Suites numériques (MP2I)

Soit $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

Une suite peut être vue comme une famille $(u_n)_{n\in\mathbb{N}}\in\mathbb{K}^{\mathbb{N}}$ ou comme une application $n \in \mathbb{N} \mapsto u_n \in \mathbb{K}$, c'est équivalent.

On peut alors noter $\begin{bmatrix} \mathbb{N} & \longrightarrow & \mathbb{K} \\ n & \longmapsto & u_n \end{bmatrix}$ ou $(u_n)_{n \in \mathbb{N}}$ ou $(u_n)_n$ ou (u_n) MAIS PAS $u_n!!!$.

CAS DES SUITES RÉELLES

Limites

Définition 1 : Limite

• Une suite $(u_n) \in \mathbb{R}^{\mathbb{N}}$ est dite **convergente** vers $\ell \in \mathbb{R}$ si et seulement si

 $\forall \epsilon 70, \exists N \in \mathbb{N}, \forall n \ni N, |u_n - \epsilon| \leq \epsilon$

• On dit que $(u_n)_n \in \mathbb{R}^{\mathbb{N}}$ diverge vers $+\infty$ lorsque

VAER, BNEW, FARN, MAZA ou de manière équivalente

 $\forall A \nearrow 0$, $\ni N \in \mathbb{N}$, $\forall \nearrow \nearrow N$, $M_n \nearrow A$ On note alors $u_n \to +\infty$.

■ On dit que $(u_n)_n \in \mathbb{R}^{\mathbb{N}}$ diverge vers $-\infty$ lorsque $-u_n \to +\infty$ soit

YBER, FNEW, YNZN, MISB ou de manière équivalente $\forall \beta \leq 0, \exists N \in \mathbb{N}, \forall N, N, M, \leq B$ On note alors $u_n \to -\infty$.

Limites et ordre

Propriété 1 : Passage des inégalités à la limite

Si $u, v \in \mathbb{R}^{\mathbb{N}}$ telles que $u \to \ell \in \mathbb{R}$ et $v \to \ell' \in \mathbb{R}$ et si à partir d'un certain rang $u_n \leqslant v_n$, alors $\ell \leqslant \ell'$.

Si on suppose à partir d'un certain rang $u_n < v_n$, **l'inégalité devient large** à la limite : $\ell \leq \ell'$.

Propriété 2

Si $u \in \mathbb{R}^{\mathbb{N}}$ tel que $u_n \to \ell \in \overline{\mathbb{R}}$ et $a \in \mathbb{R}$, glors

- Si $\ell > a$, à partir d'un certain rang $u_n > a$.
- Si $\ell < a$, à partir d'un certain rang $u_n < a$.

Théorème 1 : Limite par encadrement

(i) Si $u, v, w \in \mathbb{R}^{\mathbb{N}}$ et $\ell \in \mathbb{R}$ tels que

$$\nu \rightarrow \ell$$

$$w \rightarrow \ell$$

■ apcr
$$v_n \leqslant u_n \leqslant w_n$$

alors
$$u \rightarrow \ell$$
.

(ii) Si $u, v \in \mathbb{R}^{\mathbb{N}}$ telles que

$$v \to +\infty$$

$$\blacksquare$$
 aper $u_n \geqslant v_n$

alors
$$u \to +\infty$$
.

(iii) Si $u, w \in \mathbb{R}^{\mathbb{N}}$ telles que

$$w \to -\infty$$

$$\blacksquare$$
 aper $u_n \leqslant w_n$

alors
$$u \to -\infty$$
.

Opérations sur les limites

Propriété 3

Soient $u, v \in \mathbb{R}^{\mathbb{N}}$.

- (i) Si $\lambda \in \mathbb{R}$ et $u_n \to \ell \in \mathbb{R}$, alors $\lambda u_n \to \lambda \ell$.
- (ii) Si $u \rightarrow 0$ et v bornée, alors $uv \rightarrow 0$.

Propriété 4 : Limite de somme et produit

Si $u \to \ell_1 \in \overline{\mathbb{R}}$ et $v \to \ell_2 \in \overline{\mathbb{R}}$, $\lambda \in \mathbb{R}$, alors lorsque ces opérations sont bien définies.

$$u+v \rightarrow \ell_1 + \ell_2$$

$$uv \rightarrow \ell_1\ell_2$$

Remarque

R1 - Dans les cas douteux, il peut se passer tout et n'importe quoi. Par exemple, pour $0 \times (+\infty)$:

$$= \frac{-1}{n} \times n^2 \to -\infty$$

$$= \left(\frac{(-1)^n}{n} \times n\right) \text{ n'a pas de limite.}$$

Propriété 5 : Limite d'inverse

- lacksquare Si $u_n
 ightharpoonup \ell \in \overline{\mathbb{R}}^*$, alors à partir d'un certain rang, $u_n
 eq 0$ et
- Si $u_n \to 0$ et à partir d'un certain rang $u_n > 0$, alors $\frac{1}{u} \to +\infty$.

■ Si $u_n \to 0$ et à partir d'un certain rang $u_n < 0$, alors $\frac{1}{u_n} \to -\infty$.

Propriété 6 : Convergence des suites géométriques réelles

Soit $a \in \mathbb{R}$.

- \blacksquare Si a=1, $a^n \to 1$,
- $Si |q| < 1, q^n \to 0.$
- \blacksquare Si q > 1, $q^n \to +\infty$.
- Si $q \leq -1$, (q^n) n'a pas de limite. Si q < -1, la suite n'est ni majorée, ni minorée.

LES SUITES MONOTONES

Théorème de la limite monotone

Théorème 2: Théorème de la limite monotone

Soit $u \in \mathbb{R}^{\mathbb{N}}$ une suite croissante (respectivement décroissante).

- (i) Si u est majorée (respectivement minorée) alors u converge vers $\sup u_n$ (respectivement $\inf_{n\in\mathbb{N}}u_n$).
- (ii) Si u n'est pas majorée (resp. minorée), alors $u \to +\infty$ (respectivement $u \to -\infty$).

Corollaire 1

Si u est une suite croissante majorée (respectivement décroissante minorée), alors $\forall n \in \mathbb{N}$, $u_n \leq \lim u$ (respectivement $u_n \geq \lim u$).

De plus, les inégalités sont strictes en cas de stricte monotonie.

2 Suites adjacentes

Définition 2: Suites adjacentes

Soient $u, v \in \mathbb{R}^{\mathbb{N}}$. u et v sont adjacentes si

- I'une est croissante,
- l'autre est décroissante,
- $v-u\to 0$.

Exemple

E1-
$$S_n = \sum_{k=1}^n \frac{1}{k^2} = 1 + \frac{1}{4} + \dots + \frac{1}{n^2}$$
 et $S'_n = S_n + \frac{1}{n}$.

E2 – Si $x \in \mathbb{R}$, les suites d'approximation décimale par défaut et par excès $(d_n(x))$ et $(D_n(x))$ sont adjacentes.

Propriété 7

Si u,v sont adjacentes avec u croissante, alors u et v convergent vers une même limite $\ell \in \mathbb{R}$ et $\forall n \in \mathbb{N}, \ u_n \leqslant \ell \leqslant v_n$, les inégalités étant strictes si u et v ont strictement monotones.

Remarque

R2 – On a alors pour tout n, $|u_n - \ell| \le |v_n - u_n| = v_n - u_n$ ce qui donne des information intéressante sur la **vitesse de convergence**: plus v - u converge rapidement vers 0, plus u converge rapidement vers ℓ .

Cela permet aussi de connaître un rang à partir duquel u_n est une approximation de ℓ à une précision donnée.

Exemple

E3 – Approximations décimales : $|d_n(x) - x| \le D_n(x) - d_n(x) = 10^n$ Convergence très rapide (au moins exponentielle). Si on veut n décimales, on calcule $d_n(x)$ (évidemment!).

E4 – $S_n = \sum_{k=1}^n \frac{1}{k^2} \to \sum_{k=1}^{+\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$. Vulle calcul précédent, pour tout n, $\left| S_n - \frac{\pi^2}{6} \right| \leqslant \frac{1}{n}$. La converge est (au moins) en $\frac{1}{n}$ donc plutôt lente. Si on veut n décimales, on calcule... S_{10^n} !

E5 – Dichotomie: On construit des segments emboîtés en divisant leur taille par 2 à chaque étape: $I_0 = [a,b]$, pour tout n, $I_{n+1} \subset I_n$ avec $\ell(I_{n+1}) = \frac{\ell(I_n)}{2}$, avec $I_n = [a_n,b_n]$.

Alors $(a_n),(b_n)$ sont adjacentes, $\bigcap_{n \in \mathbb{N}} I_n = \{\ell\}$ et la convergence de (a_n) et (b_n) vers ℓ est au moins en $\frac{b-a}{2^n}$ donc très rapide.

Exercice 1: CCINP 43

CRITÈRES SÉQUENTIELS

Caractérisation séquentielle des bornes inférieure et supérieure

Propriété 8 : Caractérisation séquentielle de la borne supérieure

Soit A partie non vide \mathbb{R} , $\alpha, \beta \in \mathbb{R}$.

$$\alpha = \sup A \Longleftrightarrow \begin{cases} \forall x \in A, & x \leq \alpha \\ \exists (a_n)_n \in A^{\mathbb{N}}, & a_n \to \alpha \end{cases}$$

Sup = le seul majorant limite d'une suite Suites NUMÉRIQUES (MP21) - PAGE 3 SUR II d'éléments de la partie

Propriété 9 : Caractérisation séquentielle de la borne inférieure

Soit A partie non vide \mathbb{R} , $\alpha, \beta \in \mathbb{R}$.

$$\beta = \inf A \Longleftrightarrow \begin{cases} \forall x \in A, & x \geqslant \beta \\ \exists (a_n)_n \in A^{\mathbb{N}}, & a_n \to \beta \end{cases}$$

2 Caractérisation séquentielle de la densité

Définition 3 : Partie dense dans \mathbb{R}

Une partie A non vide de $\mathbb R$ est dite **dense** dans $\mathbb R$ lorsque pour tout $x,y\in\mathbb R$ tel que x< y, $A\cap]x,y[\neq\varnothing.$



Remarque

R3 – La définition sera étendue plus tard dans l'année.

Propriété 10 : Caractérisation séquentielle de la densité

Soit A une partie de \mathbb{R} . A est dense dans \mathbb{R} si et seulement si tout réel est limite d'une suite d'éléments de A.

Corollaire 2: Cas des réels et des décimaux

- (i) Tout réel est limite d'une suite de rationnels et d'une suite d'irrationnels.
- (ii) \mathbb{D} est dense dans \mathbb{R} .

IV

EXTENSION AUX SUITES COMPLEXES

Notation 1 : Parties réelle et imaginaire, conjugué, module d'une suite complexe

Soit $z=(z_n)\in\mathbb{C}^\mathbb{N}$. On note $\mathfrak{Re}(z)=(\mathfrak{Re}(z_n))\in\mathbb{R}^\mathbb{N}$, $\mathfrak{Im}(z)=(\mathfrak{Im}(z_n))\in\mathbb{R}^\mathbb{N}$, $\overline{z}=\left(\overline{z_n}\right)\in\mathbb{R}^\mathbb{N}$, $|z|=(|z_n|)\in\mathbb{R}^\mathbb{N}$.

Définition 4 : Convergence de suite complexe

Une suite $(z_n)\in\mathbb{C}$ est dite **convergente** vers $\ell\in\mathbb{C}$ si et seulement si $|z_n-\ell|\to 0$, c'est-à-dire

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \geqslant N, |z_n - \ell| \leqslant \varepsilon.$$

Remarque

R4 – Pas de limite infinie dans \mathbb{C} . On peut au mieux avoir $|z_n| \to +\infty$.

Propriété 11

Soit $(z_n) \in \mathbb{C}^n$ et $\ell \in \mathbb{C}$.

$$z_n \to \ell \iff \Re e \, z_n \to \Re e \, \ell \text{ et } \Im \mathfrak{m} \, z_n \to \Im \mathfrak{m} \, \ell$$

Définition 5

Une suite $(z_n) \in \mathbb{C}^{\mathbb{N}}$ est dite **bornée** si et seulement s'il existe $M \in \mathbb{R}^+$ tel que $\forall n \in \mathbb{N}, |z_n| \leq M$.

Propriété 12 : Suites géométriques complexes

Soit $a \in \mathbb{C}$.

- $Si \ q = 1, \ q^n \to 1.$
- $Si |q| < 1, q^n \to 0.$
- Si |q| > 1, (q^n) n'est pas bornée et donc diverge.
- Si |q| = 1 et $q \neq 1$, (q^n) diverge en étant bornée.

Remarque

R5 - En particulier, si $\theta \notin \pi \mathbb{Z}$, les suites $(\cos(n\theta))_n$ et $(\sin(n\theta))_n$ divergent. En effet, si l'une convergeait, à l'aide de $\cos((n+1)\theta)$ ou $\sin((n+1)\theta)$, on obtient que l'autre converge aussi et alors $\left(\mathrm{e}^{\mathrm{i}n\theta}\right)$ convergerait également.

V SUITES RÉCURRENTES

Le but est d'étudier les suites récurrentes réelles d'ordre 1 générales : $\forall n \in \mathbb{N}, u_{n+1} = f(u_n) \text{ avec } f: D \to \mathbb{R}.$

Propriété 13

Si $u_n \to \ell \in D$ et si f est continue en ℓ , alors $f(\ell) = \ell$ (ℓ est un point fixe de f).

Méthode 1 : Étude générique de suite récurrente

- On commence en général par faire un dessin, et par voir quelles propriétés vérifient directement la suite.
- Parfois, les choses se voient clairement sur la formule de récurrence : ne pas

se précipiter sur la méthode ci-dessous!

 \blacksquare Ensuite, les premières choses à cibler sont les **intervalles stables par** f:I tel que $f(I) \subset I$.

Alors, par récurrence, si à partir d'un certain rang $u_{n_0} \in I$, la suite est bien définie et $\forall n \ge n_0, u_n \in I$.

Vu la propriété précédente, bien souvent, l'une des bornes de l'intervalle sera un point fixe de f. (Il faut donc chercher les points fixes!)

On pose en général g(x) = f(x) - x: les points fixes de f sont les zéros de g. Il faut aussi s'assurer aue la suite est bien définie!

- \blacksquare Ensuite, on s'intéresse à la monotonie de f.
 - * La monotonie de la suite peut se trouver directement en remarquant que $u_{n+1} - u_n = f(u_n) - u_n = g(u_n)$: il est donc primordial de connaître le siane de g.
 - \star Si f est **croissante** sur I stable par f et $u_{n_0} \in I$, alors $(u_n)_{n \ge n_0}$ est **mono**-

(Si $u_{n_0} \leq u_{n_0+1}$, ie $g(u_{n_0}) \geq 0$, pour tout $n \in \mathbb{N}$,

$$u_n = f^{n-n_0}(u_{n_0}) \leqslant f^{n-n_0}(u_{n_0+1}) = u_{n+1}$$

et si $u_{n_0} \geqslant u_{n_0+1}$, ie $g(u_{n_0}) \leqslant 0$, pour tout $n \in \mathbb{N}$,

$$u_n = f^{n-n_0}(u_{n_0}) \geqslant f^{n-n_0}(u_{n_0+1}) = u_{n+1}.$$

 \star Si f est **décroissante** sur I stable par f et $u_{n_0} \in I$, alors $(u_{2n})_{n \geq \frac{n_0}{2}}$ et $(u_{2n+1})_{n>\frac{n_0-1}{2}}$ sont **monotones**, de monotonie contraire. Elles sont en fait solution de $v_{n+1} = f \circ f(v_n)$ avec $f \circ f$ croissante. Lorsau'elles convergent vers une même limite (c'est-à-dire au'elles sont

adjacentes), alors (u_n) converge vers cette limite. Notons que les points fixes de f sont des points fixes de $f \circ f$ (mais la réciproque est fausse en aénéral.)

Exercice 2: Étude de (u_n) telle que $u_0 \in \mathbb{R}$ et $\forall n \in \mathbb{N}, u_{n+1} = \frac{u_n^2 + 8}{6}$.

Définition 6: Fonction contractante

Une fonction f est dite **contractante** sur un intervalle I si et seulement si on a k < 1 tel que $\forall x, x' \in I$, $|f(x) - f(x')| \leq k|x - x'|$.

Cela se traduit graphiquement par le fait que les pentes des cordes ne sont « pas trop élevées ».

Méthode 2: Cas d'une fonction contractante

Cela est intéressant si I est stable par f. Si c'est le cas, si $\ell \in I$ point fixe de f (on peut montrer qu'il existe et est nécessairement unique), si $u_0 \in I$ stable par f, alors $\forall n \in \mathbb{N}, u_n \in I \text{ et } \forall n \in \mathbb{N},$

$$|u_n - \ell| = |f(u_{n-1}) - f(\ell)| \le k|u_{n-1} - \ell| \le \dots \le k^n |u_0 - \ell| \to 0$$

Donc directement $u_n \to \ell$, on a même une convergence exponentielle

On peut parfois conclure rapidement grâce à l'inégalité des accroissements finis:

Théorème 3: Inégalité des accroissements finis

Soit $f: I \to \mathbb{R}$. On suppose que

HI fort continue sur I H2 fort dérirable sur Î (intérieu de I: or onne la borre) H3 On a k & R tel que fac Í, | f'(n) | & k

Alors f est k-lipschitzienne:

$$\forall x, x' \in [a, b], |f(x) - f(x')| \le k |x - x'|.$$

Remaraue

- **R6** On peut démontrer que si ℓ est un point fixe de f de classe \mathscr{C}^1 , alors
 - si $|f'(\ell)| < 1$, le point fixe est **attractif**, en particulier si $f'(\ell) = 0$ (point **super**attractif), la convergence est quadratique, comme pour la méthode de Newton,
 - si $|f'(\ell)| > 1$, le point fixe est **répulsif**,
 - si $|f'(\ell)| = 1$, c'est le cas douteux. Tout peut arriver.

Exercice 3: $u_0 \in \mathbb{R}^*$ et $\forall n \in \mathbb{N}$, $u_{n+1} = 2 + \frac{1}{u^2}$.

RELATIONS DE COMPARAISON

Définition

Définition 7: Relations de comparaison

Si $u, v \in \mathbb{K}^{\mathbb{N}}$ et si v_n n'est jamais nul à partir d'un certain rang, on dit que

- u est **dominée** par v et on note u = O(v) lorsque $\left(\frac{u_n}{v_n}\right)_n$ est bornée.
- **u** est **négligeable** devant v et on note u = o(v) ou $u_n \ll v_n$ lorsque
- u est **équivalente** à v et on note $u \sim v$ lorsque $\frac{u_n}{v_n} \to 1$, soit encore u - v = o(v), c'est-à-dire u = v + o(v).

Remaraue

R7 – La définition se généralise au cas où $(v_n)_n$ est quelconque en écrivant $u_n = v_n \times w_n$ avec $(w_n)_n$ bornée (respectivement $\rightarrow 0, 1$).

R8 – \bigwedge u = o(v) et u = O(v) traduisent une **appartenance**.

Exemple

E6 - $n = o(n^3)$ et $n^2 = o(n^3)$ mais $n \ne n^2$!

- **R9** u = 0 (v) signifie qu'il existe $K \in \mathbb{R}$ et un rang à partir duquel $|u_n| \le K|v_n|$. u = o(v) signifie que pour tout $\varepsilon > 0$, il existe un rang à partir duquel $|u_n| \le \varepsilon |v_n|$.
- R 10 Il n'y a pas unicité de l'équivalent d'une suite. En général, on choisit le plus simple.
- R11 Cela ne donne que des informations asymptotiques sur les suites : au voisinage de $+\infty$, donc à partir d'un certain rang.

Propriété 14: Croissances comparées des suites usuelles

Si $\alpha > 0$, $\beta > 0$, q > 1,

$$\ln^{\beta} n \ll n^{\alpha} \ll q^n \ll n! \ll n^n$$

$$\frac{1}{n^n} \ll \frac{1}{n!} \ll \frac{1}{q^n} \ll \frac{1}{n^\alpha} \ll \frac{1}{\ln^\beta n}.$$

 $\frac{n \ln n}{n^2} = \frac{\ln n}{n} \longrightarrow 0$

Exemple

 $\ln n \ll n \ll n \ln n \ll n^2.$

$$\begin{pmatrix} \frac{n}{n} \ln n = \frac{1}{\ln n} \\ \frac{n}{n} \ln n = \frac{1}{\ln n} \end{pmatrix}$$

Propriété 15

$$u \sim v \Longleftrightarrow u = v + o(v)$$

2 Propriétés

Propriété 16: Propriétés de o et O

Soient $u, v, w, a, b \in \mathbb{K}^{\mathbb{N}}$, v, w, b ne s'annulant pas à partir d'un certain rang, et $\alpha, \beta \in \mathbb{K}$.

- (i) Si $\alpha \neq 0$, $u = o(\alpha v) \Longrightarrow u = o(v)$ et $u = O(\alpha v) \Longrightarrow u = O(v)$.
- (ii) $u = o(1) \iff u \to 0$ et $u = 0(1) \iff u$ bornée.
- (iii) Si u = o(v) ou $u \sim v$, alors u = O(v) et la réciproque est fausse.
- (iv) **Transitivité**

$$u = o(v)$$
 et $v = o(w) \Longrightarrow u = o(w)$

$$u = \mathcal{O}(v)$$
 et $v = \mathcal{O}(w) \Longrightarrow u = \mathcal{O}(w)$

(v) Combinaison linéaire

$$u = o(w)$$
 et $v = o(w) \Longrightarrow \alpha u + \beta v = o(w)$

$$u = \mathcal{O}(w)$$
 et $v = \mathcal{O}(w) \Longrightarrow \alpha u + \beta v = \mathcal{O}(w)$

(vi) **Produit**

$$u = o(v)$$
 et $a = o(b) \Longrightarrow ua = o(vb)$

$$u = \mathcal{O}(v)$$
 et $a = \mathcal{O}(b) \Longrightarrow ua = \mathcal{O}(vb)$

Propriété 17 : Propriétés de ~

Soient $u, v, w, a, b \in \mathbb{K}^{\mathbb{N}}$, v, w, b ne s'annulant pas à partir d'un certain rang.

(i) ~ est une relation d'équivalence.

(ii) Si $u \sim v$ et $v \to \ell \in \overline{\mathbb{R}}$ ou \mathbb{C} , alors $u \to \ell$.

- (iii) $u \to \ell \neq 0 \iff u \sim \ell$.
- (iv) Si $u \sim v$, alors à partir d'un certain rang, u_n et v_n sont de même signe.

- (v) Si $u \sim v$ et $a \sim b$, alors $ua \sim vb$ et $\frac{u}{a} \sim \frac{v}{b}$.
- (vi) Si $u \sim v$ et $\alpha \in \mathbb{R}$ fixé, $(u_n > 0$ et $v_n > 0$ si $\alpha \notin \mathbb{N}$, non nuls si $\alpha \in \mathbb{Z}^-$), $u^{\alpha} \sim v^{\alpha}$.
- (vii) Si $u_n \sim v_n$ et φ extractrice, $u_{\varphi(n)} \sim v_{\varphi(n)}$.

Remarque

$$R 12 - u_n \sim v_n \iff u_n - v_n \to 0$$

Remarque
$$N^{2} + 1 \sim n^{2} \text{ et } n^{2} + 1 - n^{2} \neq 0$$

$$1 \sim n^{2} + 1 \sim n^{2} + 1 - n^{2} \neq 0$$

$$1 \sim n^{2} + 1 \sim n^{2} + 1 - n^{2} \neq 0$$

$$1 \sim n^{2} + 1 \sim n^{2} + 1 - n^{2} \neq 0$$

$$1 \sim n^{2} + 1 \sim n^{2} + 1 - n^{2} \neq 0$$

$$1 \sim n^{2} + 1 \sim n^{2} + 1 - n^{2} \neq 0$$

$$1 \sim n^{2} + 1 \sim n^{2}$$

R13 -
$$\triangle$$
 Si α n'est pas fixe : $1 + \frac{1}{n} \sim 1$ mais $\left(1 + \frac{1}{n}\right)^n \sim e$ donc $\left(1 + \frac{1}{n}\right)^n \not\sim 1^n = 1$.

- R14 M On n'ajoute pas les équivalents.
- R 15 🛕 Si on trouve une suite équivalente à 0, on s'est trompé! (En général, on a ajouté/soustrait des équivalents...)

Cela n'a pas de sens avec la définition du programme, et même avec la généralisation, cela voudrait dire qu'on peut écrire à partir d'un certain rang $u_n = 0 \times w_n = 0$ donc que la suite est nulle à partir d'un certain rang

En particulier, si $u_n \to 0$, on ne peut pas donner facilement un équivalent en général.

R 16 - / ↑ On ne compose pas des équivalents par la gauche avec des fonctions, même continues.

La propriété suivante n'est pas officiellement au programme mais à savoir retrouver: $e^{\lim \overline{v_n}}$

- Si $u_n \sim v_n$ avec pour tout n, $u_n > 0$ et $v_n > 0$, à partir d'un certain rang $v_n \neq 1$ et si $v_n \to \ell \in \mathbb{R}^+ \cup \{+\infty\}$ avec $\ell \neq 1$, alors $\ln u_n \sim \ln v_n$.

Exercice 4 : Intégrales de Wallis : Très classique!

Détermination d'un équivalent de l'intégrale de Wallis

$$I_n = \int_0^{\pi/2} \sin^n t \, \mathrm{d}t$$

- Relation de récurrence.
- **Expression de** *I*_n
- Décroissance.
- \blacksquare $I_n \sim I_{n-1}$
- \blacksquare nI_nI_{n-1} constant,
- \blacksquare Équivalent de I_n .

Equivalents usuels

Propriété 18 : Formule de Stirling

Exercice 5: Équivalent de $u_n = \binom{2n}{n}$

Propriété 19 : Équivalents usuels

Soit $\alpha \in \mathbb{R}^*$ fixé et $h_n \to 0$.

 \blacksquare $\sin h_n \sim h_n$

 $(1+h_n)^{\alpha}-1\sim \alpha h_n$

■ $tan h_n \sim h_n$

Arctan $h_n \sim h_n$

 $\cos h_n - 1 \sim -\frac{h_n^2}{2}$

Arcsin $h_n \sim h_n$

 \blacksquare $\ln(1+h_n) \sim h_n$

 \blacksquare sh $h_n \sim h_n$

 \bullet $e^{h_n} - 1 \sim h_n$

 \blacksquare th $h_n \sim h_n$

Remarque

R17 – Lorsque l'on est au voisinage de a, on se ramène en général au voisinage de a en posant a = a + a si a est fini et a = a = a si a est infini.

Exercice 6: Limite de $u_n = n \left(\left(1 - \sin \frac{1}{n^2} \right)^n - 1 \right)$.

Exemples de développements asymptotiques

Définition 8 : Développement asymptotique

On appelle **développement asymptotique** de $(u_n)_n$ toute expression de la forme

$$u_n = v_n^{(1)} + v_n^{(2)} + \dots + v_n^{(r)} + o(v_n^{(r)})$$

où $v^{(1)},\ldots,v^{(r)}$ sont des suites telles que $v_n^{(1)}\gg v_n^{(2)}\gg\cdots\gg v_n^{(r)}$, c'est-à-dire telles que $\forall\,k\in[\![1,r-1]\!],\ v_n^{(k+1)}=\mathrm{o}\!\left(v_n^{(k)}\right)$.

On dit que le développement asymptotique est à la précision $v_n^{(r)}$.

Remarque

- **R18** On a toujours que $u_n v_n^{(1)} \dots v_n^{(r)} \sim v_n^{(k+1)}$. C'est un des moyen de former un développement asymptotique : par la recherche d'équivalents successifs.
- R 19 On peut adapter la définition précédente pour des fonctions au voisinage d'un point : c'est une généralisation du développement limité.

Méthode 3 : Calcul de développement asymptotique

Chercher un développement asymptotique d'une suite est souvent délicat. On peut par exemple essayer de :

- 1. reconnaître un développement limité « déguisé »;
- 2. chercher un équivalent $u_n \sim v_n$ qui donne $u_n = v_n + o(v_n)$, puis un équivalent de la différence $u_n v_n \sim w_n$ qui donne $u_n = v_n + w_n + o(w_n)$ et ainsi de suite;
- 3. réinjecter le développement partiel dans une expression du terme général de la suite pour obtenir le terme suivant.

Exercice 7 : Développement asymptotique en $+\infty$ de $f: n \mapsto e^{\sqrt{n^2+2n+4}}$ à la précision $\frac{e^n}{n}$.

Exercice 8 : Développement asymptotique en $+\infty$ de $f: x \mapsto \ln(\operatorname{ch} x)$ à la précision e^{-4x} . Asymptote?

Exercice 9 : Développement asymptotique à trois termes de $x^{1+\frac{1}{x}}$ en $+\infty$. Asymptote?

Exercice 10

On s'intéresse à u_n unique zéro de $f_n(x) = 1 + x + \frac{e^x}{n}$.

- 1. Vérifier que la suite (u_n) est bien définie, majorée par -1 et croissante.
- 2. Déterminer la limite de (u_n) .
- 3. Déterminer un développement asymptotique à 3 termes de (u_n) .

SUITES EXTRAITES, VALEURS D'ADHÉRENCE

Définition 9 : Suite extraite

Soit $u \in \mathbb{K}^{\mathbb{N}}$. On appelle suite extraite ou sous-suite de u toute suite $v \in \mathbb{K}^{\mathbb{N}}$ telle qu'il existe $\varphi : \mathbb{N} \to \mathbb{N}$ strictement croissante telle que $\forall n \in \mathbb{N}, \quad v_n = u_{\omega(n)}.$

 φ est appelée extractrice.

Lemme 1

Si φ est une extractrice, alors $\forall n \in \mathbb{N}, \ \varphi(n) \geqslant n$.

Par récurrence (exo)

Propriété 20

Si $u \rightarrow \ell$, toute suite extraite de u converge vers ℓ .

Définition 10 : Valeur d'adhérence

On appelle **valeur d'adhérence** de $u \in \mathbb{K}^{\mathbb{N}}$ toute limite (dans \mathbb{K}) de suite extraite de u.

E7 – Valeurs d'adhérence de $(-1)^n = \begin{cases} 1 & \text{sin pan} \\ -1 & \text{sin pan} \end{cases}$

-1 et 1 (-1)2m 1 on nex rapporte d'amoun

Propriété 21

Une suite convergente a une unique valeur d'adhérence.

Remaraue

R20 - Réciproque fausse

Exemple

E8 – $u_n = n$ si n est pair et 0 sinon.

Corollaire 3

Si une suite a plusieurs valeurs d'adhérence, elle diverge.

(contraposée

Propriété 22

Si (u_{2n}) et (u_{2n+1}) convergent vers une même limite, alors u converge Extension: il suffit de menore de sairte extraite jui

Théorème 4 : de Bolzano-Weierstraß dans $\mathbb R$ ou $\mathbb C$

Toute suite réelle ou complexe bornée a au moins une valeur d'adhérence.

THÉORÈME DE CESÀRO (MPI)

Théorème 5 : de Cesàro

Soit $v \in \mathbb{R}^N$ tille que $v_n \longrightarrow l$ finie ou Soit $v \in \mathbb{R}^N$ tille que $\forall n \in \mathbb{N}^*$ $v_n = \frac{1}{n} \sum_{k=1}^{n-1} u_k$ Alors Vn -> l

Une application classique est la recherche d'équivalent d'une suite récurrente.

renne of chapitre series.

Exercice 11: Oral CCINP

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=1$ et, pour tout $n\in\mathbb{N}$, $u_{n+1}=u_n\mathrm{e}^{-u_n}$.

1. Soit $(x_n)_{n\in\mathbb{N}}$ une suite réelle convergente. On pose ℓ sa limite et, pour tout $n \in \mathbb{N}^*, \ y_n = \frac{1}{n} \sum_{k=0}^{n-1} x_k.$

Démontrer que la suite $(y_n)_{n \ge 1}$ converge vers ℓ .

- 2. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ converge et calculer sa limite.
- 3. Soit, pour tout $n \in \mathbb{N}$, $v_n = \frac{1}{u_{n+1}} \frac{1}{u_n}$. Montrer que la suite $(v_n)_{n \in \mathbb{N}}$ converge vers 1
- 4. En déduire un équivalent de u_n . La série $\sum\limits_{n \geq 0} u_n$ converge-t-elle?

RÉCURRENCES LINÉAIRES D'ORDRE 1 ET 2

Propriété 22 : Suites arithmético-géométrique

Soit une suite $u \in \mathbb{K}^{\mathbb{N}}$ telle qu'on ait $a, b \in \mathbb{K}$ tels que

$$\forall n \in \mathbb{N}, \quad u_{n+1} = au_n + b$$

Alors, si \tilde{u} est solution particulière, on a $u = v + \tilde{u}$ où v est solution de (H) $\forall n \in \mathbb{N}$, $v_{n+1} = av_n$, équation homogène associée. On cherche \tilde{u} constante en général.

Propriété 23 : récurrence linéaire d'ordre 2 homogène à cæfficients constants

On considère une suite $u \in \mathbb{K}^{\mathbb{N}}$ récurrente linéaire d'ordre 2 homogène à cœfficients constants, c'est-à-dire telle qu'il existe $(a,b) \in \mathbb{K}^2$ tels aue

$$\forall n \in \mathbb{N}, \quad u_{n+2} = au_{n+1} + bu_n.$$

On appelle **équation caractéristique** associée (E) $r^2 = ar + b$. On suppose $(a,b) \neq (0,0)$, Alors

■ Soit (E) admet deux solutions distinctes r_1 et r_2 dans \mathbb{K} , alors on a $A, B \in \mathbb{K}$ tels que

$$\forall n \in \mathbb{N}, \quad u_n = Ar_1^n + Br_2^n.$$

 \blacksquare Soit (E) admet une unique solution (double) r dans \mathbb{K} , alors on a $A, B \in \mathbb{K}$ tels que

$$\forall n \in \mathbb{N}, u_n = (A + nB)r^n.$$

■ Soit (E) n'admet pas de solution dans \mathbb{K} , c'est-à-dire $\mathbb{K} = \mathbb{R}$ et (E) admet deux solutions complexes conjuguées $\rho e^{\pm i\theta}$ avec $\rho > 0$ et $\theta \in \mathbb{R} \setminus \pi\mathbb{Z}$. Alors on a $A, B \in \mathbb{R}$ tels aue

$$\forall n \in \mathbb{N}, u_n = (A\cos(n\theta) + B\sin(n\theta))\rho^n$$

c'est-à-dire qu'on a $K, \varphi \in \mathbb{R}$ tels que

$$\forall n \in \mathbb{N}, u_n = K \cos(n\theta + \varphi)\rho^n.$$