X-ENS Mathématiques A MP 2021 : un corrigé Sous-groupes finis de $\mathbf{GL}_n(\mathbb{C})$

Jérémy Larochette – Lycée Carnot – Dijon

12 avril 2021

Préliminaires

- 1. On a $z \in \mathbb{C}$ et $d \in \mathbb{N}$ tel que $z^d = 1$, alors $|z|^d = 1$ et $|z| \in \mathbb{R}^+$ donc |z| = 1.
- 2. On a $g \in \mathbf{GL}_n(\mathbb{C})$ d'ordre $d \in \mathbb{N}^*$, donc $g^d = I_n$ et $X^d 1$ est un polynôme annulateur, scindé à racines toutes simples (les d racines d^e de l'unité) donc g est diagonalisable et ses valeurs propres sont parmi les racines du polynôme annulateur, donc sont des racines d^e de l'unité.
- 3. (a) Les multiples de q s'écrivent $k=q\ell$ avec $\ell\in\mathbb{Z}$ uniquement déterminé par k et q, et alors $1\leqslant k=q\ell\leqslant m$ si et seulement si $\frac{1}{q}\leqslant\ell\leqslant\frac{m}{q}$ si et seulement si $1\leqslant\ell\leqslant\left\lfloor\frac{m}{q}\right\rfloor$ avec $\ell\in\mathbb{Z}$.

Le nombre de multiples de q entre 1 et m est donc $\left\lfloor \frac{m}{q} \right\rfloor$.

- (b) Ainsi, la valuation q-adique de m! avec q premier s'obtient en ajoutant les valuations q-adiques des entiers entre 1 et m, d'après la question précédente :
 - \bullet les $\left\lfloor \frac{m}{q} \right\rfloor$ multiples de q fournissent chacun (au moins) un facteur q,
 - les $\left\lceil \frac{m}{q^2} \right\rceil$ multiples de q^2 fournissent chacun (au moins) un facteur q supplémentaire,
 - les $\left\lceil \frac{m}{q^3} \right\rceil$ multiples de q^3 fournissent chacun (au moins) un facteur q supplémentaire,
 - et ainsi de suite.

Le décompte s'arrête car la suite entière $\left(\left\lfloor \frac{m}{q^i}\right\rfloor\right)_{i\in\mathbb{N}^*}$ finit par s'annuler et on obtient la formule de Legendre (avec un nombre fini de termes non nuls) :

$$v_q(m!) = \sum_{i=1}^{+\infty} \left\lfloor \frac{m}{q^i} \right\rfloor.$$

Autre rédaction possible : on peut dénombrer les entiers entre 1 et m ayant une valuation q-adique exactement égale à $i \in \mathbb{N}$: il s'agit des multiples de q^i qui ne sont pas multiples de q^{i+1} et qui sont au nombre de $\left|\frac{m}{q^i}\right| - \left|\frac{m}{q^{i+1}}\right|$, d'où la formule (les sommes étant toujours faussement infinies)

$$v_q(m!) = \sum_{i=0}^{+\infty} i \cdot \left(\left\lfloor \frac{m}{q^i} \right\rfloor - \left\lfloor \frac{m}{q^{i+1}} \right\rfloor \right) = \sum_{i=1}^{+\infty} i \cdot \left\lfloor \frac{m}{q^i} \right\rfloor - \sum_{i=1}^{+\infty} \left(i-1\right) \cdot \left\lfloor \frac{m}{q^i} \right\rfloor = \sum_{i=1}^{+\infty} \left\lfloor \frac{m}{q^i} \right\rfloor.$$

1 Éléments d'ordre fini de $\operatorname{GL}_n(\mathbb{Z})$

- 1. Soit $g \in \mathbf{GL}_2(\mathbb{Z})$ d'ordre fini d. Alors g est d'ordre d dans $\mathbf{GL}_n(\mathbb{C})$ et d'après les préliminaires, g est \mathbb{C} diagonalisable et ses valeurs propres sont de module 1. Appelons-les λ et μ (comptées avec multiplicité) et on
 obtient alors $|\mathrm{Tr}(g)| = |\lambda + \mu| \leq |\lambda| + |\mu|$ donc $|\mathrm{Tr}(g)| \leq 2$.
- 2. Si les valeurs propres de g sont réelles, comme elles sont de module 1, elles valent 1 ou -1. L'ordre de g étant celui d'une matrice diagonale à laquelle il est semblable, il suffit de traiter les quatre cas $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ d'ordre 1 et $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ d'ordre 2.

Finalement, si les valeurs propres de g sont réelles, g est d'ordre 1 ou 2.

3. On a $\chi_g = X^2 - \text{Tr}(g)X + \det g$ et toujours g C-diagonalisable. Les racines sont les valeurs propres, nécessairement complexes conjuguées (car g à cœfficients réels) $\lambda, \overline{\lambda}$ de module 1, donc det $g = |\lambda|^2 = 1$.

De plus, vu la question 1, $\operatorname{Tr} g \in \{0, \pm 1, \pm 2\}$.

Reste à ne garder que les cas où le polynôme caractéristique n'a pas de racine réelle, ce qui élimine $X^2 \pm 2X + 1$, $X^2 \pm X - 1$.

Finalement, $\chi_g \in \{X^2 + 1, X^2 + X + 1, X^2 - X + 1\}.$

- 4. On reste dans le cas de la question précédente.
 - Soit $\chi_g = X^2 + 1$, alors g est semblable à $\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$ et est d'ordre 4 car $g^4 = I_2$ et $g^2 \neq I_2$.
 - Soit $\chi_g = X^2 + X + 1$, alors g est semblable à $\begin{pmatrix} j & 0 \\ 0 & \bar{j} \end{pmatrix}$ et est d'ordre 3 car $g^3 = I_2$ et $g \neq I_2$.
 - Soit $\chi_g = X^2 X + 1$, alors g est semblable à $\begin{pmatrix} \omega & 0 \\ 0 & \overline{\omega} \end{pmatrix}$ avec $\omega = \frac{1 + i\sqrt{3}}{2} = e^{i\frac{\pi}{3}} \in \mathbb{U}_6$ et est d'ordre 6 car $g^6 = I_2$ et $g^3 \neq I_2$.

Remarque : L'ordre de g diagonalisable est le ppcm des ordres de ses valeurs propres.

Finalement, avec le résultat de la question 2, $d \in \{1, 2, 3, 4, 6\}$.

5. Soit $i \in [0, n-1]$ et σ_{n-i} la $(n-i)^e$ fonction symétrique élémentaire en les z_k . Alors

$$|\sigma_{n-i}| = \left| \sum_{\substack{I \subset [\![1,n]\!] \\ \operatorname{card}(I) = n-i}} \left(\prod_{i \in I} z_i \right) \right| \leqslant \sum_{\substack{I \subset [\![1,n]\!] \\ \operatorname{card}(I) = n-i}} \left(\prod_{i \in I} |z_i| \right) \leqslant \sum_{\substack{I \subset [\![1,n]\!] \\ \operatorname{card}(I) = n-i}} \alpha^{n-i} = \binom{n}{n-i} \alpha^{n-i} = \binom{n}{i} \alpha^{n-i}$$

Le polynôme P étant à cœfficients complexes non constant, il est scindé donc les relations cœfficients-racines s'appliquent et on a $|a_i| = 1 \times |\sigma_{n-i}|$ (P est unitaire) d'où $a_i = 1$

6. Si $g \in \mathbf{GL}_n(\mathbb{Z})$ est d'ordre fini, alors ses valeurs propres sont de module 1 d'après les préliminaires, donc, en appliquant la question précédente à χ_g , polynôme unitaire de degré n, $\alpha = 1$ et pour tout $i \in [0, n-1]$, $|a_i| \leq \binom{n}{i}$.

Ainsi, $\{\chi_g \text{ tels que } g \in \mathbf{GL}_n(\mathbb{Z}) \text{ est d'ordre fini} \}$ est fini.

7. Comme dans les exemples précédent, l'ordre de $g \in \mathbf{GL}_n(\mathbb{Z})$ est déterminé par l'ordre de ses valeurs propres (c'est leur ppcm) car g est diagonalisable. Comme il y a un nombre fini de polynômes caractéristiques possibles pour $g \in \mathbf{GL}_n(\mathbb{Z})$, on en déduit qu' il y a un nombre fini d'ordres possibles pour $g \in \mathbf{GL}_n(\mathbb{Z})$, à n fixé.

2 Sous-groupes finis de $GL_n(\mathbb{Z})$

- 1. (a) g étant diagonalisable dans $\mathbb C$ d'après les préliminaires, on obtient directement que $A = \frac{1}{m}(g I_n) \in \mathcal M_n(\mathbb Z)$ l'est (avec les mêmes matrices de passages) et si λ valeur propre de A, alors $\lambda = \frac{\mu 1}{m}$ où μ valeur propre de g, donc nombre complexe de module 1 d'après les préliminaires, donc $|\lambda| \leq \frac{2}{m} < 1$ car m > 2.
 - (b) En écrivant $A = PDP^{-1}$ où $P \in \mathbf{GL}_n(\mathbb{C})$ et $D = \begin{pmatrix} \lambda_1 & & & & \\ & \ddots & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix}$, on a pour tout $k \in \mathbb{N}$,

$$A^k = P\begin{pmatrix} \lambda_1^k & & (0) \\ & \ddots & \\ & (0) & & \lambda_n^k \end{pmatrix} P^{-1} \text{ avec pour tout } i, \ \lambda_i^k \xrightarrow[k \to +\infty]{} 0 \text{ vu la question précédente. Donc } A^k \to 0.$$

Or, pour tout $k \in \mathbb{N}$, $A^k \in \mathcal{M}_n(\mathbb{Z})$, donc les suites de cœfficients de A^k sont des suites entières convergentes, donc stationnaires et comme il y en a un nombre fini, on a un rang à partir duquel $A^k = 0$.

(c) Mais alors les valeurs propres de A^k , les λ_i^k , sont nulles, on en déduit donc que les valeurs propres de A sont nulles puis que A est nulle et enfin que $g = I_n$.

2. Notons $\overline{M} \in \mathcal{M}_n(\mathbb{Z}/m\mathbb{Z})$ la réduite modulo m de $M \in \mathcal{M}_n(\mathbb{Z})$, et $\phi : M \mapsto \overline{M}$, morphisme d'anneau.

Si $g, h \in G$ tel que $\phi(g) = \phi(h)$, ϕ étant un morphisme d'anneau, $\phi\left(gh^{-1}\right) = \phi(g)\phi(h)^{-1} = \overline{I_n} = \phi(I_n)$ d'où $\overline{gh^{-1} - I_n} = \phi\left(gh^{-1} - I_n\right) = \overline{0}$ donc m divise tous les coefficients de $gh^{-1} - I_n$.

Comme, de plus, $gh^{-1} \in G$ sous-groupe fini de $\mathbf{GL}_n(\mathbb{Z})$, gh^{-1} est d'ordre fini et la question précédente s'applique : $gh^{-1} = I_n$ donc g = h.

Ainsi ϕ induit une application injective de G sur $\mathcal{M}_n(\mathbb{Z}/m\mathbb{Z})$.

3. On en déduit que pour tout $m \ge 3$, $\operatorname{card}(G) \le \operatorname{card}(\mathcal{M}_n(\mathbb{Z}/m\mathbb{Z})) = m^{n^2}$.

En particulier, pour m = 3, $\operatorname{card}(G) \leqslant 3^{n^2}$.

3 Trace des éléments d'un p-sous-groupe de $\mathrm{GL}_n(\mathbb{Z})$

1. (a) On remarque que $k \binom{\ell}{k} = \ell \binom{\ell-1}{k-1}$ donc ℓ divise $k \binom{\ell}{k}$ et comme ℓ est premier et ne divise pas k,

(Cette formule est hors-programme. On la retrouve soit en repassant par des factorielles, soit en dénombrant les couples (x,A) où $x \in A$ et A partie à k éléments de E de cardinal ℓ de deux manières différentes : en choisissant d'abord x puis $A \setminus \{x\}$ on obtient l'expression de droite, et en choisissant d'abord a puis $x \in A$ on obtient celle de gauche.

On peut aussi s'en passer en remarquant que ℓ divise $k! \binom{\ell}{k}$ et ℓ est premier avec k!, en utilisant le lemme de Gauß.)

(b) Soient $xy \in R$ tels que xy = yx. Alors la formule du binôme de Newton s'applique : $(x+y)^{\ell} = \sum_{k=0}^{\ell} \binom{\ell}{k} x^k y^{\ell-k}$.

Alors vu la question précédente et la structure d'anneau de R, pour tout $k \in [1, \ell-1], \binom{\ell}{k} x^k y^{\ell-k} \in \ell R$

et donc
$$(x+y)^{\ell} - (x^{\ell} + y^{\ell}) = \sum_{k=1}^{\ell-1} {\ell \choose k} x^k y^{\ell-k} \in \ell R.$$

2. A est à coefficients dans R et B est à coefficients dans I. $\det(A+B) = \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) \prod_{i=1}^n \left(a_{i,\sigma(i)} + b_{i,\sigma(i)}\right)$. En

développant les produits, on obtient une somme dont un terme est $\det A = \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) \prod_{i=1}^n a_{i,\sigma(i)}$ et dont les

autres termes sont des produits de ± 1 , d'au moins un cœfficient de B (appartenant à l'idéal I) et d'autres cœfficients de A ou B appartenant à R. Ainsi, tous ces autres termes sont dans l'idéal I et donc, comme I est un sous-groupe additif de R, $\det(A+B) - \det A \in I$.

- 3. ℓ est un nombre premier et $P \in \mathbb{Z}[X]$. On montrer par récurrence forte sur le degré de P que $P(X^{\ell}) P(X)^{\ell} \in \ell \mathbb{Z}[X]$.
 - $\bullet\,$ Le résultat est vrai pour des polynômes constants (éventuellement nul).
 - Soit $n \in \mathbb{N}^*$ tel que le résultat soit vrai pour des polynômes de degré au plus n-1, et $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{Z}[X]$ un polynôme de degré n.

Le polynôme $Q = \sum_{k=0}^{n-1} a_k X^k$ est de degré au plus n-1.

Alors $P(X^{\ell}) - P(X)^{\ell} = a_n X^{\ell n} + Q(X^{\ell}) - (a_n X^n + Q(X))^{\ell}$.

Or, d'après la question 1 (l'anneau $\mathbb{Z}[X]$ étant commutatif), on a $T \in \ell \mathbb{Z}[X]$ tel que

$$(a_n X^n + Q(X))^{\ell} - a_n^{\ell} X^{\ell n} - Q(X)^{\ell} = T.$$

Mais alors on a que

$$P(X^{\ell}) - P(X)^{\ell} = Q(X^{\ell}) - Q(X)^{\ell} + (a_n - a_n^{\ell}) X^{n\ell} - T$$

avec $Q(X^{\ell}) - Q(X)^{\ell} \in \ell \mathbb{Z}[X]$ par hypothèse de récurrence, $T \in \ell \mathbb{Z}[X]$ et $a_n^{\ell} \equiv a_n \pmod{\ell}$ d'après le petit théorème de Fermat donc $(a_n - a_n^{\ell}) X^{n\ell} \in \ell \mathbb{Z}[X]$.

Finalement, $P(X^{\ell}) - P(X)^{\ell} \in \ell \mathbb{Z}[X]$, ce qui établit la récurrence.

4. (a) On remarque que XI_n et -M sont des éléments commutant de l'anneau $R = \mathcal{M}_n(\mathbb{Z}[X])$, on peut donc appliquer la question 1.(b) qui donne $(XI_n - M)^{\ell} - (X^{\ell}I_n + (-1)^{\ell}M^{\ell}) \in \ell R$.

Si
$$\ell$$
 est impair, on a bien $A \in \mathcal{M}_n(\mathbb{Z}[X])$ tel que $\underbrace{(XI_n - M)^\ell - (X^\ell I_n - M^\ell) = \ell A}$.
Sinon, $\ell = 2$ et $(XI_n - M)^2 - (X^2I_n - M^2) = \underbrace{(XI_n - M)^2 - (X^2I_n + M^2)}_{\in 2\mathcal{M}_n(\mathbb{Z}[X])} + \underbrace{2M^2}_{\in 2\mathcal{M}_n(\mathbb{Z}[X])} \in 2\mathcal{M}_n(\mathbb{Z}[X])$

ce qui permet de conclure également.

(b) $\ell \mathbb{Z}[X]$ étant un idéal de l'anneau commutatif $\mathbb{Z}[X]$, la question 2 nous donne, tous les cœfficients de ℓA étant dans cet idéal,

$$\det\left(\left(X^{\ell}I_{n}-M^{\ell}\right)+\ell A\right)-\det\left(X^{\ell}I_{n}-M^{\ell}\right)\in\ell\mathbb{Z}[X]$$

c'est-à-dire

$$\det\left(\left(XI_n-M\right)^{\ell}\right) - \det\left(X^{\ell}I_n - M^{\ell}\right) \in \ell \mathbb{Z}[X]$$

soit encore

$$\det\left((XI_n-M)\right)^{\ell}-\det\left(X^{\ell}I_n-M^{\ell}\right)=\chi_M(X)^{\ell}-\chi_{M^{\ell}}\left(X^{\ell}\right)\in\ell\mathbb{Z}[X]$$

Et, finalement, $\chi_{M^{\ell}}(X^{\ell}) - \chi_{M}(X)^{\ell} \in \ell \mathbb{Z}[X].$

(c) On a donc $\chi_{M^{\ell}}(X^{\ell}) - \chi_M(X)^{\ell} \in \ell \mathbb{Z}[X]$ et avec la question $3, \chi_M(X)^{\ell} - \chi_M(X^{\ell}) \in \ell \mathbb{Z}[X]$.

On a donc $P \in \mathbb{Z}[X]$ tel que $\chi_{M^{\ell}}(X^{\ell}) = \chi_{M}(X^{\ell}) + \ell P$.

Alors, en égalant les cœfficients de degré $(n-1)\cdot \ell$ et en réduisant modulo ℓ , on tire $\operatorname{Tr}\left(M^{\ell}\right) \equiv \operatorname{Tr}(M) \pmod{\ell}$.

5. Soit $g \in G$. En appliquant la question précédente à $M = g^{p^k} \in \mathcal{M}_n(\mathbb{Z})$ avec $k \in \mathbb{N}$ et au nombre premier $\ell = p$, on tire $\operatorname{Tr}\left(g^{p^k}\right) \equiv \operatorname{Tr}\left(g^{p^{k+1}}\right) \pmod{p}$. Ainsi, par transitivité, $\operatorname{Tr}(g) \equiv \operatorname{Tr}\left(g^{p^r}\right) \pmod{p}$.

Or G est d'ordre p^r donc $g^{p^r} = I_n$. Ainsi, $Tr(g) \equiv n \pmod{p}$.

6. g et g^{ℓ} appartenant au groupe fini G, ils sont d'ordre fini. Donc d'après les préliminaires, ils sont diagonalisables dans $\mathbb C$ de valeurs propres toutes de module 1. Alors $|\operatorname{Tr}(g)| \leqslant n$ et $\left|\operatorname{Tr}\left(g^{\ell}\right)\right| \leqslant n$ sur le même principe que 1.1.

Ainsi,
$$\operatorname{Tr}\left(g^{\ell}\right) - \operatorname{Tr}(g) \in \llbracket -n, n \rrbracket \subset \left] - \frac{\ell}{2}, \frac{\ell}{2} \right[\text{ et } \operatorname{Tr}\left(g^{\ell}\right) \equiv \operatorname{Tr}(g) \pmod{\ell} \text{ par } 4.$$

Donc
$$\operatorname{Tr}(g^{\ell}) = \operatorname{Tr}(g)$$
.

- 7. (a) Soit $q \leq 2n$ est un diviseur premier de m. Alors
 - soit q divise k, est donc différent de p, et va diviser m-k donc sera l'un des $\ell \leq 2n$ premiers ne divisant pas k, ce qui est contradictoire,
 - soit q ne divise pas k, et, étant l'un des ℓ , divise m-k puis divise k=m-(m-k) ce qui est aussi contradictoire.

C'est donc que $\boxed{\text{tous les facteurs premiers de } m \text{ sont } > 2n.}$

(b) En itérant la question 6 à tous les diviseurs premier de m (toutes les puissance de g étant encore dans G), on tire alors $\text{Tr}(g^m) = \text{Tr}(g)$.

Mais comme $m \equiv k \pmod{p^r}$ et $g^{p^r} = I_n$, $g^m = g^k$.

Ainsi,
$$\operatorname{Tr}\left(g^{k}\right) = \operatorname{Tr}(g)$$
.

8. (a) Soit $k \in [1, p^r - 1]$ tel que p ne divise pas k.

Par division euclidienne par p, on a $s, t \in \mathbb{Z}$ tels que k = ps + t et $0 \le t \le p - 1$.

Mais comme $p \not| k, t \neq 0$ et comme $0 < k < p^r, -p < -t < ps < p^r - t < p^r \text{ donc } -1 < s < p^{r-1}$ et $s \in \mathbb{Z}$ donc $s \in [0, p^{r-1} - 1]$. Ainsi,

$$J_r \subset \bigcup_{s=0}^{p^{r-1}-1} \{ps+t \text{ tels que } 1 \leqslant t \leqslant p-1\}.$$

Réciproquement, si $k \in \bigcup_{s=0}^{p^{r-1}-1} \{ps+t \text{ tels que}1 \leqslant t \leqslant p-1\}$, alors $k=ps+t \text{ avec } s \in \llbracket 0, p^{r-1}-1 \rrbracket$ et $t \in \llbracket 1, p-1 \rrbracket$ donc p ne divise pas k et $1=p\cdot 0+1 \leqslant k \leqslant p\left(p^{r-1}-1\right)+p-1=p^r-1$ donc $k \in J_r$.

Finalement,
$$J_r = \bigcup_{s=0}^{p^{r-1}-1} \{ps+t \ \text{tels que } 1 \leqslant t \leqslant p-1\}.$$

(b) On prend
$$\zeta \in \mathbb{C}$$
 tel que $\zeta^{p^r} = 1$. D'après la question précédente, $\sum_{j \in J_r} \zeta^j = \sum_{s=0}^{p^{r-1}-1} \sum_{t=1}^{p-1} \zeta^{ps+t}$.

• Si
$$\zeta = 1$$
, on obtient
$$\sum_{j \in J_r} 1^j = \sum_{s=0}^{p^{r-1}-1} \sum_{t=1}^{p-1} 1 = p^{r-1}(p-1).$$

• Si
$$\zeta$$
 est d'ordre p , on obtient $\sum_{j \in J_r} \zeta^j = \sum_{s=0}^{p^{r-1}-1} \sum_{t=1}^{p-1} \zeta^t = \sum_{s=0}^{p^{r-1}-1} \left(\frac{1-1}{1-\zeta} - 1\right) \operatorname{donc} \left[\sum_{j \in J_r} \zeta^j = -p^{r-1}\right]$

• Sinon, l'ordre de p divisant p^r et p étant premier, $\zeta^p \neq 1$ et, en notant $S = \sum_{t=1}^{p-1} \zeta^t$,

$$\sum_{j \in J_r} \zeta^j = S \times \sum_{s=0}^{p^{r-1}-1} (\zeta^p)^s = S \frac{1 - (\zeta^p)^{p^{r-1}}}{1 - \zeta} = S \frac{1 - \zeta^{p^r}}{1 - \zeta} = 0$$

$$\operatorname{donc}\left[\sum_{j\in J_r}\zeta^j=0.\right]$$

9. Notons ζ_1, \ldots, ζ_n les valeurs propres de g comptées avec multiplicité. Comme G est de cardinal p^r , elles vérifient toutes $\zeta_i^{p^r} = 1$.

Mais pour tout $k \in J_r$, $\text{Tr}(g^k) = \text{Tr}(g)$ d'après 7., et comme toutes ces matrices sont diagonalisable, on a pour tout $k \in J_r$, $\text{Tr}(g) = \sum_{i=1}^n \zeta_i^k$.

Donc $\operatorname{Tr}(g) = \frac{1}{\operatorname{card}(J_r)} \sum_{j \in J_r} \left(\sum_{i=1}^n \zeta_i^j \right) = \frac{1}{\operatorname{card}(J_r)} \sum_{i=1}^n \left(\sum_{j \in J_r} \zeta_i^j \right)$. Le cas $\zeta = 1$ donne $\operatorname{card}(J_r) = p^{r-1}(p-1)$

et, en distinguant les trois cas de la question précédente, on obtient

$$Tr(g) = \frac{1}{p^{r-1}(p-1)} \left(n_0 p^{-1}(p-1) - n_1 p^{r-1} + (n - n_0 - n_1) \cdot 0 \right)$$

et finalement
$$Tr(g) = n_0 - \frac{n_1}{p-1}$$
.

10. D'après 5, on a $v \in \mathbb{Z}$ tel que Tr(g) = n - pv.

Comme vu en 6, Tr $g \leq n$ donc $v \geq 0$.

Et avec la question précédente, $n-\operatorname{Tr}(g)=pv=n-n_0+\frac{n_1}{p-1}$ avec $n_0\geqslant 0$ et $n_1\leqslant n$, donc $pv\leqslant n+\frac{n}{p-1}=p\frac{n}{p-1}$ donc $v\leqslant \frac{n}{p-1}$ et $v\in\mathbb{N}$ donc $v\leqslant a=\left\lfloor\frac{n}{p-1}\right\rfloor$. Finalement, $\left\lceil\operatorname{Tr}(g)\in\{n-pv,\ 0\leqslant v\leqslant a\}\right\rceil$.

4 Cardinaux des p-sous-groupes de $\operatorname{GL}_n(\mathbb{Z})$

1. (a) On calcule $f^2 = f \times f = \frac{1}{\operatorname{card}(G)} \sum_{g,h \in G} gh$ mais pour tout $g \in G$, $\begin{vmatrix} G & \longrightarrow & G \\ h & \longmapsto & h' = gh \end{vmatrix}$ est une bijection (translation) de réciproque $\begin{vmatrix} G & \longrightarrow & G \\ h' & \longmapsto & h = g^{-1}h' \end{vmatrix}$ donc $f^2 = \frac{1}{\operatorname{card}(G)^2} \sum_{g,h' \in G} h' = \frac{\operatorname{card}(G)}{\operatorname{card}(G)^2} \sum_{h' \in G} h' = f$ donc f est un projecteur sur f son image ou, de manière équivalente, l'espace de ses invariants.

Or si pour tout $g \in G$, g(x) = x alors $f(x) = \frac{1}{\operatorname{card}(G)}\operatorname{card}(G)x = x$ donc $\{x \in \mathbb{C}^n \mid \forall g \in G, g(x) = x\} \subset F$ et, réciproquement, si $x \in F = \operatorname{Im} f$, on a $x' \in \mathbb{C}^n$ tel que $x = f(x') = \frac{1}{\operatorname{card}(G)} \sum_{h \in G} h(x')$ et alors, si $g \in G$,

$$g(x) = \frac{1}{\text{card}(G)} \sum_{h \in G} gh(x') = \frac{1}{\text{card}(G)} \sum_{h' \in G} h'(x') = f(x') = x$$

via la bijection précédente.

Donc f est la projection sur $\{x \in \mathbb{C}^n \mid \forall g \in G, \ g(x) = x\}$.

(b) Par linéarité de la trace, on tire $\operatorname{card}(G) \cdot \operatorname{Tr}(f) = \sum_{g \in G} \operatorname{Tr}(g)$ et comme f est un projecteur, sa trace est égale

à son rang donc est un entier. Donc $\sum_{g \in G} \operatorname{Tr}(g)$ est un entier multiple de $\operatorname{card}(G)$.

- 2. (i) Soient $g \in \mathbf{GL}_n(\mathbb{C})$ et $h \in \mathbf{GL}_k(\mathbb{C})$. $\boxed{\mathrm{Tr}(g \otimes h) = \sum_{i=1}^n \left(\sum_{j=1}^k g_{i,i}h_{j,j}\right) = \sum_{i=1}^n g_{i,i}\sum_{j=1}^k h_{j,j}\boxed{=\mathrm{Tr}(g)\,\mathrm{Tr}(h)}$.
 - (ii) Soient $g, g' \in \mathbf{GL}_n(\mathbb{C})$, $h, h' \in \mathbf{GL}_k(\mathbb{C})$, $i, j \in [1, n]$. On note $[g \otimes h]_{i,j} = g_{i,j}h$ le bloc (i, j) de $g \otimes h$. Alors, par produit par blocs,

$$[(g \otimes h)(g' \otimes h')]_{i,j} = \sum_{\ell=1}^{n} [g \otimes h]_{i,\ell} [g' \otimes h']_{\ell,j} = \sum_{\ell=1}^{n} g_{i,\ell} h \times g'_{\ell,j} h' = [gg']_{i,j} h h' = [gg' \otimes hh']_{i,j}$$

donc $g\otimes h(g'\otimes h')=gg'\otimes hh'$.

- (iii) Soient $g \in \mathbf{GL}_n(\mathbb{C})$ et $h \in \mathbf{GL}_k(\mathbb{C})$. D'après le calcul précédent, $(g \otimes h) (g^{-1} \otimes h^{-1}) = gg^{-1} \otimes hh^{-1} = I_n \otimes I_n = I_{nk}$ donc $g \otimes h$ est inversible à droite donc inversible soit $g \otimes h \in \mathbf{GL}_{nk}(\mathbb{C})$ et $(g \otimes h)^{-1} = g^{-1} \otimes h^{-1}$.
- 3. (a) Supposons $\varphi^{-1}(\{\gamma'\})$ non vide et donnons-nous $\gamma \in \varphi^{-1}(\{\gamma'\})$ c'est-à-dire $\gamma \in \Gamma$ tel que $\varphi(\gamma) = \gamma'$. Alors $x \in \varphi^{-1}(\{\gamma'\}) \iff \varphi(x) = \gamma' = \varphi(\gamma) \iff \varphi(x\gamma^{-1}) = e_{\Gamma} \iff x\gamma^{-1} \in \ker \varphi = H \iff x \in \gamma H$ donc $\varphi^{-1}(\{\gamma'\}) = \emptyset$ ou $\varphi^{-1}(\{\gamma'\}) = \gamma H$, avec $\gamma \in \varphi^{-1}(\{\gamma'\})$ quelconque.
 - (b) Or les $\varphi^{-1}(\{\gamma'\})$ pour $\gamma' \in \gamma(\Gamma)$ forment une partition de Γ (recouvrement disjoint par des parties non vides) : $\Gamma = \bigsqcup_{\gamma' \in \gamma(\Gamma)} \varphi^{-1}(\{\gamma'\})$ donc card $\Gamma = \sum_{\gamma' \in \gamma(\Gamma)} \operatorname{card}(\varphi^{-1}(\{\gamma'\}))$.

Et, d'après la question précédente, si $\gamma' \in \gamma(\Gamma)$, alors on a $\gamma \in \Gamma$ tel que $\varphi^{-1}(\{\gamma'\}) = \gamma H$, en bijection avec H (avec par exemple la translation $h \in H \mapsto \gamma H$) donc pour tout γ' , card $(\varphi^{-1}(\{\gamma'\})) = \operatorname{card}(H)$.

Finalement, $\operatorname{card}(\Gamma) = \operatorname{card}(\varphi(\Gamma)) \operatorname{card}(H)$.

- 4. (a) Soient $g, h \in \mathbf{GL}_n(\mathbb{C})$. on montre par récurrence sur $s \in \mathbb{N}^*$ que $\varphi_s\left(gh^{-1}\right) = \varphi_s(g)\varphi_s(h)^{-1}$.
 - En effet, pour s = 1, cela s'écrit simplement $gh^{-1} = gh^{-1}$.
 - Soit $s \ge 1$ pour lequel c'est vrai. Alors, par définition et hypothèse de récurrence,

$$\varphi_{s+1}\left(gh^{-1}\right) = \varphi_s(g)\varphi_s(h)^{-1} \otimes gh^{-1}$$

Donc par (ii) et (iii), $\varphi_{s+1}\left(gh^{-1}\right) = (\varphi_s(g) \otimes g) (\varphi_s(h) \otimes h)^{-1} = \varphi_{s+1}(g)\varphi_{s+1}(h)^{-1}$ ce qui établit la récurrence : φ_s est un morphisme de groupes.

Puis en notant $\psi_s: G \to \mathbf{GL}_{n^s}(\mathbb{C})$ le morphisme de groupes induit par φ_s sur G,

$$\sum_{g \in G} \operatorname{Tr}(g)^s = \sum_{g \in G} \operatorname{Tr}\left(g^{(s)}\right) = \sum_{g \in G} \operatorname{Tr}\left(\psi_s(g)\right)$$

Or comme dans la question précédente, le noyau de ψ_s étant $H = \ker \psi_s = G \cap \ker \varphi_s$, chaque élément de $\psi_s(G) = \varphi_s(G)$ possède exactement card $(G \cap \ker \varphi_s)$ antécédents dans G, donc

$$\sum_{g \in G} \operatorname{Tr} (\psi_s(g)) = \operatorname{card} (G \cap \ker \varphi_s) \sum_{g' \in \varphi_s(G)} \operatorname{Tr} (g').$$

Finalement,
$$\sum_{g \in G} \operatorname{Tr}(g)^s = \operatorname{card}(G \cap \ker \varphi_s) \sum_{g' \in \varphi_s(G)} \operatorname{Tr}(g').$$

(b) On applique la question 3 au morphisme de groupe ψ_s directement :

$$\operatorname{card}(G) = \operatorname{card}(\psi_s(G)) \operatorname{card}(G \cap \ker \varphi_s) = \operatorname{card}(\varphi_s(G)) \operatorname{card}(G \cap \ker \varphi_s)$$

ce qui donne avec la question précédente
$$\operatorname{card}(\varphi_s(G))\sum_{g\in G}\operatorname{Tr}(g)^s=\operatorname{card}(G)\sum_{g'\in\varphi_s(G)}\operatorname{Tr}(g').$$

Or d'après la question 1, le groupe $\varphi_s(G)$ étant fini car G l'est, $\sum_{g' \in \varphi_s(G)} \operatorname{Tr}(g')$ est un entier divisible par

$$\operatorname{card}(\varphi_s(G))$$
: on a donc $p \in \mathbb{Z}$ tel que $\sum_{g' \in \varphi_s(G)} \operatorname{Tr}(g') = \operatorname{card}(\varphi_s(G))p$. Puis, comme $\operatorname{card}(\varphi_s(G)) \neq 0$ car

$$G \neq \emptyset, \sum_{g \in G} \operatorname{Tr}(g)^s = p \operatorname{card}(G) \text{ et donc } \boxed{\sum_{g \in G} \operatorname{Tr}(g)^s \text{ est un entier divisible par } \operatorname{card}(G) .}$$

5. (a) On a $P \in \mathbb{Z}[X]$.

D'après la question 4, pour tout $s \in \mathbb{N}^*$, $\operatorname{card}(G)$ divise $\sum_{g \in G} \operatorname{Tr}(g)^s$. C'est encore vrai pour s = 0 (la

somme vaut alors card G). Donc card G0 divise $\sum_{g \in G} P(\text{Tr}(g))$.

Or, d'après la partie précédente, toute trace d'un élément de g est de la forme n-pv avec $0 \le v \le a$. Si $v \ne 0$, alors $\operatorname{Tr}(g)$ est une racine de P et $P(\operatorname{Tr}(g)) = 0$. Sinon, $P(\operatorname{Tr}(g)) = P(n)$.

Finalement, $\sum_{g \in G} P(\text{Tr}(g)) = P(n) \times k$ où k désigne le nombre d'éléments de g donc la trace vaut n.

Mais en reprenant le raisonnement de la partie précédente, le cas où la trace vaut n n'est atteint que pour $n_0 = n$, c'est-à-dire lorsque 1 est la seule valeur propre (car $\text{Tr}(g) \leq n_0 \leq n$). Donc le seul élément convenant est $g = I_n$ et k = 1.

Finalement, $\overline{\operatorname{card}(G) \text{ divise } P(n)}$.

- (b) Or $P(n) = \prod_{j=1}^{a} (n (n pj)) = p^{a}a!$ et $card(G) = p^{r}$. On a $donc v_{p}(card(G)) = r \leq v_{p}(P(n)) = a + v_{p}(a!)$.
- 6. (a) On a $a \leqslant \frac{n}{p-1}$ et, par les préliminaires, $a+v_p(a!)=a+\sum_{i=1}^{+\infty}\left\lfloor\frac{a}{p^i}\right\rfloor=\sum_{i=0}^{+\infty}\left\lfloor\frac{a}{p^i}\right\rfloor$. Par croissance de la partie entière, tout étant positif, et la série géométrique étant convergente, $r\leqslant\sum_{i=0}^{+\infty}\frac{a}{p^i}=\frac{a}{1-\frac{1}{p}}\leqslant p\frac{\frac{n}{p-1}}{p-1}$ donc $r\leqslant\frac{pn}{(p-1)^2}.$
 - (b) Ainsi, avec $p \geqslant 2$, $\operatorname{card}(G) = p^r \leqslant \left(p^{\frac{p}{(p-1)^2}}\right)^n$ avec $p^{\frac{p}{(p-1)^2}} = \exp \frac{p \ln p}{(p-1)^2} = \exp \left[\left(1 + \frac{2}{p-1} + \frac{1}{(p-1)^2}\right) \frac{\ln p}{p}\right]$. Mais comme $\left(1 + \frac{2}{p-1} + \frac{1}{(p-1)^2}\right)_{p\geqslant 2}$ est positive et décroissante, $x\mapsto \frac{\ln x}{x}$ se dérive en $x\mapsto \frac{1-\ln x}{x^2}$ donc $\left(\frac{\ln p}{p}\right)_{p\geqslant 2}$ décroissante positive puis $\left(\frac{p \ln p}{(p-1)^2}\right)_{p\geqslant 2}$ décroît et donc $\operatorname{card}(G) \leqslant \left(2^{\frac{2}{(2-1)^2}}\right)^n$ et donc $\operatorname{card}(G) \leqslant 4^n$.

Fin du corrigé