TD* STRUCTURES ALGÉBRIQUES

1. Structure de groupe

Oral Mines Soit (G,*) un groupe tel que pour tout $x \in G$, $x^2 = e$.

- 1. Montrer que (G,*) est abélien.
- 2. Soient H un sous-groupe strict de (G,*), $a \in G \setminus H$. Montrer que $H \cup aH$ est un sous-groupe de (G,*).
- 3. Si G est fini, en créant par récurrence un suite de sous-groupe de G de cardinal une puissance de 2, montrer que le cardinal de G est une puissance de 2.
- 4. On veut retrouver le résultat précédent par une technique pour le moins inattendue. On admet que l'ensemble des entiers modulo $2: \mathbb{Z}/2\mathbb{Z} = \left\{\overline{0}, \overline{1}\right\}$ forme un corps pour les lois d'addition et de multiplication modulo 2.

En interprétant G comme un $\mathbb{Z}/2\mathbb{Z}$ -espace vectoriel, montrer qu'il existe $n \in \mathbb{N}$ tel que (G,*) est isomorphe à $((\mathbb{Z}/2\mathbb{Z})^n,+)$.

Retrouver en particulier le résultat de la question précédente.

Solution de 1 : Oral Mines

- 1. Tout $x \in G$ vérifie $x^{-1} = x$. On a alors $x y = (x y)^{-1} = y^{-1} x^{-1} = y x$.
- 2. Tiens, une réunion de sous-groupe qui serait un sous-groupe? Eh bien non. aH n'est pas un sous-groupe en général.

En utilisant $a^2 = e$, on obtient facilement que $H \cup aH$ est une partie non vide de G stable par la loi de groupe et par l'inversion.

3. Soit $G = \{e\}$ et c'est terminé.

Soit $G \neq \{e\}$ et $H_0 = \{e\}$ est un sous-groupe strict de cardinal 1. Par la question précédente, avec $a \in G \setminus \{e\}$, $H_1 = H_0 \sqcup a_0 H_0$, on obtient un sous-groupe de cardinal 2.

En réitérant, on construit une suite de sous-groupes vérifiant $H_{n+1} = H_n \sqcup a_n H_n$, la réunion étant disjointe car $a_n \in G \setminus H_n$ et $|H_{n+1}| = 2|H_n| = 2^{n+1}$ (on voit facilement que $|H_n| = |a_n H_n|$ avec une bijection évidente). Comme G est fini, le procédé s'arrête, c'est-à-dire qu'il existe n tel que $G = H_n$ de cardinal 2^n .

Autre argument possible, directement : il existe alors des éléments $g_1,...,g_n$ de G tels que, en notant $\langle g_1,...,g_k \rangle$ le sous-groupe engendré par $\{g_1,...,g_k\}$ (i.e. le plus petit sous-groupe contenant $g_1,...,g_k$), on ait

$$\forall k \in [2, m]$$
 $g_k \notin \langle g_1, \dots, g_{k-1} \rangle$

et $G = \langle g_1, \dots, g_m \rangle$ (sinon, on pourrait construire par récurrence une suite $(g_n)_{n \ge 1}$ d'éléments de G tels que

$$\forall k \geq 2$$
 $g_k \notin \langle g_1, \dots, g_{k-1} \rangle$

ce qui contredirait la finitude de G). On vérifie alors que

$$(h_1,\ldots,h_n)\longrightarrow h_1\cdots h_n$$

est un isomorphisme de $\langle g_1 \rangle \times \cdots \times \langle g_n \rangle$ sur (G,*) où $\langle g \rangle = \{e,g\}$ est le sous-groupe engendré par g. Ou encore, tout élément de G s'écrit de manière unique sous la forme

$$g_1^{\epsilon_1}...g_n^{\epsilon_n}$$

où les ϵ_k sont dans $\{0,1\}$.

4. Le groupe (G,*) est abélien.

Pour $\bar{0}, \bar{1} \in \mathbb{Z}/2\mathbb{Z}$ et $x \in G$, posons $\bar{0} \cdot x = e = x^0$ et $\bar{1} \cdot x = x = x^1$.

On vérifie que l'on définit alors un produit externe sur G munissant le groupe abélien (G,*) d'une structure de $\mathbb{Z}/2\mathbb{Z}$ -espace vectoriel. En effet, pour $(x,y) \in G^2$ et $(\lambda,\mu) \in (\mathbb{Z}/2\mathbb{Z})^2$, on a

$$(\lambda + \mu) \cdot x = \lambda \cdot x * \mu \cdot x$$
 $\lambda \cdot (x + y) = \lambda \cdot x * \lambda \cdot y$ $\lambda \cdot (\mu \cdot x) = (\lambda \mu) \cdot x$ $\bar{1} \cdot x = x$.

De plus, cet espace est de dimension finie car |G| est fini (sinon, on pourrait construire une famille libre infinie), il est donc isomorphe à l'espace $((\mathbb{Z}/2\mathbb{Z})^n, +, \cdot)$ pour un certain $n \in \mathbb{N}^*$.

En particulier, le groupe (G,*) est isomorphe à $(\mathbb{Z}/2\mathbb{Z})^n,+)$.

Dans la deuxième méthode de la question précédente, $(g_1,...,g_n)$ est une base du $\mathbb{Z}/2\mathbb{Z}$ -espace vectoriel G.

Oral Centrale Soit (G,*) un groupe. On suppose que le cardinal de G s'écrit pq, avec q premier et p < q. Montrer que G contient au plus un sous-groupe de cardinal q.

Solution de 2 : Oral Centrale

Soit H un sous-groupe de cardinal q. Tout élément de H est d'ordre divisant q, donc d'ordre 1 ou q. Donc tout élément de H qui n'est pas d'ordre 1 (donc qui n'est pas l'élément neutre) est d'ordre q, donc engendre H. Supposons qu'il y ait deux sous-groupes H et H' d'ordre q, distincts. Alors $H \cap H' = \{e\}$ (car si $h \in H \cap H'$, si $h \neq e$, alors h engendre à la fois H et H', qui sont alors égaux). Montrons que l'application

$$(h, h') \longmapsto h * h'$$

est alors injective. En effet, si $h_1*h_1'=h_2*h_2'$, on a $h_2^{-1}*h_1=h_2'*(h_1')^{-1}$, cet élément de G étant à la fois dans H et H' est donc égal à e, d'où $h_1=h_2$ et $h_1'=h_2'$. Il y aurait donc au moins q^2 éléments dans G, ce qui est contraire à l'hypothèse.

- 1. Déterminer tous les morphismes de groupes de $(\mathbb{Q},+)$ dans $(\mathbb{Z},+).$
- 2. Déterminer tous les morphismes de groupes de $(\mathbb{Q},+)$ dans $(\mathbb{Q}_{+}^{*},\times)$.
- 3. Déterminer tous les morphismes de groupes de $(\mathbb{U}_n,+)$ dans (\mathbb{C}^*,\times) .

Solution de 3:

1. L'image d'un morphisme est un sous-groupe de $(\mathbb{Z},+)$ donc de la forme nZ. On a $x \in Q$ tel que f(x) = n. Alors $\frac{n}{2} = f\left(\frac{x}{2}\right) \in n\mathbb{Z}$ donc n = 0.

Réciproquement, l'application nulle est bien un morphisme.

- 2. Si f est un tel morphisme et $r \in \mathbb{Q}^*$, pour tout $k \in \mathbb{N}^*$, $f(x) = f(x/k)^k \in \mathbb{Q}^*$. Alors toutes les valuations p-adiques de f(x) (dans \mathbb{Z}) sont divisibles par tout $k \in \mathbb{N}^*$, donc sont toutes nulles. f est constamment égale à 1, ce qui donne bien un morphisme réciproquement.
- 3. Soit ϕ un tel morphisme. Si on connaît $\phi(\omega)$, où $\omega = \mathrm{e}^{2\mathrm{i}\pi/n}$, on connaît ϕ . [Plus généralement, pour connaître un morphisme d'un groupe cyclique (G,*) dans un groupe (H,\cdot) , il suffit de connaître l'image par ce morphisme d'un générateur de G. En effet, si g est un tel générateur, on a pour tout $n \in \mathbb{Z}$: $\phi(g^n) = (\phi(g))^n$, ce qui donne l'image par ϕ de tous les éléments de G]. Soit $z_0 = \phi(\omega)$. On a, par propriété de morphism,

$$z_0^n = \phi(\omega^n) = \phi(1) = 1$$

Donc $z_0^n = 1$. Et donc $z_0 \in \mathcal{U}_n$.

Réciproquement, soit z_0 un élément de \mathbb{U}_n . On montre que l'application

$$\phi_{z_0} : \begin{vmatrix} \mathbb{U}_n & \longrightarrow & \mathbb{C}^* \\ \mathrm{e}^{2\mathrm{i}k\pi/n} & \longmapsto & z_0^k \end{vmatrix}$$

est bien définie (il s'agit pour cela de montrer que, si $k \equiv \ell[n]$, $z_0^k = z_0^\ell$, ce qui se fait sans trop de mal). C'est assez clairement un morphisme. Les ϕ_{z_0} , $z_0 \in \mathbb{U}_n$ sont les morphismes cherchés.

Oral ENS Soit (G,*) un groupe, Aut(G) l'ensemble de ses automorphismes.

- 1. Montrer que (Aut(G), \circ) est un groupe.
- 2. Déterminer les groupes finis tels que Aut(G) soit réduit à un élément.

Solution de 4 : Oral ENS

La première question est simple, c'est une entrée en matière dans laquelle il faut montrer clarté et précision. Soit G un groupe fini tel que $\operatorname{Aut}(G)$ soit réduit à un élément. Alors, pour tout $g \in G$,

$$\phi_g: h \longrightarrow ghg^{-1}$$

étant dans Aut(G), est égal à Id_G . On en déduit que G est commutatif.

Mais alors $x \mapsto x^{-1}$ est aussi dans Aut(G), et donc est égal à Id_G . On en déduit que (G,*) est un groupe fini tel que pour tout $g \in G$, $g^2 = e$.

Il existe alors des éléments $g_1,...,g_m$ de G tels que, en notant $\langle g_1,...,g_k \rangle$ le sous-groupe engendré par $\{g_1,...,g_k\}$ (i.e. le plus petit sous-groupe contenant $g_1,...,g_k$), on ait

$$\forall k \in [2, m]$$
 $g_k \notin \langle g_1, \dots, g_{k-1} \rangle$

et $G = \langle g_1, \dots, g_m \rangle$ (sinon, on pourrait construire par récurrence une suite $(g_n)_{n \ge 1}$ d'éléments de G tels que

$$\forall k \geq 2$$
 $g_k \notin \langle g_1, \dots, g_{k-1} \rangle$

ce qui contredirait la finitude de G). On vérifie alors que

$$(h_1,\ldots,h_m)\longrightarrow h_1\ldots h_m$$

est un isomorphisme de $\langle g_1 \rangle \times \cdots \times \langle g_m \rangle$ sur (G,*) où $\langle g \rangle = \{e,g\}$ est le sous-groupe engendré par g. Ou encore, tout élément de G s'écrit de manière unique sous la forme

$$g_1^{\epsilon_1} \dots g_m^{\epsilon_m}$$

où les e_k sont dans $\{0,1\}$. On a en fait revu G comme $\mathbb{Z}/2\mathbb{Z}$ -espace vectoriel de dimension finie, comme dans l'exercice $1,(g_1,\ldots,g_m)$ en est une base. L'application

$$g_1^{\epsilon_1} \dots g_m^{\epsilon_m} \longmapsto g_1^{\epsilon_2} g_2^{\epsilon_2} \dots g_m^{\epsilon_m}$$

définit alors un automorphisme de G autre que ld si $m \ge 2$. Les seuls groupes finis ayant un seul automorphisme sont donc $\{e\}$ et $\{e,g\}$ avec $g^2 = e$.

Oral X - Groupe dérivé Soit G un groupe. Pour $(a,b) \in G^2$, on note $[a,b] = ab a^{-1}b^{-1}$. On note D_G le

sous-groupe de G engendré par les éléments de la forme [a,b], ie le plus petit sous-groupe de G contenant les éléments de la forme [a,b].

- 1. Montrer que $\forall g \in G$, $gD_G g^{-1} = D_G$.
- 2. Montrer que $\forall g \in G$, $g D_G = D_G g$.
- 3. On pose $\mathcal{Q}_G = \{xD_G ; x \in G\}.$
 - (a) Montrer que \mathcal{Q}_G est une partition de G.
 - (b) Montrer que la fonction $(xD_G, yD_G) \longmapsto (xy)D_G$ est convenablement définie et munit \mathscr{Q}_G d'une structure de groupe, puis montrer que $x \longmapsto xD_G$ est un morphisme de G dans \mathscr{Q}_G .
 - (c) Montrer que \mathcal{Q}_G est abélien.

Solution de 5 : Oral X – Groupe dérivé

1. Soit $(a, b) \in G^2$. Alors

$$g[a,b]g^{-1} = gaba^{-1}b^{-1}g^{-1} = gag^{-1}gbg^{-1}ga^{-1}g^{-1}gb^{-1}g^{-1} = [gag^{-1},gbg^{-1}]$$

L'application $h \mapsto g h g^{-1}$ est un automorphisme du groupe G; elle transforme les sous-groupes de G en sous-groupes de G. Elle laisse invariant $A = \{[a,b]; (a,b) \in G^2\}$. Elle transforme donc les sous-groupes contenant A en les sous-groupes contenant A. Et comme elle préserve l'inclusion, elle transforme le plus petit d'entre eux, D_G , en lui-même. On a donc $g D_G g^{-1} = D_G$.

- 2. Facile conséquence de ce qu'on a fait précédemment.
- 3. (a) Supposons $xD_G \cap yD_G \neq \emptyset$; il existe alors h_1, h_2 dans D_G tels que

$$x h_1 = y h_2$$

Mais alors, si $h \in D_G$,

$$xh = y\underbrace{h_2h_1^{-1}h}_{\in D_C} \in yD_G$$

d'où $xD_G \subset yD_G$ et, symétriquement, $yD_G \subset xD_G$, donc xD_G et yD_G sont, s'ils ne sont pas la même partie de G, deux parties disjointes de G.

(b) Pour la définition convenable, il s'agit de s'assurer que si $xD_G = x'D_G$ et $yD_G = y'D_G$ alors $xyD_G = x'y'D_G$. Ou encore, de manière équivalente, on doit montrer que si $x^{-1}x'$ et $y^{-1}y'$ sont dans D_G , alors $(xy)^{-1}x'y' \in D_G$. Mais...

$$(xy)^{-1}x'y' = y^{-1}x^{-1}x'y' = \underbrace{y^{-1}y'}_{\in D_G} y'^{-1}\left(\underbrace{x^{-1}x'}_{\in D_G}\right)y'$$

et il suffit d'appliquer 1. pour conclure.

Il est clair qu'on définit ainsi une loi interne sur \mathcal{Q}_G .

Cette loi est associative, la vérification en est très formelle : avec des notations évidentes,

$$xD_G(yD_G zD_G) = xD_G(yzD_G) = x(yz)D_G = (xy)zD_G = (xy)D_G zD_G = (xD_G yD_G)zD_G$$

L'élément $D_G = eD_G$ de \mathcal{Q}_G est neutre. Et l'élément $x^{-1}D_G$ est symétrique de l'élément xD_G . La propriété de morphisme demandée est alors très simple à écrire, elle découle de la définition.

(c) Il s'agit de montrer que, pour tous x, y dans G,

$$(x y)D_G = (y x)D_G$$

ou encore que $(xy)^{-1}yx \in D_G$ ce qui est bien simple vu la définition de D_G .

Oral X-ENS – Théorème de Sylow Soit p un nombre premier et k un entier naturel non nul. Soit G

un groupe de cardinal $p^k m$ avec $p \not| m$. Il s'agit de montrer que G a un sous-groupe de cardinal p^k .

1. Traiter le cas m = 1 puis le cas où G est cyclique.

On définit $M = \{A \subset G, |A| = p^k\}.$

2. Montrer que p ne divise pas le cardinal de M.

On définit une relation d'équivalence \sim sur M en posant pour A_1, A_2 dans M

$$A_1 \sim A_2 \iff \exists g \in G, A_1 = gA_2.$$

3. Montrer qu'il existe une classe d'équivalence de cardinal non divisible par p.

On prend A un représentant de cette classe, et on pose $H = \{g \in G, gA = A\}$.

4. Montrer que H est un sous-groupe de G de cardinal p^k .

Solution de 6 : Oral X-ENS – Théorème de Sylow

FGN 1 1.24

- 1. Si m = 1, $|G| = p^k$ et G lui-même convient.
 - Si G est cyclique, engendré par x, considérons $\langle x^m \rangle$. Son cardinal est l'ordre de x^m . Or, comme G est cyclique engendré par x, le plus petit n tel que $(x^m)^n = e$ est $n = p^k$. Donc (x^m) est d'ordre p^k .
- 2. Avec la formule de Legendre (voir exercice 14),

$$\begin{split} & v_p(|M|) = v_p\left(\binom{p^k m}{p^k}\right) = v_p\left((p^k m)!\right) - v_p\left((p^k)!\right) - v_p\left((p^k (m-1))!\right) \\ & = \sum_{\ell=1}^k \left(\left\lfloor \frac{p^k m}{p^\ell} \right\rfloor - \left\lfloor \frac{p^k}{p^\ell} \right\rfloor - \left\lfloor \frac{p^k (m-1)}{p^\ell} \right\rfloor\right) \\ & = \sum_{\ell=1}^k \left(p^{k-\ell} m - p^{k-\ell} - p^{k-\ell} (m-1)\right) \\ & = 0 \end{split}$$

Sans la formule de Legendre, en remarquant que $v_p(p^k m - \ell) = v_p(\ell)$ pour $\ell \in [1, p^k - 1]$,

$$\nu_p\left(\binom{p^km}{p^k} \right) = \sum_{\ell=0}^{p^k-1} \nu_p\left(p^km-\ell\right) - \nu_p\left(\left(p^k\right)! \right) = k + \sum_{\ell=1}^{p^k-1} \nu_p\left(\ell\right) - \nu_p\left(\left(p^k\right)! \right) = 0.$$

En effet, comme $p \not| m$ et $1 \le \ell \le p^k - 1$, donc la plus grande puissance de p qui divise $p^k m - \ell$ est la même que la plus grande puissance qui divise ℓ .

- 3. Comme la somme des cardinaux des classes est égale à |M| qui n'est pas divisible par p, c'est aussi le cas du cardinal d'au moins une classe.
- 4. On vérifie facilement que H est un sous-groupe de G.

Comme dans la démonstration du théorème de Lagrange, en utilisant le relation d'équivalence sur A

$$a \sim b \iff a^{-1}b \in H$$
,

on peut écrire A comme réunion disjointe de classes d'équivalences de la forme Ha donc toutes de cardinal |H|, on obtient que |H| divise $|A| = p^k$ et donc $|H| = p^\ell$ avec $\ell \le k$.

Enfin, on vérifie avec $f: g \in G \mapsto gA \in \operatorname{cl}(A)$ (classe de la relation d'équivalence de la question 3) que pour tout $g \in G$, $f^{-1}(gA) = gH$, ce qui par lemme des bergers, nous dit que $|G| = |H| \times |\operatorname{cl}(A)|$ et comme $p \not |\operatorname{cl}(A)|$, $|H| = p^k$.

2. Anneaux et idéaux, corps

Soit $\mathbb{D} = \{x \in \mathbb{Q}, \exists n \in \mathbb{Z}, x \cdot 10^n \in \mathbb{Z}\}$ l'anneau des nombres décimaux. Montrer qu'il est principal.

Solution de 7 :

FGN 1 2.12

C'est facilement un sous-anneau de $(\mathbb{Q},+,\times)$. Ses éléments s'écrivent de manière unique $2^{\alpha}5^{\beta}p$ avec $p \in \mathbb{Z}$ premier avec 10 et $\alpha,\beta \in \mathbb{Z}$.

Comme dans \mathbb{Z} , soit I un idéal non réduit à 0 de \mathbb{D} et $x = 2^{\alpha}5^{\beta}p$ un élément non nul de I.

Alors $p=2^{-\alpha}5^{-\beta}x\in I$ car $2^{-\alpha}5^{-\beta}\in\mathbb{D}$. Ainsi $\left|p\right|\in\mathbb{N}^*\cap I$, partie non vide de N qui possède un min noté a. On a déjà $a\mathbb{D}\subset I$.

Si, réciproquement, $x = 2^{\alpha}5^{\beta}p \in I$, alors $p \in I$ et par division euclidienne, p = aq + r avec $r \in I \cap \mathbb{N}$ et r < a donc r = 0: p = aq et $x = aq2^{\alpha}5^{\beta}$: $I \subset a\mathbb{D}$.

Soit A un anneau et $(a,b) \in A^2$. On suppose 1-ab inversible. Montrer que 1-ba l'est aussi.

Solution de 8 :

Si $(ab)^n = 0$, $(1-ab)^{-1} = 1 + ab + \dots + (ab)^{n-1}$.

Alors $(ba)^{n+1} = b(ab)^n a = 0$ et $(1-ba)^{-1} = 1 + ba + \dots + (ba)^n = 1 + b(1-ab)^{-1}a$.

On vérifie alors que $1 + b(1-ab)^{-1}a$ est bien l'inverse de 1-ba dans le cas général.

Idéaux principaux Soit A un anneau commutatif. Pour a et b dans A, montrer que si l'idéal (a)+(b) est principal, il en est de même de $(a)\cap(b)$.

Solution de 9 : Idéaux principaux

FGN 12.9

On s'inspire du cas de \mathbb{Z} où $m = a \lor b = da'b'$ où $d = a \land b$, a = da' et b = db'.

On a (a)+(b)=(d) qui contient (a) et (b) donc on a $a',b' \in A$ tels que a=da' et b=db'.

Soit m = da'b'. On montrer que $(a) \cap (b) = (m)$.

On a déjà $(m) \subset (a) \cap (b)$ car $m \in (a)$ et $m \in (b)$.

Réciproquement, si $x \in (a) \cap (b)$, on obtient $x \in (m)$ en utilisant une « relation de Bézout » d = au + bv: en écrivant $x = aa = \beta b$,

$$x = \alpha d a' = \alpha (a u + b v) a' = x u a' + m \alpha v = \beta b u a' + m \alpha v = m(\beta u + \alpha v) \in (m).$$

Anneau sans idéal non premier Soit A un anneau commutatif dont tout idéal I est premier

 $(x y \in I \Longrightarrow x \in I \text{ ou } y \in I).$

Montrer que A est un corps.

Solution de 10 : Anneau sans idéal non premier

FGN 1 2.21

Si $x \in A$ non nul, on montre que x est inversible.

Comme (x^2) est premier, $x \in (x^2)$ donc on a $a \in A$ tel que $x = ax^2$.

Or (0) est premier donc A est intègre, donc comme $x \neq 0$, ax = 1.

Idéaux maximaux Soit A un anneau commutatif et I un idéal strict de A.

1. Montrer que I est maximal pour l'inclusion parmi les idéaux stricts de A si et seulement si pour tout $a \in A \setminus I$, on a I + aA = A.

On dit qu'un idéal I est premier si $A \setminus I$ est stable par produit.

2. Montrer que tout idéal maximal est premier.

Solution de 11 : Idéaux maximaux

FGN 2.10

3. Arithmétique entière

Montrer que si $n, k \in \mathbb{N}$, $(n!)^k$ divise (nk)!.

Solution de 12:

FGN 13.1

$$\frac{(nk)!}{(n!)^k} = \prod_{i=1}^k \binom{in}{n} \in \mathbb{N}$$

Valuations sur \mathbb{Q} On appelle valuation sur un anneau A toute application v de A dans $\mathbb{R} \cup \{+\infty\}$

telle que pour tout $(x, y) \in A^2$,

- (i) v(xy) = v(x) + v(y);
- (ii) $v(x+y) \ge \min(v(x), v(y))$;
- (iii) $v(x) = +\infty \iff x = 0$.
- 1. Donner des exemples de valuations sur \mathbb{Z} , sur \mathbb{Q} .
- 2. Déterminer toutes les valuations sur Q.

Solution de 13 : Valuations sur ${\mathbb Q}$

FGN 1 2.27

1. On peut citer les valuations p-adiques sur \mathbb{Z} qui s'étendent à \mathbb{Q} (on fait la différence des valuations p-adiques du numérateur et du dénominateur et on vérifie que le résultat ne dépend pas du représentant choisi du rationnel).

Plus généralement, toutes les λv_p où $\lambda > 0$ et p premier conviennent et on va montrer que ce sont les seules valuations non triviales (ie nulle sur \mathbb{Q}^*).

2. Soit ν valuation non triviale.

On vérifie alors que v(1) = 0 puis v(-1) = 0 puis pour tout $x \in \mathbb{Q}^*$, v(-x) = v(x) ie v est paire.

Puis, par récurrence pour tout $n \in \mathbb{N}$, $\nu(n) \ge 0$.

Enfin, pour tout $x \in \mathbb{Q}$ et $n \in \mathbb{N}$, $v(x^n) = n v(x)$.

Puis $E = \{n \in \mathbb{N}^*, \ \nu(n) > 0\}$ est non vide car ν non trivial, son plus petit élément p est premier car si p = ab avec 1 < a, b < p, $\nu(p) = \nu(a) + \nu(b) = 0 + 0 = 0$ ce qui est absurde.

Si q est premier distinct de p, par une relation de Bézout, on montre que $0 = v(1) = v(pu+qv) \ge \min(v(p), v(q))$ donc v(q) = 0.

On conclut par décomposition primaire que $v = \lambda v_p$ où $\lambda = v(p) > 0$.

Formule de Legendre - Très classique - Oraux divers

- 1. Exprimer $v_p(n!)$ pour p premier et $n \in \mathbb{N}^*$ sous forme de somme.
- 2. Combien y a-t-il de zéros à la fin de 2025!?
- 3. On écrit n en base $p: n = a_0 + a_1 p + \dots + a_r p^r$ et on pose $s = a_0 + \dots + a_r$. Montrer que $v_p(n!) = \frac{n-s}{n-1}$.
- 4. Soit $D: x \in \mathbb{R}^+ \mapsto \lfloor x \rfloor \lfloor x/2 \rfloor \lfloor x/3 \rfloor \lfloor x/5 \rfloor + \lfloor x/30 \rfloor$. Montrer que $D(x) \ge 0$ pour tout $x \in \mathbb{R}^+$ et en déduire que

$$\frac{(30n)!n!}{(15n)!(10n)!(6n)!} \in \mathbb{N}$$

pour tout $n \in \mathbb{N}$.

Solution de 14 : Formule de Legendre - Très classique - Oraux divers

Les multiples de q s'écrivent $k=q\ell$ avec $\ell\in\mathbb{Z}$ uniquement déterminé par k et q, et alors $1\leqslant k=q\ell\leqslant n$ si et seulement si $\frac{1}{q}\leqslant\ell\leqslant\frac{n}{q}$ si et seulement si $1\leqslant\ell\leqslant\left|\frac{n}{q}\right|$ avec $\ell\in\mathbb{Z}$.

Le nombre de multiples de q entre 1 et n est donc $\left\lfloor \frac{n}{q} \right\rfloor$.

Ainsi, la valuation p-adique de n! avec p premier s'obtient en ajoutant les valuations p-adiques des entiers entre 1 et m, d'après la question précédente :

- les $\left|\frac{n}{p}\right|$ multiples de p fournissent chacun (au moins) un facteur p,
- les $\left\lfloor \frac{n}{p^2} \right\rfloor$ multiples de p^2 fournissent chacun (au moins) un facteur p supplémentaire,
- les $\left|\frac{n}{p^3}\right|$ multiples de p^3 fournissent chacun (au moins) un facteur p supplémentaire,
- et ainsi de suite.

Le décompte s'arrête car la suite entière $\left(\left\lfloor\frac{n}{p^i}\right\rfloor\right)_{i\in\mathbb{N}^*}$ finit par s'annuler et on obtient la formule de Legendre (avec un nombre fini de termes non nuls) :

$$v_p(n!) = \sum_{i=1}^{+\infty} \left\lfloor \frac{n}{p^i} \right\rfloor.$$

Autre rédaction possible : on peut dénombrer les entiers entre 1 et n ayant une valuation q-adique exactement égale à $i \in \mathbb{N}$: il s'agit des multiples de q^i qui ne sont pas multiples de q^{i+1} et qui sont au nombre de $\left|\frac{n}{q^i}\right| - \left|\frac{n}{q^{i+1}}\right|$, d'où la formule (les sommes étant toujours faussement infinies)

$$v_p(n!) = \sum_{i=0}^{+\infty} i \cdot \left(\left\lfloor \frac{n}{p^i} \right\rfloor - \left\lfloor \frac{n}{p^{i+1}} \right\rfloor \right) = \sum_{i=1}^{+\infty} i \cdot \left\lfloor \frac{n}{p^i} \right\rfloor - \sum_{i=1}^{+\infty} (i-1) \cdot \left\lfloor \frac{n}{p^i} \right\rfloor = \sum_{i=1}^{+\infty} \left\lfloor \frac{n}{p^i} \right\rfloor.$$

$oxed{f 15}$ Encadrement de Tchebychev

On note \mathscr{P}_n l'ensemble des nombres premiers au plus égaux à n et $\pi(n)$ son cardinal.

Le très difficile théorème des nombres premiers, démontré par Hadamard et De la vallée-Poussin dit que $\pi(n) \sim \frac{n}{1-n}$.

On se contente ici d'un encadrement, dû à Tchebychev.

- 1. Montrer, en utilisant la formule de Legendre, que pour p premier et $n \in \mathbb{N}^*$, $v_p\left(\binom{2n}{n}\right) \leqslant \frac{\ln(2n)}{\ln p}$. En déduire que $\frac{n}{\ln n} = \mathcal{O}(\pi(n))$.
- 2. Montrer que tout $p \in \mathcal{P}_{2n} \setminus \mathcal{P}_n$ divise $\binom{2n}{n}$, puis que $n^{\pi(2n)-\pi(n)} \leqslant 2^{2n}$. En déduire que $\pi(n) = \mathcal{O}\left(\frac{n}{\ln n}\right)$.

On a donc obtenu, avec les notation des informaticiens, que $\pi(n) = \Theta\left(\frac{n}{\ln n}\right)$.

Solution de 15: Encadrement de Tchebychev

FGN 1 3.50 et 51

Théorème de Kurschak Pour quelles valeurs entières $n \ge m$ a-t-on $\sum_{k=m}^{n} \frac{1}{i} \in \mathbb{N}$?

Solution de 16 : Théorème de Kurschak

FGN 1 3.32

C'est vrai pour n = m = 1 et seulement dans ce cas là.

Si $n \ge 2$, on regarde la valuation 2-adique des entiers entre m et n.

On peut supposer m < n et poser $\alpha \ge 1$ la plus grande valuation 2-adique d'entiers entre m et n.

On vérifie que α est atteinte une et une seule fois, sinon, si $m \le k = 2^{\alpha}(2r+1) < k' = 2^{\alpha}(2s+1) \le n$, alors $2^{\alpha}(2r+2)$ est aussi entre m et n et ça contredit la maximalité de α .

Donc, sous forme irréductible, $\sum_{k=m}^{n} \frac{1}{i} = \frac{A}{2^{\alpha}B}$ où A et B sont impairs et la somme n'est pas entière.

Probabilité que deux entiers soient premiers entre eux

Pour $n \ge 1$, on note r_n la probabilité que deux entiers choisis aléatoirement entre 1 et n soient premiers entre eux.

D'autre part, on définit la fonction de Möbius $\mu: \mathbb{N}^* \to \mathbb{Z}$ par $\mu(1) = 1$, $\mu(n) = 0$ si n est divisible par le carré d'un nombre premier, $\mu(p_1 \cdots p_r) = (-1)^r$ si les p_i sont des nombres premiers deux à deux distincts.

- 1. Montrer à l'aide de la formule du crible que $r_n = \frac{1}{n^2} \sum_{d=1}^n \mu(d) \left\lfloor \frac{n}{d} \right\rfloor^2$.
- 2. Calculer $\sum_{d|n} \mu(d)$.
- 3. Montrer que $r_n \xrightarrow[n \to +\infty]{} \frac{6}{\pi^2}$.

Solution de 17 : Probabilité que deux entiers soient premiers entre eux

FGN 13.48

- 1. Si A_n est l'ensemble des couples (a,b) tels que $a \wedge b = 1$ et U_i l'ensemble des couples (a,b) tels que $p_i|a$ et $p_i|b$, alors A_n est le complémentaire de la réunion des U_i où $p_1, \dots p_k$ sont les nombres premiers inférieurs à n. En appliquant la formule du crible à cette réunion, on obtient la formule attendue.
- 2. $\sum_{d|n} \mu(d) = \delta_{n,1}$ comme vu dans le TD précédent.
- 3. Comme $\frac{1}{n^2} \left\lfloor \frac{n}{d} \right\rfloor^2 \sim \frac{1}{d^2}$, on s'intéresse à

$$\left| r_n - \sum_{d=1}^n \frac{\mu(d)}{d^2} \right| \le \sum_{d=1}^n \left| \frac{1}{d^2} - \frac{1}{n^2} \left\lfloor \frac{n}{d} \right\rfloor^2 \right| \le \sum_{d=1}^n \left(\frac{2}{dn} + \frac{1}{n^2} \right) = \mathcal{O}\left(\frac{\ln n}{n}\right) \longrightarrow 0$$

en utilisant $H_n \sim \ln n$.

Comme $\frac{6}{\pi^2}$ est l'inverse de $\zeta(2)$, on calcule $\sum_{n=1}^{+\infty}\frac{1}{n^2}\sum_{d=1}^{+\infty}\frac{\mu(d)}{d^2}=\sum_{p=1}^{+\infty}\sum_{d\mid p}\frac{\mu(d)}{p^2}=1$ par sommabilité (due deux fois à la convergence de la série de Riemann) et avec la question précédente, ce qui conclut.