Intégrales généralisées

 \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

On souhaite généraliser la notion d'intégrale à des intervalles qui ne sont pas des segments.

Intégrale généralisée sur un intervalle de la forme $[a, +\infty[$ Soit $a \in \mathbb{R}$ fixé.

<u>Définition</u> 1 : Intégrale convergente en $+\infty$

Soit f continue par morceaux sur $[a,+\infty[$ à valeurs dans $\mathbb K$. On dit que $\int_a^{+\infty}f$ est **convergente** lorsque

 $x \mapsto \int_a^x f(t)dt$ a une limite finio lorsque $x \to +\infty$

Dans ce cas, on note $\int_a^{+\infty} f(t) dt$ ou $\int_a^{+\infty} f$ cette limite.

Remarque

R1 – Lorsque $\int_a^{+\infty} f$ diverge, l'objet $\int_a^{+\infty} f(t) dt$ n'a aucun sens... sauf dans le cas où f est à valeurs réelles positives (cf partie suivante).

Exemple

$$E1 - \int_0^{+\infty} \frac{\mathrm{d}t}{1+t^2}$$

$$E2 - \int_0^{+\infty} \frac{\mathrm{d}t}{1+t}$$

Propriété 1 : Intégrales de Riemann

Soit $\alpha \in \mathbb{R}$. L'intégrale dite de Riemann $\int_1^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}}$ converge si et seulement si $\alpha > 1$

Propriété 2 : Intégrales exponentielles

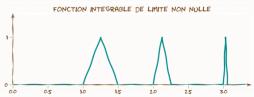
Soit $\alpha \in \mathbb{R}$. L'intégrale $\int_0^{+\infty} \mathrm{e}^{-\alpha t} \, \mathrm{d}t$ converge si et seulement si $\bigvee > O$

Exercice 1 : Cas particulier d'intégrales de Bertrand

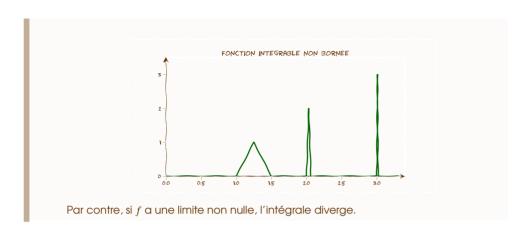
Donner une condition nécessaire et suffisante sur le réel β pour que l'intégrale $\int_2^{+\infty} \frac{\mathrm{d}\,t}{t\,(\ln t)^\beta}$ converge.

Remarque

R2 - $\bigwedge \sum u_n$ converge $\Longrightarrow u_n \to 0$. Ce n'est plus le cas pour la convergence de $\int_a^{+\infty} f$. Par exemple, si on considère la fonction f nulle partout sauf entre n et $n+\frac{2}{n^2}$ où elle dessine un triangle isocèle de hauteur 1, d'aire $\frac{1}{n^2}$ pour tout $n\geqslant 2$. Alors $f\geqslant 0$, $\int_a^x f\leqslant \sum_{n=2}^{\lfloor x\rfloor} \frac{1}{n^2} \leqslant \frac{\pi^2}{6} - 1 \text{ et } x\mapsto \int_a^x f \text{ est croissante donc } \int_a^{+\infty} f \text{ converge, et pourtant } f(x)\neq 0 \text{ lorsque } x\to +\infty.$



On peut même construire une fonction f non bornée dont l'intégrale converge : il suffit que les triangles soient de hauteur n et de base $\frac{2}{n^3}$.



Propriété 3 : Linéarité

Soient $f,g \in \mathscr{C}_m([a,+\infty[,\mathbb{K}),\lambda \in \mathbb{K},\text{ telles que } \int_a^{+\infty}f\text{ et }\int_a^{+\infty}g\text{ convergent.}$ $Alors\int_a^{+\infty}(f+\lambda g)\text{ converge et }$

$$\int_{a}^{+\infty} (f + \lambda g) = \int_{a}^{+\infty} f + \lambda \int_{a}^{+\infty} g.$$

Propriété 4 : Choix de la borne inférieure

Soit
$$f \in \mathcal{E}_m(C_a, +\infty L, \mathbb{R})$$
 et $f \in \mathbb{R}$ a

$$\int_a^{+\infty} f CV SSi \int_b^{+\infty} f CV$$
le can i chiant,
$$\int_a^{+\infty} f = \int_a^b f + \int_b^{+\infty} f$$

Propriété 5 : Dérivation de $x \mapsto \int_{x}^{+\infty} f$

Soient $f \in \mathscr{C}([a, +\infty[, \mathbb{K}) \text{ tel que } \int_a^{+\infty} f \text{ converge.}$

Alors

P: n + Suf et 6 sor lapol et Q'= - f.

- I et l'unique printine de f qui tand vers o ant a

2 Cas des fonctions réelles positives

Propriété 6 : Cas des fonctions réelles positives

Soit $f \in \mathcal{C}_m([a, +\infty[, \mathbb{R}^+).$ Alors $F: x \mapsto \int_a^x f(t) dt$ et me fonction moi ssate

 $\int_{a}^{+\infty} f$ converge si et seulement si f major ée

Définition 2 : Intégrale de fonction positive

Soit $f \in \mathscr{C}_m([a, +\infty[, \mathbb{R}^+).$ On pose $\int_{-\infty}^{+\infty} f |a| \text{ limite finie ou } +\infty \text{ de } F : x \mapsto \int_{a}^{x} f(t) \, \mathrm{d}t \text{ en } +\infty.$

Remarque

R3 – On se permet donc d'écrire $\int_a^{+\infty} f = +\infty$ en cas de divergence, seulement dans le cas où f est à valeurs réelles positives.

Théorème 1 : Convergence d'intégrales de fonctions positives par comparaison

Soient $f,g \in \mathcal{C}_m([a,+\infty[,\mathbb{R}^+), tel que)]$ H1 $\int_{\alpha} \mathcal{G}$ Convege

H2 L'une des trois hypothèses suivantes est vérifiée $0 \le f \le g$ ou f(x) = O(g(x)) ou f(n) = O(g(x))alors

C1 $\int_{\alpha} \mathcal{G}$ Convege

Remarque

R4 – Similaire aux séries.

Il est indispensable que les fonctions soient à valeurs positives!

Théorème 2 : Divergence d'intégrales de fonctions positives par comparaison

Soient $f,g \in \mathscr{C}_m([a,+\infty[,\mathbb{R}^+)$, tel que

H2 L'une des trois hypothèses suivantes est vérifiée

alors $g \leq g$ on g = o(f) on g = O(f)co $\int_{a}^{+\infty} f \, divege$

(contraposée du Hom 1)

Théorème 3 : Convergence d'intégrales de fonctions positives par équivalent

Soient $f,g \in \mathcal{C}_m([a,+\infty[,\mathbb{R}^+)])$ telles que $f \sim g$. Alors $\int_a^{+\infty} f \, dt \, \int_a^{+\infty} g \, dt \, \int_a^{+\infty} g \, dt \, dt$

(5:6~9, alos 6=0(g) et g=0(6) ... comme por lesione)

Intégrabilité sur un intervalle de la forme $[a, +\infty]$

Définition 3 : Fonction intégrable

Une fonction f est dite **intégrable** sur $[a,+\infty[$ lorsqu'elle est continue par morceaux sur $[a,+\infty[$ et que $\int_{-\infty}^{+\infty} |f(t)| dt$ converge

On dit aussi que $\int_a^{+\infty} f$ est **absolument convergente.**

On note $f \in L^1([a, +\infty[, \mathbb{K}).$

Exemple

- E3 Intégrales de Riemann : $x \mapsto \frac{1}{x^{\alpha}}$ est intégrable sur $[1, +\infty[$ si et seulement si $\alpha > 1$
- **E4 Intégrales exponentielles**: $x \mapsto e^{-\alpha x}$ est intégrable sur $[0, +\infty[$ si et seulement si $\alpha > 0$.

(elles sont 70 done intégralle () l'intégrale connège.)

Théorème 4: l'absolue convergence entraîne la convergence

Si f est intégrable sur $[a, +\infty[$, alors $\int_a^{+\infty} f$ converge.

La réciproque est fausse en général mais vrai pour des fonctions de signe constant.

Remarque

- **R5** Le programme stipule que « Un calcul montrant que $\int_a^{+\infty} |f| < +\infty$ vaut preuve d'intégrabilité. »
 - C'est puissant! On peut travailler dans $\mathbb{R} \cup \{+\infty\}$ lorsque la fonction est positive, et obtenir l'intégrabilité lorsque le résultat n'est pas $+\infty$.

Remarque

- **R6** Une intégrale $\int_a^{+\infty} f$ convergente mais non absolument convergente et dite semi-convergente.
- R7 Comme on l'a vu avec cet exemple, dans la pratique, pour procéder à une intégra-

tion par partie, on se ramène à une borne finie x puis on passe à la limite. Cela éviter de risquer d'écrire des termes qui n'existent pas. Voir plus loin.

Théorème 5 : Intégrabilité par comparaison

Soient $f, g \in \mathscr{C}_m([a, +\infty[, \mathbb{R}^+).$

- On suppose que
 - **H1** g est intégrable sur $[a, +\infty[$
 - H2 L'une des trois hypothèses suivantes est vérifiée

$$f \leq g$$
 ou $f = \mathcal{O}(g)$ ou $f = \mathcal{O}(g)$,

alors

- **C1** f est intégrable sur $[a, +\infty[$.
- Si $f \sim g$, alors f est intégrable sur $[a, +\infty[$ si et seulement si g l'est.

Remarque

- R8 Si les fonctions ne sont pas à valeurs positives, on met des valeurs absolues/modules. Ainsi, si $f,g\in\mathscr{C}_m([a,+\infty[,\mathbb{K})$ tel que g est intégrable sur $[a,+\infty[$ et $(f=\mathop{\circlearrowleft}_{+\infty}(g)$ ou $f=\mathop{\o}_{+\infty}(g)$), alors $(|f|=\mathop{\circlearrowleft}_{+\infty}(|g|)$ ou $|f|=\mathop{\o}_{+\infty}(|g|)$) donc $\int_a^{+\infty}|f|$ converge.
 - Et si $f \sim g$, alors $|f| \sim |g|$ et $\int_{a}^{+\infty} |f|$ converge si et seulement si $\int_{a}^{+\infty} |g|$ converge.

Corollaire 1 : Intégrabilité par comparaison, cas général

Soient $f, g \in \mathscr{C}_m([a, +\infty[, \mathbb{K}).$

■ Si g est intégrable sur $[a, +\infty[$ et que l'une des deux hypothèses suivantes est vérifiée : au voisinage de $+\infty$,

$$|f| \le |g|$$
 ou $f = \underset{+\infty}{0}(g)$ ou $f = \underset{+\infty}{0}(g)$,

alors f est intégrable sur $[a, +\infty[$.

■ Si $f \sim g$, alors f est intégrable sur $[a, +\infty[$ si et seulement si g l'est.

Exercice 2: CCINP 25 question 1.

Démontrer que, pour tout entier naturel n, la fonction $t \mapsto \frac{1}{1+t^2+t^ne^{-t}}$ est intégrable sur $[0,+\infty[$.

Exercice 3

Montrer que $x \mapsto \frac{x^2 + 3x + 1}{x^4 + x^2 + 1}$ est intégrable sur $[0, +\infty[$.

Exercice 4

Montrer que $x \mapsto e^{-x^2}$ est intégrable sur $[0, +\infty[$.

Exercice 5 : Classique : intégrales de Bertrand

Montrer que $f: x \mapsto \frac{1}{x^{\alpha} \ln^{\beta} x}$ est intégrable sur $[2, +\infty[$ si et seulement si $\alpha > 1$ ou ($\alpha = 1$ et $\beta > 1$). (Même résultat que sur les séries.)

Comparaison série-intégrale (complément)

Le résultat suivant est désormais hors-programme mais intéressant.

Exercice 6

Soient $n_0 \in \mathbb{N}$, $f: [n_0, +\infty[\to \mathbb{R} \text{ tel que }]$

H1 f est continue par morceaux,

H2 f est décroissante,

H3 f est positive

alors

C1 $\sum\limits_{n\geqslant n_0}f(n)$ converge si et seulement si f est intégrable sur $\lfloor n_0,+\infty \rfloor$.

INTÉGRALE GÉNÉRALISÉE SUR UN INTERVALLE QUELCONQUE

Cas d'un intervalle semi-ouvert

On généralise les résultats précédents aux intervalles de la forme [a,b[ou]a,b] avec $a,b\in\mathbb{R}\cup\{\pm\infty\}$ tels que a< b.

Définition 4 : Intégrale convergente

Soit f continue par morceaux sur [a,b[(respectivement]a,b]) à valeurs dans \mathbb{K} . On dit que $\int_a^b f$ est **convergente** lorsque $x\mapsto \int_a^x f(t)\,\mathrm{d}t$ a une limite finie en b (respectivement $x\mapsto \int_x^b f(t)\,\mathrm{d}t$ a une limite finie en a).

Dans ce cas, on note $\int_a^b f(t) dt$ ou $\int_a^b f$ cette limite.

Lorsque f est à valeur réelles positives et que $\int_a^b f(t) \, \mathrm{d}t$ diverge, on note $\int_a^b f(t) \, \mathrm{d}t = +\infty$.

On dit que f est **intégrable** sur [a,b[(respectivement [a,b[) lorsque $\int_a^b |f|$ converge, et on note $f \in L^1([a,b[,\mathbb{K})$ (respectivement $f \in L^1([a,b[,\mathbb{K})])$).

Remarque

- **R9** On dit aussi que f est intégrable en b (respectivement en a).
- **R 10** Si la borne ouverte est finie et que f possède une limite finie au point, il suffit de faire un prolongement par continuité : on est ramené à une intégrale sur un segment. Par exemple, $\int_0^\pi \frac{\sin t}{t} \, \mathrm{d}t$ converge sans problème.
- **R11** Le programme stipule que « Pour une fonction à valeurs dans \mathbb{R}^+ , un calcul aboutissant à un résultat fini vaut preuve de convergence. »

Exemple

E5 – tan n'est pas intégrable sur $\left[0, \frac{\pi}{2}\right]$

Propriété 7 : Intégrales de Riemann

Soit $\alpha \in \mathbb{R}$.

■ $x \mapsto \frac{1}{|x|^{\alpha}}$ est intégrable sur $[1, +\infty[$ (respectivement $]-\infty, -1]$) si et seulement si

d > 1

■ $x \mapsto \frac{1}{|x|^{\alpha}}$ est intégrable sur]0,1] (respectivement [-1,0[) si et seulement si

 $\propto < 1$

Por d=1: intégrable ni le o m le + a

Exemple

$$\mathbf{E6} - \int_0^1 \frac{\mathrm{d}t}{\sqrt{t}} \int_0^1 \frac{\mathrm{d}t}{t} \text{ et } \int_0^1 \frac{\mathrm{d}t}{t^2}$$

Théorème 6: Intégrabilité par comparaison, cas positif

Soient $f, g \in \mathscr{C}_m([a, b[, \mathbb{R}^+).$

lacksquare Si g est intégrable sur [a,b[et que l'une des trois hypothèses suivantes est vérifiée

Au voisinage de b, $f \le g$ ou $f = \mathop{\mathcal{O}}_{b}(g)$ ou $f = \mathop{\mathcal{O}}_{b}(g)$,

alors f est intégrable sur [a, b[.

■ Si $f \sim g$, alors f est intégrable sur [a,b] si et seulement si g l'est.

On a un énoncé analogue sur]a,b] en comparant au voisinage de a.

Remaraue

R 12 – Et de nouveau, si les fonctions ne sont pas réelles positives (ni de signe constant), on passe aux valeurs absolues / modules.

Corollaire 2: Intégrabilité par comparaison, cas général

Soient $f, g \in \mathcal{C}_m([a, b[, \mathbb{K})])$

 \blacksquare Si g est intégrable sur [a,b[et que l'une des deux hypothèses suivantes est vérifiée : au voisinage de b,

$$|f| \leq |g|$$
 ou $f = \mathcal{O}_h(g)$ ou $f = \mathcal{O}_h(g)$,

alors f est intégrable sur [a, b[.

■ Si $f \sim_h g$, alors f est intégrable sur [a,b[si et seulement si g l'est.

On a un énoncé analogue sur [a,b] en comparant au voisinage de a.

Propriété 8 : Indépendance du choix de l'autre borne

Soit f continue par morceaux sur [a, b[, $c \in [a, b[$.

Alors $\int_a^b f$ converge si et seulement si $\int_a^b f$ converge.

On a un résultat analogue pour une fonction continue par morceaux sur]a,b].

Propriété 9 : Cas d'une fonction prolongeable par continuité

Soit $-\infty < a < b < +\infty$ et f continue par morceaux sur [a,b[à valeurs dans $\mathbb K$. On suppose que f a une limite finie en b, c'est-à-dire qu'elle est prolongeable par continuité en une fonction $\tilde f$ continue par morceaux sur [a,b].

Alors f est intégrable sur [a, b[.

On a un énoncé analogue sur a,b.

2 Cas d'un intervalle ouvert

Définition 5 : Convergence d'intégrale et intégrabilité sur un intervalle ouvert

Soit f continue par morceaux sur] a,b[à valeurs dans \mathbb{K} .

On dit que $\int_a^b f$ est **convergente** lorsqu'il existe $c \in]a,b[$ (qui est en fait quel-

conque d'après la propriété précédente) tel que $\int_a^c f$ et $\int_c^b f$ sont convergentes.

Dans ce cas, on note

$$\int_{a}^{b} f = \int_{a}^{b} f(t) dt = \int_{a}^{c} f(t) dt + \int_{c}^{b} f(t) dt.$$

On dit que f est **intégrable** sur]a,b[lorsque $\int_a^b |f|$ converge et on note $f \in L^1(]a,b[,\mathbb{K}).$

Exemple

E7 – Pour tout $\alpha \in \mathbb{R}$, $\int_0^{+\infty} \frac{\mathrm{d}x}{x^{\alpha}}$

Remaraue

R 13 - ⚠ Il faut démontrer la convergence des deux intégrales séparément!

Exemple

E8 – $\int_{-\pi/2}^{\pi/2} \tan t \, dt$ diverge alors que pour tout $x \in \left] - \frac{\pi}{2}, \frac{\pi}{2} \right[, \int_{-x}^{x} \tan t \, dt = 0.$

3 Intégrabilité sur un intervalle quelconque

I est un intervalle de IR d'intérieur non vide

Théorème 7 : L'intégrabilité implique la convergence de l'intégrale

Soit f continue par morceaux sur I. Si f est intégrable sur I, alors $\int_I f$ converge.

Propriété 10 : Espace vectoriel $L^1(I, \mathbb{K})$

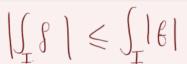
- L'ensemble des fonctions continues par morceaux intégrables sur I a une structure de \mathbb{K} -espace vectoriel. Cet espace vectoriel est noté $L^1(I,\mathbb{K})$.
- L'application $f \mapsto \int_I f$ est une forme linéaire de cet espace.

Remarque

- R14 Donc si f,g intégrables sur I, alors $\int_I (\alpha f + \beta g) = \alpha \int_I f + \beta \int_I g$.
- R 16 C'est encore le cas en prenant plus généralement les fonctions dont l'intégrale converge. Cependant, l'espace vectoriel en question n'a pas de nom particulier.

Propriété 11 : Inégalité triangulaire

Si f est intégrable sur I,



Propriété 12 : Cas des fonctions à valeurs complexes

Si f est à valeurs complexes, $\int_I f$ converge si et seulement si $\int_I \mathfrak{Re}(f)$ et $\int_I \mathfrak{Im}(f)$ convergent.

Dans ce cas, $\int_I f = \int_I \mathfrak{Re}(f) + i \int_I \mathfrak{Im}(f)$.

Étude et rédaction de l'existence d'une intégrale

-\

 $\begin{tabular}{ll} \bf M\'ethode & 1: \'etudier l'int\'egrabilit\'e de f sur un intervalle I ou \'etudier la \\ \hline f^b \\ \end{tabular}$

convergence de
$$\int_a^b f$$

(ce n'est pas la même chose!)

Position du problème

- Si I est un segment, il n'y a pas de problème.
- Si I est un intervalle bornée sur lequel f est bornée, alors f est intégrable par comparaison à une fonction constante qui est intégrable. C'est le cas par exemple si la fonction est continue et prolongeable par continuité en une borne ouverte (et c'est alors encore plus simple à justifier : il suffit de considérer l'intégrale sur un segment du prolongement, qui ne présente pas de problème).
- Si I est un intervalle ouvert]a,b[, on étudie séparément l'existence de $\int_a^c f$ et $\int_a^b f$. Le réel c est choisi quelconque dans]a,b[et on est ramené à une étude

 \int_c sur |a,c| et [c,b] (semi-ouverts).

Cas des fonctions positives

Dans ce cas, la convergence de l'intégrale est équivalente à l'intégrabilité. Bien insister dans la rédaction :

« La fonction $f: x \mapsto \cdots$ est continue (par morceaux), **positive** sur l'intervalle ... » en précisant bien l'intervalle.

S'il est ouvert, on coupe en deux et on étudie séparément les deux intégrabilités.

Cas des fonctions non positives

... ni négatives.

Dans ce cas, on s'intéresse soit à l'intégrabilité (absolue convergence), soit à la (semi)-convergence de l'intégrale (mais cette dernière n'est pas un objectif du pro-aramme).

Exercice 7

 $x \mapsto \cos^3(1/x)$ sur]0,1].

Evercice 8

Étudier l'existence de $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$ où $x \in \mathbb{R}$.

Exercice 9

Existence de $\int_0^{+\infty} e^{-t} \sin(xt) dt$ pour $x \in \mathbb{R}$.

Remarque

R 17 - / Mauvaise rédaction :

$$\left| \int_0^x e^{-t} \sin(xt) dt \right| \leqslant \int_0^x e^{-t} dt \leqslant 1...$$

Comme pour les séries, c'est à la fonction qu'on s'intéresse et non aux « intégrales partielles ».

Exercice 10: CCINP 28

N.B.: les deux questions sont indépendantes.

- 1. La fonction $x \mapsto \frac{e^{-x}}{\sqrt{x^2 4}}$ est-elle intégrable sur $]2, +\infty[$?
- 2. Soit a un réel strictement positif.

La fonction $x \mapsto \frac{\ln x}{\sqrt{1+x^{2a}}}$ est-elle intégrable sur $]0,+\infty[$?

PROPRIÉTÉS DES INTÉGRALES GÉNÉRALISÉES

Relation de Chasles

La notion d'intégrale généralisée se... généralise au cas où les bornes ne sont pas dans le bon sens.

Propriété 13 : Relation de Chasles

Soit $f \in \mathscr{C}_m(I, \mathbb{K})$ telle que $\int_I f$ converge.

- (i) Si J sous-intervalle de I, alors $\int_I f$ converge.
- (ii) Si $a, b, c \in \overline{I}$ éventuellement infinis,

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f,$$

toutes ces intégrales étant bien convergentes.

Propriétés liées à l'ordre

Propriétés 1 : liées à l'ordre

Soient $f,g \in \mathscr{C}_m(I,\mathbb{R})$ telles que $\int_I f$ et $\int_I g$ convergent.

Positivité:

Croissance:

Positivité améliorée :

De façon équivalente, si f est positive, **continue**, non identiquement nulle sur I alors

Intégrale généralisée dépendant d'une borne

Propriété 14 : Dérivation

Les bornes ouvertes peuvent être éventuellement infinies. Si f est continue sur [a,b[et si $\int_a^b f$ converge, alors $g:x\mapsto \int_x^b f(t)\,\mathrm{d}t$ est de classe

 \mathscr{C}^1 sur [a,b] et g'=

Si f est continue sur]a,b] et si $\int_a^b f$ converge, alors $h: x \mapsto \int_a^x f(t) dt$ est de classe

 \mathscr{C}^1 sur]a,b] et h'=

Remarque

R 18 - Se retrouve avec une primitive.

CHANGEMENTS DE VARIABLE, INTÉGRATIONS PAR PARTIES

Changement de variable

Théorème 8 : Changement de variable

Soit $\alpha, \beta, a, b \in \mathbb{R} \cup \{\pm \infty\}$ et $\varphi :]\alpha, \beta[\to]a, b[$ une **bijection** de classe \mathscr{C}^1 . Alors φ est strictement monotone.

On suppose que $\varphi(u) \xrightarrow[u \to \alpha]{} a$ et $\varphi(u) \xrightarrow[u \to \beta]{} b$ (quitte à échanger les bornes des intervalles).

Alors $\int_a^b f(t) dt$ et $\int_a^\beta f(\varphi(u)) \varphi'(u) du$ sont de même nature. En cas de convergence, elles sont égales.

Remarque

- ${\bf R}$ 19 Même nature est à prendre au sens convergentes ou divergentes ou absolument convergentes ou semi-convergentes.
 - C'est donc très utile pour étudier la nature d'une intégrale généralisée
- **R 20** Le programme autorise l'utilisation sans justification dans les cas usuels : φ fonction affine, puissance, exponentielle, logarithme.
- R21 Mais il vaut mieux insister. Faire un changement de variable avec une rédaction de la forme :« Changement de variable $t = \varphi(u)$ où $\varphi: \cdots \to \cdots$ bijective et de classe \mathscr{C}^1 ». On peut alors exprimer $u = \varphi^{-1}(t)$.
- R22 Sur un segment, la bijectivité n'était pas nécessaire, ici elle l'est.

Exercice 11

Trouver un lien entre l'intégrale $\int_0^{+\infty} e^{-t^2} dt$ et $\int_0^{+\infty} \frac{e^{-t}}{\sqrt{t}} dt$.

Exercice 12

Exprimer, pour $n \in \mathbb{N}$, $\int_0^{+\infty} \frac{\mathrm{d}\,t}{\left(1+t^2\right)^n}$ à l'aide des intégrales de Wallis $W_k = \int_0^{\pi/2} \sin^k t \,\mathrm{d}t$.

Exercice 13

Déduire de l'étude des intégrales de Bertrand au voisinage de $+\infty$, celle de ces mêmes intégrales sur $\left]0,\frac{1}{2}\right]$, à l'aide du changement de variable $u=\frac{1}{t}$.

Propriété 15 : Intégrales de Riemann

Soit $\alpha \in \mathbb{R}$ et $a, b \in \mathbb{R}$, $x \mapsto \frac{1}{|x-a|^{\alpha}}$ est intégrable sur [b, a[(respectivement]a, b]) si et seulement si

Remarque

R23 – Plus généralement, via un changement de variable, la fonction f est intégrable en a (resp. b) si et seulement si $t \mapsto f(a+t)$ (resp. $t \mapsto f(b-t)$) est intégrable en 0.

2 Intégration par parties

On ne fait pas d'intégration par partie sur des intégrales généralisées : on pourrait faire apparaître des termes qui n'existent pas.

Donc on repasse à une intégrale sur un segment, on intègre par parties puis on passe à la limite.

Remarque

R24 – Le programme donne tout de même un résultat, qu'on évitera d'utiliser : si f et g ont des limites finies en a et en b («si le crochet existe»), les intégrales $\int_a^b f'g$ et $\int_a^b fg'$ sont toutes les deux convergentes ou toutes les deux divergentes (mais seulement l'une peut être semi-convergente contrairement au changement de variable). Et en cas de convergence, on peut écrire

$$\int_{a}^{b} f'g = \left[fg\right]_{a}^{b} - \int_{a}^{b} fg'$$

(ou le crochet est à prendre au sens des limites.)

Il est largement préférable, dans la pratique, de repasser par une intégration par partie classique sur un segment, avant de passer à la limite.

Exercice 14

Si x > 0, on pose $\Gamma(x) = \int_0^{+\infty} t^{x-1} \mathrm{e}^{-t} \, \mathrm{d}t$. Trouver une relation entre $\Gamma(n+1)$ et $\Gamma(n)$ et en déduire $\Gamma(n)$ pour tout $n \in \mathbb{N}^*$.

Exercice 15: CCINP 19

Prouver que, pour tout entier naturel n, $f_n: t \longmapsto t^n \ln t$ est intégrable sur]0,1] et calculer $I_n = \int_0^1 t^n \ln t \, dt$.

INTÉGRATION DES RELATIONS DE COMPARAISON

Théorème 9: Intégration des relations de comparaison

Soit $f \in \mathscr{C}_m([a,b[,\mathbb{K}) \text{ et } g \in \mathscr{C}_m([a,b[,\mathbb{R}^+) \text{ une fonction à valeurs } \textbf{réelles positives}.$

Cas de divergence $Si \int_a^b g \ diverge \ et$

(i) si
$$f = \mathcal{O}(g)$$
, alors

(ii) si
$$f = o(g)$$
, alors

(iii) Si
$$f \sim_h g$$
, alors

Cas de convergence $Si \int_a^b g$ converge et

(i)
$$si\ f = \mathop{\mathbb{O}}_b(g)$$
, alors f intégrable et

(ii) si
$$f = o(g)$$
, alors f intégrable et

(iii) Si
$$f \sim g$$
, alors f intégrable et

On a un énoncé analogue sur]a,b].

Remarque

- R 25 Noter l'analogie avec les sommes partielles et les restes des séries.
- R 26 Comme pour les séries, la fonction de référence est toujours à valeurs réelles positives.

Exercice 16

Soit la fonction
$$f: x \mapsto \int_1^x e^{t^2} dt$$
.

- 1. Déterminer la limite de f(x) en $+\infty$.
- 2. Déterminer un équivalent de f en $+\infty$.