,.$

(H2) pour tout $\ell \in \{1,2\}$, la série $\sum_{n \ge 1} f_n\left(x_\ell\right)$ converge absolument car $\forall n \in \mathbb{N}^*, \ f_n\left(x_\ell\right) = 0$

Ainsi pour tout $i \in [0,2]$, $\sum f_n^{(i)}$ converge normalement sur [a,b] de somme F qui est de classe \mathcal{C}^2 sur [a,b] vérifiant $\forall x \in [a,b]$, $F^{(i)}(x) = \sum_{n=1}^{+\infty} f_n^{(i)}(x)$.

Comme c'est valable sur [a, b], c'est valable sur $[\alpha, \beta]$ et donc

la série de fonctions $\sum f_n$ converge normalement sur tout segment inclus dans $]0, +\infty[$ et F est de classe \mathcal{C}^2 car F est de classe \mathcal{C}^2 au voisinage de tout point de $]0, +\infty[$.

- **Q 16.** Par somme géométrique : $F''(x) = \frac{(-1)^1 2^{-x^2}}{1 + 2^{-x^2}} = \frac{-1}{1 + 2^{x^2}}$
- **Q 16.** On définit $G: t \longrightarrow F(t+1)$ sur [0,1] qui est de classe C^2 car F l'est sur [1,2]. D'après Q10 (ou Q5), comme 0 < 1 dans [0,1], alors il existe C > 0 indépendant de G tel que

$$\|G\|_{\infty} \le \|G''\|_{\infty} + C(|G(0)| + |G(1)|)$$

or on a $G(0) = F(1) = \sum_{n=1} f_n(1) = 0$ et de même G(1) = 0

d'où $\|G\|_{\infty}\leqslant \|G''\|_{\infty}.$ Par ailleurs, on a

$$\forall t \in [0,1], \ G''(t) = F''(t+1) = \frac{-1}{1+2^{(t+1)^2}}$$

d'où $\forall t \in [0,1], |G''(t)| = \frac{1}{1 + 2^{(t+1)^2}} \leqslant \frac{1}{1 + 2^{(0+1)^2}} = \frac{1}{3}$. Ainsi

$$\forall t \in [0, 1], |G(t)| \le ||G||_{\infty} \le ||G''||_{\infty} \le \frac{1}{3}$$

D'où
$$\forall x \in [1, 2], |F(x)| = |G(x - 1)| \le \frac{1}{3}$$

III Convergence d'une série aléatoire de Rademacher

- III.A Construction de la suite $(\phi(j))_{j\in\mathbb{N}}$ et majoration de $\mathbb{P}(A_j)$
- **Q 18.** Comme la série $\sum a_n^2$ converge, la suite des restes converges vers $0:\sum_{n=p}^{+\infty}a_n^2\xrightarrow{p\to+\infty}0.$

Soit $j \in \mathbb{N}$. Cela nous fournit $\psi(j) \in \mathbb{N}$ tel que

$$\forall k \in \mathbb{N}, \ k \geqslant \psi(j) \Longrightarrow \sum_{n=n}^{+\infty} a_n^2 \leqslant \frac{1}{8^j}$$

On construit alors ϕ par :

$$\varphi(0) = \psi(0)$$
 et la relation de récurrence : $\forall n \in \mathbb{N}^*, \ \phi(n) = 1 + \max\{\psi(n), \phi(0), \dots, \phi(n-1)\}$

Ainsi la suite ϕ est bien strictement croissante et $\forall j \in \mathbb{N}, \quad \sum_{n>\phi(j)}^{+\infty} a_n^2 \leqslant \frac{1}{8^j}$

 ${\bf Q}$ 19. Chaque ${\bf X}_n$ admet un moment d'ordre 2 car bornée

d'où par linéarité, les S_n admettent un moment d'ordre 2.

On a
$$S_{\phi(j+1)} - S_{\phi(j)} = \sum_{n=\phi(j)+1}^{\phi(j+1)} a_n X_n$$
.

Pour $n \in \mathbb{N}$, on a $\mathbb{E}(X_n) = 0$ et $\mathbb{V}(X_n) = \mathbb{E}(X_n^2) - \mathbb{E}(X_n)^2 = \mathbb{E}(1) - 0^2 = 1$

Par linéarité, on a :

$$\mathbb{E}\left(S_{\phi(j+1)} - S_{\phi(j)}\right) = \sum_{n=\phi(j)+1}^{\phi(j+1)} a_n \mathbb{E}\left(X_n\right) = 0$$

Comme les X_n sont deux à deux indépendants, il en est de même des a_nX_n par le lemme des coalitions.

On a donc

$$\mathbb{V}\left(S_{\phi(j+1)} - S_{\phi(j)}\right) = \sum_{n=\phi(j)+1}^{\phi(j+1)} \mathbb{V}(a_n X_n) = \sum_{n=\phi(j)+1}^{\phi(j+1)} a_n^2 \mathbb{V}(X_n)$$

Ainsi
$$\mathbb{E}\left(S_{\phi(j+1)} - S_{\phi(j)}\right) = 0$$
 et $\mathbb{V}\left(S_{\phi(j+1)} - S_{\phi(j)}\right) = \sum_{n=\phi(j)+1}^{\phi(j+1)} a_n^2$

 ${\bf Q}$ 20. On utilise l'inégalité de Pafnouty et de Jules-Irénée, avec $2^{-j}>0$:

$$\mathbb{P}\left(\left|S_{\phi(j+1)} - S_{\phi(j)} - \mathbb{E}\left(S_{\phi(j+1)} - S_{\phi(j)}\right)\right| \geqslant 2^{-j}\right) \leqslant \frac{\mathbb{V}\left(S_{\phi(j+1)} - S_{\phi(j)}\right)}{(2^{-j})^2}$$

donc selon Q19:

$$\mathbb{P}\left(\left|\mathcal{S}_{\phi(j+1)} - \mathcal{S}_{\phi(j)}\right| \geqslant 2^{-j}\right) \leqslant 2^{2j} \sum_{n > \phi(j)} a_n^2$$

Ainsi par définition de A_j et avec Q18, on a la majoration $\mathbb{P}(A_j) \leqslant 2^{-j}$

III.B - Inégalité maximale de Lévy $\mathbb{P}(B_i) \leq 2\mathbb{P}(A_i)$

Q 21. Soit $j \in \mathbb{N}$.

 \supseteq : Soit $m \in [\![\phi(j)+1,\phi(j+1)]\!]$. On remarque que

$$\mathbf{B}_{j} = \bigcup_{n=\phi(j)+1}^{\phi(j+1)} \left\{ \left| \mathbf{S}_{n} - \mathbf{S}_{\phi(j)} \right| > 2^{-j} \right\} \quad \text{et} \quad \mathbf{B}_{j,m} = \left\{ \left| \mathbf{S}_{m} - \mathbf{S}_{\phi(j)} \right| > 2^{-j} \right\} \bigcap \left(\bigcap_{n=\phi(j)}^{m-1} \left\{ \left| \mathbf{S}_{n} - \mathbf{S}_{\phi(j)} \right| \leqslant 2^{-j} \right\} \right)$$

d'où $B_{j,m} \subset B_j$. D'où

$$\bigcup_{\phi(j) < m \leqslant \phi(j+1)} \mathbf{B}_{j,m} \subset \mathbf{B}_j$$

 \subseteq : Soit $\omega \in B_i$.

Alors l'ensemble $\{n \in [\![\phi(j)+1,\phi(j+1)]\!] \mid |S_n(\omega)-S_{\phi(j)}(\omega)| > 2^{-j}\}$ est une partie non vide de \mathbb{N} majorée par $\phi(j+1)$. Cet ensemble admet donc un maximum que je note m de sorte que

$$m \in \llbracket \phi(j) + 1, \phi(j+1) \rrbracket$$
 et $\forall n \in \llbracket \phi(j), m-1 \rrbracket$, $|S_n(\omega) - S_{\phi(j)}(\omega)| \leqslant 2^{-j}$

Ainsi $\omega \in \bigcup_{\phi(j) < m \leqslant \phi(j+1)} \mathbf{B}_{j,m}$. On a prouvé :

$$B_j \subset \bigcup_{\phi(j) < m \leqslant \phi(j+1)} B_{j,m}$$

disjoints deux à deux : Soit $m, m' \in \mathbb{N}$ tels que $\phi(j) < m < m' \leq \phi(j+1)$.

On a alors

$$B_{j,m} \subset \{ |S_m - S_{\phi(j)}| > 2^{-j} \} \text{ et } B_{j,m'} \subset \{ |S_m - S_{\phi(j)}| \leqslant 2^{-j} \}$$

D'où

$$B_{j,m} \bigcap B_{j,m'} = \emptyset$$

Ainsi les évènements $B_{j,m}$, pour m parcourant $[\![\phi(j)+1,\phi(j+1)]\!]$, sont disjoints deux à deux

et on a l'égalité d'évènements $\mathbf{B}_j = \bigcup_{\phi(j) < m \leqslant \phi(j+1)} \mathbf{B}_{j,m}$

Q 22. À l'aide de l'expression de B_i (Q21), on a :

$$A_j = \{ |S_{\phi(j+1)} - S_{\phi(j)}| > 2^{-j} \} \subset B_j$$

donc à l'aide du résultat précédent

$$A_j = A_j \cap B_j = \bigcup_{\phi(j) < m \le \phi(j+1)} (A_j \cap B_{j,m})$$

Comme la réunion est disjointe (Q21), on a bien la formule $\mathbb{P}(\mathbf{A}_j) = \sum_{m=\phi(j)+1}^{\phi(j+1)} \mathbb{P}(\mathbf{A}_j \cap \mathbf{B}_{j,m})$

Q 23. Soit
$$\alpha \in \mathbb{R}$$
. On a $\left\{\left|\alpha S_{\phi(j+1)} - \alpha S_m + S_m - S_{\phi(j)}\right| > 2^{-j}\right\} = \left\{\left|\alpha \sum_{n=m+1}^{\phi(j+1)} X_n a_n + \sum_{n=\phi(j)+1}^m X_n a_n\right| > 2^{-j}\right\}$ et $B_{j,m} = \left\{\left|\sum_{n=\phi(j)+1}^m X_n a_n\right| > 2^{-j}\right\} \cap \left(\bigcap_{k=\phi(j)+1}^{m-1} \left\{\left|\sum_{n=\phi(j)+1}^k X_n a_n\right| \leqslant 2^{-j}\right\}\right) \operatorname{car} \left\{\left|\sum_{n=\phi(j)+1}^{\phi(j)} X_n a_n\right| \leqslant 2^{-j}\right\} = \Omega$ On peut alors trouver une partie E_{α} de $\left\{-1, 1\right\}^{\phi(j+1)-\phi(j)}$ tel que

$$\{ |\alpha S_{\phi(j+1)} - \alpha S_m + S_m - S_{\phi(j)}| > 2^{-j} \} \cap B_{j,m} = \{ (X_{\phi(j)+1}, \dots, X_{\phi(j+1)}) \in E \}$$

Soit $e = (e_{\phi(j)+1}, \dots, e_{\phi(j+1)}) \in \{-1, 1\}^{\phi(j+1) - \phi(j)}$.

Par ailleurs, par indépendance mutuelle des X_i , on a

$$\mathbb{P}\left(\left\{\left(\mathbf{X}_{\phi(j)+1}, \dots, \mathbf{X}_{\phi(j+1)}\right) = e\right\}\right) = \prod_{i=\phi(j)+1}^{\phi(j+1)} \mathbb{P}\left(\left\{\mathbf{X}_i = e_i\right\}\right) = \frac{1}{2^{\phi(j+1)-\phi(j)}} = \frac{1}{\left|\left\{-1, 1\right\}^{\phi(j+1)-\phi(j)}\right|}$$

Ainsi le vecteur $(X_{\phi(j)+1},\ldots,X_{\phi(j+1)})$ suit la loi uniforme sur $\{-1,1\}^{\phi(j+1)-\phi(j)}$. D'où

$$\mathbb{P}\left(\left\{\left(\mathbf{X}_{\phi(j)+1},\ldots,\mathbf{X}_{\phi(j+1)}\right)\in\mathbf{E}_{\alpha}\right\}\right) = \frac{|\mathbf{E}_{\alpha}|}{\left|\left\{-1,1\right\}^{\phi(j+1)-\phi(j)}\right|}$$

d'où
$$2^{\phi(j+1)-\phi(j)}\mathbb{P}\left(\left\{\left|\alpha S_{\phi(j+1)} - \alpha S_m + S_m - S_{\phi(j)}\right| > 2^{-j}\right\} \cap B_{j,m}\right) = |E_{\alpha}|$$

Ainsi la fonction
$$\alpha \mapsto 2^{\phi(j+1)-\phi(j)} \mathbb{P}\left(\left\{\left|\alpha S_{\phi(j+1)} - \alpha S_m + S_m - S_{\phi(j)}\right| > 2^{-j}\right\} \cap B_{j,m}\right)$$
 est à valeurs dans \mathbb{N}

Par ailleurs, on remarque que

$$(e_{\phi(j)+1},\ldots,e_m,e_{m+1},\ldots,e_{\phi(j+1)}) \in \mathcal{E}_{\alpha} \iff (e_{\phi(j)+1},\ldots,e_m,-e_{m+1},\ldots,-e_{\phi(j+1)}) \in \mathcal{E}_{-\alpha}$$

Ainsi l'application $(e_{\phi(j)+1},\ldots,e_m,e_{m+1},\ldots,e_{\phi(j+1)}) \in \mathcal{E}_{\alpha} \mapsto (e_{\phi(j)+1},\ldots,e_m,-e_{m+1},\ldots,-e_{\phi(j+1)}) \in \mathcal{E}_{-\alpha}$ est bijective.

D'où $|E_{\alpha}| = |E_{-\alpha}|$ d'où la fonction à valeurs entières est paire

Q 24. Soit $m \in [\![\phi(j)+1,\phi(j+1)]\!]$. Soit $\omega \in B_{j,m}$. On a alors $\left|S_m(\omega)-S_{\phi(j)}(\omega)\right| > 2^{-j}$.

Si $S_{\phi(j+1)}(\omega) - S_m(\omega)$ est du même signe de que $S_m(\omega) - S_{\phi(j)}(\omega)$ alors :

$$\left|1 \cdot S_{\phi(j+1)}(\omega) - 1 \cdot S_m(\omega) + S_m(\omega) - S_{\phi(j)}(\omega)\right| > 2^{-j}$$

Sinon on a: $\left| (-1) \cdot \mathbf{S}_{\phi(j+1)}(\omega) - (-1) \cdot \mathbf{S}_m(\omega) + \mathbf{S}_m(\omega) - \mathbf{S}_{\phi(j)}(\omega) \right| > 2^{-j}$.

On a ainsi prouvé que :

$$\mathrm{B}_{j,m} \subset \bigcup_{\alpha \in \{-1,1\}} \left\{ \left| \alpha \mathrm{S}_{\phi(j+1)} - \alpha \mathrm{S}_m + \mathrm{S}_m - \mathrm{S}_{\phi(j)} \right| > 2^{-j} \right\}$$

Ainsi
$$B_{j,m} \subset \bigcup_{\alpha \in \{-1,1\}} \left(\left\{ \left| \alpha S_{\phi(j+1)} - \alpha S_m + S_m - S_{\phi(j)} \right| > 2^{-j} \right\} \bigcap B_{j,m} \right)$$

Avec Q21, on obtient

$$B_{j} \subset \bigcup_{\substack{\alpha \in \{-1,1\}\\ \phi(j)+1 \leq m \leq \phi(j+1)}} \left(\left\{ \left| \alpha S_{\phi(j+1)} - \alpha S_{m} + S_{m} - S_{\phi(j)} \right| > 2^{-j} \right\} \bigcap B_{j,m} \right)$$

Selon les termes étranges de l'énoncé, on montré que :

si l'évènement B_i se réalise, alors il existe $m \in [\![\phi(j)+1,\phi(j+1)]\!]$ et $\alpha \in \{-1,+1\}$ tels que

l'évènement
$$\{ \left| \alpha S_{\phi(j+1)} - \alpha S_m + S_m - S_{\phi(j)} \right| > 2^{-j} \} \cap B_{j,m}$$
 se réalise également

Q 25. En utilisant l'inclusion de la question précédente, la formule de Boole donne :

$$\mathbb{P}\left(\mathbf{B}_{j}\right) \leqslant \sum_{\substack{\alpha \in \{-1,1\}\\ \phi(j)+1 \leqslant m \leqslant \phi(j+1)}} \mathbb{P}\left(\left\{\left|\alpha \mathbf{S}_{\phi(j+1)} - \alpha \mathbf{S}_{m} + \mathbf{S}_{m} - \mathbf{S}_{\phi(j)}\right| > 2^{-j}\right\} \bigcap \mathbf{B}_{j,m}\right)$$

En utilisant la parité de la fonction de Q23, on a (en gardant $\alpha = 1$):

$$\mathbb{P}\left(\mathbf{B}_{j}\right) \leqslant 2 \sum_{m=\phi(j)+1}^{\phi(j+1)} \mathbb{P}\left(\left\{\left|\mathbf{S}_{\phi(j+1)} - \mathbf{S}_{\phi(j)}\right| > 2^{-j}\right\} \bigcap \mathbf{B}_{j,m}\right) = 2 \sum_{m=\phi(j)+1}^{\phi(j+1)} \mathbb{P}\left(\mathbf{A}_{j} \bigcap \mathbf{B}_{j,m}\right)$$

À l'aide de Q22, on conclut que $\mathbb{P}(\mathbf{B}_{j}) \leqslant 2\mathbb{P}(\mathbf{A}_{j})$

III.C - Convergence de la série aléatoire $\sum X_n a_n$

Q 26. Soit $J \in \mathbb{N}$. On utilise à nouveau la formule de Boole puis Q25 et enfin Q20, par calcul dans $[0, +\infty]$, on a :

$$0 \leqslant \mathbb{P}\left(\bigcup_{j \geqslant \mathbf{J}} \mathbf{B}_{j}\right) \leqslant \sum_{j=\mathbf{J}}^{+\infty} \mathbb{P}\left(\mathbf{B}_{j}\right) \leqslant 2 \sum_{j=\mathbf{J}}^{+\infty} \mathbb{P}\left(\mathbf{A}_{j}\right) \leqslant 2 \sum_{j=\mathbf{J}}^{+\infty} 2^{-j} = 2^{-\mathbf{J}+2}$$

Par théorème des gendarmes, on a :

$$\mathbb{P}\left(\bigcup_{j\geqslant J}\mathbf{B}_j\right)\xrightarrow{\mathbf{J}\to+\infty}0$$

La suite d'événements $\left(\bigcup_{j\geqslant J} \mathbf{B}_j\right)_{\mathbf{J}\in\mathbb{N}}$ est décroissante pour l'inclusion.

Ainsi par continuité décroissante, on a

$$\mathbb{P}\left(\bigcup_{j\geqslant J} \mathbf{B}_j\right) \xrightarrow[J\to+\infty]{} \mathbb{P}\left(\bigcap_{\mathbf{J}\in\mathbb{N}}\bigcup_{j\geqslant J} \mathbf{B}_j\right) = \mathbb{P}(\mathbf{B})$$

L'unicité de la limite nous donne l'égalité $\mathbb{P}(B) = 0$

Q 27. On a l'égalité entre les événements :

$$\{\omega \in \Omega \mid \exists J \in \mathbb{N}, \ \forall j \geqslant J, \ \forall n \in \llbracket \phi(j) + 1, \phi(j+1) \rrbracket, \ |S_n(\omega) - S_{\phi(j)}(\omega)| \leqslant 2^{-j} \}$$

et

$$\bigcup_{\mathbf{J}\in\mathbb{N}}\bigcap_{j\geqslant\mathbf{J}}\bigcup_{n=\phi(j)+1}^{\phi(j+1)}\left\{\left|\mathbf{S}_{n}-\mathbf{S}_{\phi(j)}\right|\leqslant2^{-j}\right\}=\bigcup_{\mathbf{J}\in\mathbb{N}}\bigcap_{j\geqslant\mathbf{J}}\overline{\mathbf{B}_{j}}=\overline{\mathbf{B}}$$

Comme $\mathbb{P}(\overline{B}) = 1 - \mathbb{P}(B)$, on peut conclure avec Q26 et les termes du poète (zeugma) :

l'évènement
$$\left\{\exists \mathbf{J} \in \mathbb{N}, \quad \forall j \geqslant \mathbf{J}, \quad \forall n \in \llbracket \phi(j) + 1, \phi(j+1) \rrbracket, \quad \left| \mathbf{S}_n - \mathbf{S}_{\phi(j)} \right| \leqslant 2^{-j} \right\}$$
 se réalise avec probabilité 1

Q 28. Soit $\omega \in \overline{B}$. Cela nous fournit $J \in \mathbb{N}$ tel que

$$\forall j \geqslant J, \ \forall n \in \llbracket \phi(j) + 1, \phi(j+1) \rrbracket, \ |S_n(\omega) - S_{\phi(j)}(\omega)| \leqslant 2^{-j}$$

Par conséquent, on a :

$$\forall j \geqslant J, |S_{\phi(j+1)}(\omega) - S_{\phi(j)}(\omega)| \leqslant 2^{-j}$$

Par comparaison à la série géométrique $\sum_{j=1}^{n} 2^{-j}$ à termes positifs convergente,

la série
$$\sum |S_{\phi(j+1)}(\omega) - S_{\phi(j)}(\omega)|$$
 converge

D'où la série $\sum (S_{\phi(j+1)}(\omega) - S_{\phi(j)}(\omega))$ converge absolument donc converge

Ainsi la suite $(S_{\phi(j)}(\omega))_{j\in\mathbb{N}}$ converge (série télescopique)

D'où
$$\omega \in \left\{ \text{ la suite } \left(\mathcal{S}_{\phi(j)} \right)_{j \in \mathbb{N}} \text{ est convergente } \right\}$$

On a montré que $\overline{B} \subset \Big\{$ la suite $(S_{\phi(j)})_{j \in \mathbb{N}}$ est convergente $\Big\}$.

Avec Q27 : « l'évènement »
$$\left\{ \text{ la suite } \left(\mathbf{S}_{\phi(j)} \right)_{j \in \mathbb{N}} \text{ est convergente } \right\}$$
 a également une probabilité 1

On n'a pas montré que cet ensemble était un événement et ce point n'est pas un attendu de ce sujet. Faisable mais pas facilement sans indication.

Q 29. Soit $\omega \in \overline{\mathbb{B}}$. Il s'agit d'établir que la suite de sommes partielles $(S_n(\omega))_{n\geqslant 0}$ converge.

On sait que la suite $\left(\mathbf{S}_{\phi(j)}(\omega)\right)_{j\in\mathbb{N}}$ est convergente d'après la question précédente.

L'égalité de \overline{B} et de l'évènement de Q27, nous fournit $J \in \mathbb{N}$ tel que

$$\forall j \geqslant J, \ \forall n \in \llbracket \phi(j) + 1, \phi(j+1) \rrbracket, \ |S_n(\omega) - S_{\phi(j)}(\omega)| \leqslant 2^{-j}$$

Soit $n \ge \phi(0) + 1$. Comme ϕ est une suite strictement croissante d'entiers naturels selon Q18,

On peut alors poser $j_n = \max\{j \in \mathbb{N} \mid \phi(j) + 1 \leqslant n\}$ (partie majorée non vide de \mathbb{N})

On a ainsi $\varphi(j_n) + 1 \leq n < \varphi(j_n + 1) + 1$ donc $n \in [\varphi(j_n) + 1, \varphi(j_n + 1)]$.

On montre facilement que (j_n) est croissante non majorée ainsi

$$j_n \xrightarrow[n \to +\infty]{} +\infty$$

On n'est pas obligé de détailler autant pour j_n .

Cela nous fournit N $\geqslant \phi(0)+1$ tel que $j_{\rm N}\geqslant {\rm J.}$ Soit alors $n\geqslant {\rm N.}$ On a

$$S_n(\omega) = S_{\phi(j_n)}(\omega) + S_n(\omega) - S_{\phi(j_n)}(\omega)$$

Comme
$$2^{-j_n} \xrightarrow[n \to +\infty]{} 0$$
, alors $S_n(\omega) - S_{\phi(j_n)}(\omega) \xrightarrow[n \to +\infty]{} 0$

Par somme de suites convergentes, la suite de sommes partielles $(S_n(\omega))_{n\geqslant 0}$ converge

On peut conclure que $\Big|$ « l'évènement » $\Big\{$ la série $\sum \mathbf{X}_n a_n$ est convergente $\Big\}$ a une probabilité 1

IV Dérivation \mathcal{C}^{K} pour des séries aléatoires de fonctions

Q 30. On considère une série de réels $\sum a_n$ absolument convergente.

On a alors
$$|a_n| \xrightarrow[n \to +\infty]{} 0$$
, d'où $a_n^2 = |a_n|^2 = o(|a_n|)$.

Ainsi par comparaison de séries à termes positifs, la série $\sum a_n^2$ converge

Cela permet d'établir que l'hypothèse (H2) implique (H2')

Q 31. Soit $\ell \in [1, K]$. La suite réelle $(f_n(x_\ell))_{n \in \mathbb{N}}$ est telle que la série $\sum f_n(x_\ell)^2$ converge.

En appliquant la partie III (Q29), l'événement { la série $\sum X_n f_n(x_\ell)$ est convergente } est de probabilité 1. Une intersection finie ou dénombrable d'événements presque sûr étant un événement presque sûr, on conclut que:

l'évènement
$$\bigcap_{\ell=1}^{K} \left\{ \text{ la série } \sum X_n f_n\left(x_\ell\right) \text{ est convergente } \right\}$$
 a une probabilité 1

Q 32. Soit $\omega \in \Omega$.

Pour $n \in \mathbb{N}$. Je note $g_n = X_n(\omega) (f_n - P_n)$.

On a $P_n \in C^K([0,1])$ et $P_n^{(K)} = 0$ car $P_n \in \mathbb{R}_{K-1}[X]$.

Ainsi $g_n \in \mathcal{C}^{\mathrm{K}}([0,1])$ et $\forall k \in [1,\mathrm{K}], \ g_n^{(k)} = \mathrm{X}_n(\omega) (f_n - \mathrm{P}_n)^{(k)}$ et $g_n^{(\mathrm{K})} = \mathrm{X}_n(\omega) f_n^{(\mathrm{K})}$. Ainsi comme $\mathrm{X}_n(\omega) \in \{-1,1\}$, on a $\left\|g_n^{(\mathrm{K})}\right\|_{\infty} = \left\|f_n^{(\mathrm{K})}\right\|_{\infty}$ (fonctions continues sur un segment).

Comme la série de fonctions $\sum f_n^{(\mathrm{K})}$ converge normalement sur [0,1],

alors la série $\sum \|f_n^{(K)}\|_{\infty} = \sum \|g_n^{(K)}\|_{\infty}$ converge

d'où la série de fonctions $\sum g_n^{(\mathrm{K})}$ converge normalement sur [0,1].

Ainsi la suite (g_n) vérifie l'hypothèse (H1) de la sous-partie IIA.

Pour tout $\ell \in [1, K]$, on a convergence absolue de $\sum g_n(x_\ell)$ car $\forall n \in \mathbb{N}, g_n(x_\ell) = f_n(x_\ell) - P_n(x_\ell) = 0$.

Ainsi la suite (g_n) vérifie l'hypothèse (H2) de la sous-partie IIA.

On en déduit avec Q11 et Q13 que

- pour tout $k \in [0, K]$, la série de fonctions $\sum g_n^{(k)}$ converge normalement donc uniformément sur [0, 1];
- la fonction somme $G: x \mapsto \sum_{n=0}^{+\infty} g_n(x)$ est de classe \mathcal{C}^K sur [0,1];
- pour tout $k \in [0, K], G^{(k)} : x \mapsto \sum_{n=0}^{+\infty} g_n^{(k)}(x).$

On en déduit que l'événement qui suit est certain donc de probabilité 1 :

 $\begin{cases} \text{ pour tout } k \in [0, K], \text{ la série de fonctions } \sum X_n (f_n - P_n)^{(k)} \text{ est uniformément convergente sur } [0, 1], \\ \text{ la fonction } \sum_{n=0}^{+\infty} X_n (f_n - P_n) \text{ est de classe } \mathcal{C}^K, \\ \text{ pour tout } k \in [0, K], \left(\sum_{n=0}^{+\infty} X_n (f_n - P_n)\right)^{(k)} = \sum_{n=0}^{+\infty} X_n (f_n - P_n)^{(k)} \end{cases}$

Q 33. Il nous suffit de montrer que l'intersection des événements des 31 et 32 est inclus dans celui proposé dans cette question. On se donne donc $\omega \in \Omega$ tel que

pour tout
$$\ell \in [1, K]$$
, la série réelle $\sum X_n(\omega) f_n(x_\ell)$ converge

et tel que ω est dans l'événement de la question 32 (ce qui, en réalité, est toujours vérifié).

On pose $g_n = X_n(\omega) f_n$ et, en adoptant les mêmes notations que dans la question précédente, on remarque que

$$g_n = X_n(\omega)P_n + X_n(\omega)(f - P_n)$$

- Par choix de ω , $X_n(\omega)(f P_n)$ est le terme général d'une série qui converge uniformément sur [0,1] ainsi que toutes ses dérivées jusqu'à l'ordre K. De plus, la somme de la série est de classe \mathcal{C}^K et on obtient ses dérivées en dérivant terme à terme.
- On veut maintenant obtenir la même propriété pour la série de fonctions de terme général $Q_n = X_n(\omega)P_n$. Montrons que l'on peut appliquer le théorème de régularité des sommes de séries de fonctions.
 - (i) En utilisant les notations de la question 7, on a $Q_n = \sum_{j=1}^K X_n(\omega) f_n(x_j) L_j$ qui définit une fonction (polynomiale de degré $\leq K 1$) de classe \mathcal{C}^K et

$$\forall k \in [0, K], \ Q_n^{(k)} = \sum_{j=1}^K X_n(\omega) f_n(x_j) L_j^{(k)}$$

- (ii) Comme les séries $\sum X_n(\omega) f_n(x_\ell)$ convergent, alors pour tout $k \in [0, K]$, la série de fonctions $\sum Q_n^{(k)}$ converge simplement sur [0, 1].
- (iii) $Q_n^{(K)} = 0$ est le terme général d'une série qui converge uniformément sur [0, 1].

Avec (i), (ii) et (iii), le théorème du cours s'applique, on obtient que $x \mapsto \sum_{n=0}^{\infty} Q_n(x)$ est de classe \mathcal{C}^K sur

[0,1], que ses dérivées s'obtiennent en dérivant terme à terme ET que toutes les séries dérivées intermédiaires convergent uniformément sur [0,1]. (cerise sur le gâteau du théorème)

On en déduit alors que la même propriété est vraie pour g_n et on a montré que

Q 34. Soit $K \in \mathbb{N}^*$. (à déterminer)

On considère des réels distincts $x_1 < \cdots < x_K$ de [0, 1].

Soit $\ell \in [1, K]$ tel que $x_{\ell} \neq 0$. Quand $n \longrightarrow +\infty$, on a $\frac{x_{\ell}}{n} \longrightarrow 0$ donc $\sin\left(\frac{x_{\ell}}{n}\right) \sim \frac{x_{\ell}}{n}$

Ainsi
$$f_n(x_\ell) = \ln\left(1 + \sin\left(\frac{x_\ell}{n}\right)\right) \sim \sin\left(\frac{x_\ell}{n}\right) \sim \frac{x_\ell}{n}$$

D'où
$$f_n(x_{\ell})^2 \sim \frac{x_{\ell}^2}{n^2}$$

Par comparaison de séries à termes positifs la série $\sum f_n(x_\ell)^2$ converge et ceci est valable si $x_\ell = 0$

Les fonctions f_n sont de classe \mathcal{C}^{∞} par théorèmes généraux.

donc la série de fonctions $\sum f_n$ de classe \mathcal{C}^{K} sur [0,1] vérifie l'hypothèse (H2).

Pour vérifier l'hypothèse (H1), il suffit de trouver l'exemple d'un $K \in \mathbb{N}^*$ tel que la série de fonctions $\sum f_n^{(K)}$ converge normalement sur [0,1].

Soit
$$x \in [0, 1]$$
. On a $f'_n(x) = \frac{\cos\left(\frac{x}{n}\right)}{n\left(1 + \sin\left(\frac{x}{n}\right)\right)} = \frac{1}{n} \cdot \frac{\cos\left(\frac{x}{n}\right)}{1 + \sin\left(\frac{x}{n}\right)}$

$$\operatorname{donc} f_n''(x) = \frac{1}{n} \cdot \frac{\frac{-1}{n} \sin\left(\frac{x}{n}\right) \left(1 + \sin\left(\frac{x}{n}\right)\right) - \frac{1}{n} \cos^2\left(\frac{x}{n}\right)}{\left(1 + \sin\left(\frac{x}{n}\right)\right)^2} = \frac{-1}{n^2} \frac{\sin\left(\frac{x}{n}\right) + \sin^2\left(\frac{x}{n}\right) + \cos^2\left(\frac{x}{n}\right)}{\left(1 + \sin\left(\frac{x}{n}\right)\right)^2} \, d'où$$

$$\forall x \in [0,1], \ \forall n \in \mathbb{N}^*, \ \left| f_n''(x) \right| = \frac{1}{n^2} \frac{\sin\left(\frac{x}{n}\right) + 1}{\left(1 + \sin\left(\frac{x}{n}\right)\right)^2} \leqslant \frac{2}{n^2}$$

or la série $\sum \frac{2}{n^2}$ converge donc la série de fonctions $\sum f_n''$ converge normalement sur [0,1].

Ainsi pour K = 2, l'évènement précédent se réalise avec les fonctions f_n définies par :

$$\begin{cases} f_0 = 0 \\ f_n(x) = \ln\left(1 + \sin\left(\frac{x}{n}\right)\right) & \forall n \in \mathbb{N}^*, \forall x \in [0, 1] \end{cases}$$

On peut remarquer que la série numérique $\sum f_n(x)$ diverge pour tout $x \in]0,1]$.