Savoir-faire et thèmes classiques – Topologie [II]

_				
Sav	\sim 11	r_t/	ai.	r۵
JUV	OI.		ч	

	Montrer qu'une partie est un ouvert ou un fermé relatif à l'ensemble de départ comme image réciproque d'un ouvert ou d'un fermé par une application continue
	Montrer qu'une application linéaire est continue
	Déterminer la norme subordonnée d'un endomorphisme ou d'une matrice
	Utiliser le caractère fermé d'un sous-espace vectoriel de dimension finie
	Définition de Bolzano-Weierstrß des compacts, caractérisation en dimension fi- nie
	Montrer qu'une partie est compacte comme partie fermée d'un compact, comme produit de compact, comme image (directe) continue d'un compact
	Caractériser les suites convergentes dans un compact par l'unicité de la valeur d'adhérence
	Définir les composantes connexes par arcs
	Utiliser le fait qu'une partie convexe ou étoilée est connexe par arcs
	Caractériser les intervalles de $\mathbb R$ comme parties convexes ou comme parties connexes par arcs de $\mathbb R$
	Reconnaître un connexe par arcs comme image (directe) continue d'un connexe par arcs
Thèmes	Classiques
	$igclus$ Normes matricielles subordonnées aux normes usuelles sur \mathbb{R}^n
	Topologie matricielle : continuité de det, Com ; $\mathscr{GL}_n(\mathbb{K})$ est un ouvert dense dans $\mathcal{M}_n(\mathbb{K})$, $\mathscr{O}(n)$ est compact, les matrices diagonalisables dans $\mathcal{M}_n(\mathbb{C})$ sont denses dans $\mathcal{M}_n(\mathbb{C})$ (non valable dans \mathbb{R}), connexité par arc ou non de $\mathscr{GL}_n(\mathbb{K})$ et $\mathscr{O}(n)$, de l'ensemble des matrices diagonalisables, $\chi_{AB} = \chi_{BA}$, si des matrices réelles sont semblables dans $\mathcal{M}_n(\mathbb{C})$, elles le sont dans $\mathcal{M}_n(\mathbb{R})$
	(*) Propriété de Borel-Lebesgue
	Diamètre d'une partie bornée, d'un compact
	Théorème du point fixe pour une fonction contractante ou lorsque, sur un com-
	pact, $x \neq y \Rightarrow \left\ f(x) - f(y) \right\ < \left\ x - y \right\ $
	Distance à un compact, à un fermé