Calcul différentiel et optimisation : cas de \mathbb{R}^n

Dans tout le chapitre, $E=\mathbb{R}^n$, $F=\mathbb{R}^m$, $\mathscr U$ désigne un ouvert de $E=\mathbb{R}^n$.

DÉRIVÉES PARTIELLES

Dans cette partie, $\mathscr U$ est un ouvert non vide de $\mathbb R^n$, où $n \in \mathbb N^*$.

Compléments sur la continuité des fonctions de variable vectorielle

Définition 1 : Application partielle

Soif $f: \mathcal{U} \to \mathbb{R}$ une fonction, $a = (a_1, \ldots, a_n) \in \mathcal{U}$, $j \in [\![1,n]\!]$. On appelle $j^{\mathbf{e}}$ application partielle de f en a l'application $t \mapsto f(a_1, \ldots, a_{j-1}, t, a_{j+1}, \ldots, a_n)$.

Lemme 1: « de partition »

Soit A une partie de E, $f:A\to\mathbb{R}^m$, B_1 , B_2 deux parties de A telles que $B_1\cup B_2=A$, $a\in\overline{B}_1\cap\overline{B}_2$, $\ell\in F$. Si $f_{|B_1}(x)\xrightarrow[x\to a]{}\ell$ et $f_{|B_2}(x)\xrightarrow[x\to a]{}\ell$, alors $f(x)\xrightarrow[x\to a]{}\ell$. En particulier, si $a\in A$, f est continue en a.

2 Dérivées partielles

 $\mathscr U$ est toujours un ouvert de $\mathbb R^n$.

Définition 2 : Dérivées partielles

Soit $f:\mathcal{U}\to\mathbb{R}$, $a=(a_1,\ldots,a_n)\in\mathcal{U}$, $j\in [\![1,n]\!]$. On appelle $j^{\mathbf{e}}$ **dérivée partielle de** f **en** a, lorsqu'elle existe, la dérivée de la $j^{\mathbf{e}}$ application partielle de f en a. On note $\partial_j f(a) = \frac{\partial f}{\partial x_j}(a)$ le nombre dérivé en ce point.

On appelle $j^{\mathbf{e}}$ **dérivée partielle** la fonction définie sur $\mathscr U$ par $a\mapsto \frac{\partial f}{\partial x_j}(a)$.

Définition 3 : Vecteur gradient

Soit $f:\mathcal{U}\to\mathbb{R}$ admettant des dérivées partielles en $a\in\mathcal{U}$. On appelle **gradient** de f en a le vecteur

$$\nabla f(a) = \overrightarrow{\operatorname{grad}} f(a) = \left(\frac{\partial f}{\partial x_1}(a), \dots, \frac{\partial f}{\partial x_n}(a)\right) \in \mathbb{R}^n.$$

Définition 4 : Extension aux fonctions à valeurs vectorielles

Soit $\mathscr U$ ouvert de $\mathbb R^n$ et $f:\mathscr U\to\mathbb R^m$. On note $f=(f_1,\ldots,f_m):f_i$ est la $i^{\rm e}$ composante de f.

On dit que f admet des dérivées partielles en $a \in \mathcal{U}$ si chacune des f_i admet une dérivée partielle en a

On appelle alors $j^{\mathbf{e}}$ dérivée partielle de f en a le vecteur

$$\frac{\partial f}{\partial x_j}(a) = \left(\frac{\partial f_1}{\partial x_j}(a), \dots, \frac{\partial f_m}{\partial x_j}(a)\right).$$

Définition 5: Matrice jacobienne

Soit $\mathscr U$ ouvert de $\mathbb R^n$ et $f:\mathscr U\to\mathbb R^m$. On note $f=(f_1,\ldots,f_m)$. On appelle, lorsque existe, **matrice jacobienne de** f **en** a la matrice

$$J_f(a) = \left(\frac{\partial f_i}{\partial x_j}(a)\right)_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}} \in \mathcal{M}_{m,n}(\mathbb{R})$$

Fonctions de classe \mathscr{C}^1

Définition 6 : Classe \mathscr{C}^1

Soit $f: \mathcal{U} \to \mathbb{R}^m$. On dit que f est de classe \mathscr{C}^1 sur \mathscr{U} lorsqu'en tout point de \mathscr{U} , les dérivées partielles de f existent, et que ces dérivées partielles sont continues. On note $\mathscr{C}^1(\mathscr{U},\mathbb{R}^m)$ l'ensemble de ces fonctions.

Propriété 1 : Équivalence avec les fonctions coordonnées

On note $f = (f_1, ..., f_m)$. Alors f est de classe \mathscr{C}^1 si et seulement si chacune des f_i l'est.

Propriété 2 : Structure d'algèbre

Pour tout $m \in \mathbb{N}$, $\mathscr{C}^1(\mathscr{U}, \mathbb{R}^m)$ est un \mathbb{R} -espace vectoriel et $\mathscr{C}^1(\mathscr{U}, \mathbb{R})$ est une \mathbb{R} -algèbre.

Théorème 1: DL₁

Soit $f: \mathcal{U} \to \mathbb{R}$ de classe \mathscr{C}^1 et $a \in \mathcal{U}$. Pour tout $h \in \mathbb{R}^n$ tel que $a + h \in \mathcal{U}$,

$$f(a+h) = f(a) + h_1 \frac{\partial f}{\partial x_1}(a) + \dots + h_n \frac{\partial f}{\partial x_n}(a) + \underset{h \to 0}{\text{o}} (\|h\|)$$
$$= f(a) + \left(\nabla f(a) \left| h \right| + \underset{h \to 0}{\text{o}} (\|h\|) \right).$$

en utilisant le produit scalaire canonique sur \mathbb{R}^n .

Corollaire $1:\mathscr{C}^1\Longrightarrow$ continue

Une fonction de classe \mathscr{C}^1 est continue.

Propriété 3 : Règle de la chaîne

Soient \mathcal{U}, \mathcal{V} deux ouverts respectifs de \mathbb{R}^n et \mathbb{R}^m et $a \in \mathcal{U}$. Soient

$$f: \left| \begin{array}{ccc} \mathscr{U} & \longrightarrow & \mathscr{V} \\ (x_1, \dots, x_n) & \longmapsto & \left(f_1(x_1, \dots, x_n), \dots, f_m(x_1, \dots, x_n) \right) \end{array} \right|$$

et

$$g: \begin{vmatrix} \mathcal{V} & \longrightarrow & \mathbb{R} \\ (y_1, \dots, y_m) & \longmapsto & g(y_1, \dots, y_m) \end{vmatrix}$$

deux fonctions de classe \mathscr{C}^1 . Alors $g \circ f = g \circ (f_1, ..., f_m)$ est de classe \mathscr{C}^1 et pour $j \in [1, n]$,

$$\frac{\partial (g \circ f)}{\partial x_j}(a) = \sum_{k=1}^m \frac{\partial g}{\partial y_k}(f(a)) \frac{\partial f_k}{\partial x_j}(a)$$

Cas particulier 1 : important – dérivée le long d'un arc

Si $\gamma : \mathbb{R} \to \mathbb{R}^3$ et $f : \mathbb{R}^3 \to \mathbb{R}$ sont de classe \mathscr{C}^1 , en notant, pour $t \in \mathbb{R}$, $\gamma(t) = (x(t), y(t), z(t))$,

$$(f\circ\gamma)'(t)=x'(t)\frac{\partial f}{\partial x}(\gamma(t))+y'(t)\frac{\partial f}{\partial y}(\gamma(t))+z'(t)\frac{\partial f}{\partial z}(\gamma(t)).$$

Corollaire 2 : Règle de la chaîne vectorielle

Soient \mathscr{U}, \mathscr{V} deux ouverts respectifs de \mathbb{R}^n et \mathbb{R}^m et $a \in \mathscr{U}$. Soient $f : \mathscr{U} \to \mathscr{V}$ et $g : \mathscr{V} \to \mathbb{R}^p$ deux fonctions de classe \mathscr{C}^1 . Alors $g \circ f$ est de classe \mathscr{C}^1 et pour $j \in \llbracket 1, n \rrbracket$ et $\ell \in \llbracket 1, p \rrbracket$,

$$\frac{\partial (g_{\ell} \circ f)}{\partial x_{j}}(a) = \frac{\partial (g \circ f)_{\ell}}{\partial x_{j}}(a) = \sum_{k=1}^{m} \frac{\partial g_{\ell}}{\partial y_{k}}(f(a)) \frac{\partial f_{k}}{\partial x_{j}}(a)$$

En particulier,

$$J_{g \circ f}(a) = J_g(f(a))J_f(a).$$

Fonctions de classe \mathscr{C}^k

Définition 7 : Dérivées partielles d'ordre supérieur

Soit $\mathscr U$ ouvert de $\mathbb R^n$, $f:\mathscr U\to\mathbb R^m$. On appelle **dérivée partielle d'ordre** $k\in\mathbb N^*$, une dérivée $\frac{\partial \varphi}{\partial x_j}$ où φ est une dérivée partielle d'ordre k-1 de f. Les dérivées partielles d'ordre k sont de la forme

$$\frac{\partial}{\partial x_{i_k}} \left(\frac{\partial}{\partial x_{i_{k-1}}} \left(\cdots \frac{\partial}{\partial x_{i_2}} \left(\frac{\partial f}{\partial x_{i_1}} \right) \cdots \right) \right)$$

 $\text{ notées } \frac{\partial^k f}{\partial x_{i_k} \cdots \partial x_{i_1}} = \partial_{i_k, \dots, i_1} f \text{ où } i_1, \dots, i_k \in [\![1, n]\!].$

Définition 8 : Classe \mathscr{C}^k

Soit $k \in \mathbb{N}^*$, \mathscr{U} ouvert de \mathbb{R}^n , $f : \mathscr{U} \to \mathbb{R}^m$. On dit que f **est de classe** \mathscr{C}^k si toutes ses dérivées partielles d'ordre k existent et sont continues.

On dit que f **est de classe** \mathscr{C}^{∞} si elle est de classe \mathscr{C}^k pour tout $k \in \mathbb{N}$.

Propriété 4 : Caractérisation par les applications co-

On note $f=(f_1,\ldots,f_m)$, $k\in\mathbb{N}\cup\{+\infty\}$. Alors f est de classe \mathscr{C}^k si et seulement si chacune des f_i l'est.

Théorème 2 : de Schwarz

Soit $\mathscr U$ ouvert de $\mathbb R^n$, $f:\mathscr U\to\mathbb R^m$ de classe $\mathscr C^2$. Alors, pour tout $i,j\in [\![1,n]\!]$ tel que $i\neq j$,

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}.$$

Propriété 5 : Opérations sur les fonctions de classe \mathscr{C}^k

Soif $k \in \mathbb{N} \cup \{+\infty\}$.

- (i) Toute combinaison linéaire, toute composée, tout produit, tout quotient de fonctions de classe \mathscr{C}^k l'est encore.
- (ii) Si $M: \mathbb{R}^{n_1} \times \cdots \times \mathbb{R}^{n_p} \to \mathbb{R}^m$ est p-linéaire, $f_1: \mathcal{U} \to \mathbb{R}^{n_1}, \ldots, f_p: \mathcal{U} \to \mathbb{R}^{n_p}$ de classe \mathscr{C}^k alors $M(f_1, \ldots, f_p)$ est de classe \mathscr{C}^k .
- (iii) Toute fonction polynomiale à n variables est de classe \mathscr{C}^{∞} sur \mathbb{R}^n .
- (iv) Toute fonction rationnelle (quotient de fonctions polynomiales) est de classe \mathscr{C}^{∞} sur son domaine de définition.

Matrice hessienne et DL₂

Définition 9 : Matrice hessienne

Soit $f: \mathcal{U} \to \mathbb{R}$ où \mathcal{U} est un ouvert de \mathbb{R}^n . On appelle, lorsqu'elle existe, **matrice hessienne** de f en $x \in \mathcal{U}$ la matrice

$$H_f(x) = \left(\partial_{i,j}\right)_{\leqslant i,j \leqslant n} = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}(x)\right)_{1 \leqslant i,j \leqslant n} \in \mathcal{M}_n(\mathbb{R}).$$

Théorème $\mathbf{3}: \mathbf{DL}_2:$ formule de Taylor-Young à l'ordre 2

Soit $\mathscr U$ est un ouvert de $\mathbb R^n$, $f:\mathscr U\to\mathbb R$ de classe $\mathscr C^2$, $a\in\mathscr U$ et $h\in\mathbb R^n$ tel que a+h reste dans $\mathscr U$ lorsque $h\to 0$.

En confondant \mathbb{R}^n et $\mathcal{M}_{n,1}(\mathbb{R})$, et en utilisant le produit scalaire canonique sur \mathbb{R}^n , on a

$$f(a+h) = f(a) + \left(\nabla f(a) \middle| h\right) + \frac{1}{2} \left(H_f(a) h \middle| h\right) + \mathop{\operatorname{o}}_{h \to 0} \left(\|h\|^2\right)$$

$$f(a+h) = f(a) + \nabla f(a)^{\mathsf{T}} h + \frac{1}{2} h^{\mathsf{T}} H_f(a) h + \underset{h \to 0}{\text{o}} \left(\|h\|^2 \right)$$

APPLICATIONS

Équations aux dérivées partielles

Méthode 1

Savoir résoudre les ÉDP fondamentales auxquelles on se ramène systématiquement :

$$\begin{split} \frac{\partial f}{\partial x}(x,y) &= 0 & \frac{\partial f}{\partial x}(x,y) = g(x) & \frac{\partial f}{\partial x}(x,y) = g(y) \\ \frac{\partial^2 f}{\partial x^2}(x,y) &= 0 & \frac{\partial^2 f}{\partial x \partial y}(x,y) = 0 \end{split}$$

- Dans la pratique, on s'y ramène via un changement de variables $(u, v) = \varphi(x, y)$, en écrivant f(x, y) = g(u, v) et en remplaçant soit (x, y) en fonction de (u, v), soit (u, v) en fonction de (x, y).
- \blacksquare La changement de variable doit être bijectif, entre deux ouverts et suffisamment régulier (classe \mathscr{C}^1 ou \mathscr{C}^2 suivant l'ordre de l'équation.)
- S'il n'est pas donné, il doit être affine ou polaire.
- Appliquer la règle de la chaîne (ou utiliser des matrices jacobiennes) pour exprimer les dérivées de f en fonction de celle de g ou l'inverse, et simplifier l'ÉDP.

Optimisation : recherche d'extremums

lci, toutes les fonctions sont à valeurs dans ${\mathbb R}.$

On notera plutôt n la dimension au départ : $\mathscr U$ désigne un ouvert de $\mathbb R^n$.

Extremums libres

Définition 10 : Extremum

Soit *A* une partie de \mathbb{R}^n , $a \in A$, $f : A \to \mathbb{R}$.

- (i) On dit que f présente en a un **maximum** (respectivement **minimum**) local s'il existe $\mathcal V$ voisinage de a dans A tel que pour tout $x \in \mathcal V$, $f(x) \leqslant f(a)$ (respectivement $f(x) \geqslant f(a)$).
 - Il est **strict** lorsque, $\forall x \in V \setminus \{a\}$, f(x) < f(a) (respectivement f(x) > f(a)).
- (ii) On dit que f présente un **maximum** (respectivement **minimum**) global si cette inégalité est en fait valable pour tout $x \in A$.

Définition 11: Point critique

Soit $f:\mathcal{U}\to\mathbb{R}$ admettant des dérivées partielles en $a\in\mathcal{U}$.

Lorsque $\nabla f(a) = 0$, c'est-à-dire $\forall i \in [1, n]$, $\frac{\partial f}{\partial x_i}(a) = 0$, on dit que a est un **point critique** de f.

Propriété 6 : Condition nécessaire d'extremum local à l'ordre 1

On suppose que

- **H1** \mathscr{U} ouvert (très important!) de \mathbb{R}^n .
- **H2** $a \in \mathcal{U}$ tel que $f : \mathcal{U} \to \mathbb{R}$ admettant des dérivées partielles en a.
- **H3** f présente un extremum local en a. Alors
- C1 a est un point critique de f.

La réciproque est fausse, et un contre-exemple est appelé **point selle** ou **point col**.

Propriété 7 : Condition nécessaire de minimum local à l'ordre 2

On suppose que

- **H1** \mathscr{U} ouvert (très important!) de \mathbb{R}^n
- **H2** $a \in \mathcal{U}$ et $f \in \mathcal{C}^2(\mathcal{U}, \mathbb{R})$.
- **H3** f présente un minimum local en a alors
- C1 a est un point critique de f.
- **C2** $H_f(a) \in \mathscr{S}_n^+(\mathbb{R}).$

Si c'est un maximum local en a, alors $-H_f(a) \in \mathscr{S}_n^+(\mathbb{R})$ (ie $H_f(a)$ est symétrique « négative », ses valeurs propres sont toutes dans \mathbb{R}^-).

Propriété 8 : Condition suffisante d'extremum local à l'ordre 2

On suppose que

- **H1** \mathscr{U} ouvert (très important!) de \mathbb{R}^n .
- **H2** $a \in \mathcal{U}$ et $f \in \mathcal{C}^2(\mathcal{U}, \mathbb{R})$.
- **H3** a est un point critique de f.
- **H4** $H_f(a) \in \mathscr{S}_n^{++}(\mathbb{R})$ (respectivement $-H_f(a) \in \mathscr{S}_n^{++}(\mathbb{R})$)
- **C1** f atteint un minimum (respectivement maximum) local **strict** en a.

Si $\mathscr U$ ouvert, $f \in \mathscr C^2(\mathscr U,\mathbb R)$ et $a \in \mathscr U$ point critique de f.

- $Si \operatorname{Sp}(H_f(a)) \subset \mathbb{R}_+^*$, f atteint en a un minimum local.
- Si $\operatorname{Sp}\left(H_f(a)\right) \subset \mathbb{R}_+^*$, f atteint en a un maximum local.
- Si $H_f(a)$ possède des valeurs propres non nulles de signes opposés, a est un point selle.

Si n=2 (fonction de 2 variables), on note

$$H_f(a) = \begin{pmatrix} r & s \\ s & t \end{pmatrix}$$

où $r=rac{\partial^2 f}{\partial x^2}(a)$, $s=rac{\partial^2 f}{\partial x \partial y}(a)=rac{\partial^2 f}{\partial y \partial x}(a)$ (théorème de Schwarz), $t=rac{\partial^2 f}{\partial y^2}(a)$.

On suppose que a est un point critique. On a $\det\left(H_f(a)\right)=rt-s^2$ (égal produit de ses deux valeurs propres réelles) et $\operatorname{tr}\left(H_f(a)\right)=r+t$ (égal à leur somme).

- 1. Si $rt-s^2>0$, les deux valeurs propres de $H_f(a)$ ont même signe et sont non nulles : f présente en a un extremum local strict.
 - (a) Si r+t>0 alors $H_f(a)\in \mathscr{S}_n^{++}(\mathbb{R})$ et f présente un **minimum local strict** en a.
 - (b) Si r+t<0 alors $-H_f(a)\in \mathcal{S}_n^{++}(\mathbb{R})$ et f présente un **maximum local strict** en a.
- 2. Si $rt-s^2 < 0$, les deux valeurs propres de $H_f(a)$ ont des signes opposés et sont non nulles.

Dans ce cas, f **présente en** a **un point col** : dans les directions propres, on a respectivement un minimum et un maximum local

3. Si $rt - s^2 = 0$, on ne peut rien conclure en général.

-_-

Méthode 2 : Recherche d'extremum

- (i) Soit $f: \mathcal{U} \to \mathbb{R}$ admettant des dérivées partielles sur \mathcal{U} . Pour déterminer des extremums locaux de f on cherche ses points critiques.
 - Si f est de classe \mathscr{C}^2 , on peut s'intéresser à la Hessienne aux points critiques qui permet de conclure lorsqu'elle est inversible (voir la remarque précédente pour n=2.)

Sinon, pour un point critique a, on étudie f(a+h)-f(a) pour h proche de 0. Comme a est un point critique, les termes obtenus dans la différence sont au moins d'ordre a

- (ii) Si W n'est pas un ouvert, on le décompose en son intérieur (ouvert) et son bord. Sur le bord, on étudie « à la main », en général à l'aide d'un paramétrage du bord.
- (iii) Si f: K → R où K est un compact, on est assuré de l'existence d'un minimum et d'un maximum globaux. On les cherche comme dans la méthode précédente.

Extremums liés

Théorème 4 : d'optimisation sous contrainte

Soient $f,g \in \mathcal{C}^1(\mathcal{U},\mathbb{R})$ où \mathcal{U} est un ouvert de \mathbb{R}^n , et $X = \{x \in \mathcal{U}, g(x) = 0\}.$

Si $f|_X$ admet un extremum local en $a \in X$ et si $\nabla g(a) \neq 0_{\mathbb{R}^n}$, alors $\nabla f(a)$ est colinéaire à $\nabla g(a)$.