Banque d'Épreuves des Concours des Écoles d'Actuariat et Statistique

Session 2022

Épreuve à option (A): Mathématiques

Durée: 4h

On rappelle que la **fonction Gamma** d'Euler est définie par

$$\forall x > 0, \quad \Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$$
 (1)

qu'elle est continue sur \mathbb{R}_+^* et qu'elle vérifie la formule récursive $\Gamma(x+1)=x\Gamma(x)$, valable pour tout réel strictement positif x.

Cette fonction intervient à maintes reprises dans la suite.

L'énoncé est divisé en quatre parties largement indépendantes, que les candidats ne sont pas tenus de traiter dans l'ordre.

L'évaluation des copies sera étroitement liée à la rigueur des raisonnements et à une utilisation dûment justifiée du cours. Une présentation soignée sera appréciée, une présentation par trop négligée sanctionnée.

Partie I Un lien avec loi de Poisson

Dans cette partie, on considère une suite $(X_n)_{n\in\mathbb{N}^*}$ variables aléatoires définies sur le même espace probabilisé $(\Omega, \mathcal{F}, \mathbf{P})$ et on suppose que, pour tout $n\in\mathbb{N}^*$, X_n suit la loi de Poisson de paramètre n.

- 1. Justifier que, pour tout $n \in \mathbb{N}^*$, la probabilité $\mathbf{P}([X_n > k])$ tend vers 0 quand l'entier k tend vers l'infini.
- 2. Soit $n \in \mathbb{N}^*$.
 - a) Justifier, pour tout entier naturel k, l'égalité :

$$\mathbf{P}([X_n > k]) = \mathbf{P}([X_n > k - 1]) - \frac{n^k}{k!} e^{-n}$$
.

b) En utilisant le résultat précédent et une intégration par parties, établir que :

$$\forall k \in \mathbb{N}, \quad \mathbf{P}([X_n > k]) = \frac{1}{k!} \int_0^n t^k e^{-t} dt$$
 (2)

- 3. Soit $k \in \mathbb{N}$.
 - a) Préciser la limite de $P([X_n > k])$ quand n tend vers l'infini.
 - b) En utilisant (2), justifier que $\mathbf{P}([X_n \le k])$ est équivalent à $\frac{n^k}{k!} e^{-n}$ quand n tend vers l'infini.
- 4. Pour tout $n \in \mathbb{N}^*$, on pose : $I_n = \int_0^n t^{2n} e^{-t} dt$.
 - a) Justifier l'encadrement : $\frac{n^{2n+1}}{2n+1} e^{-n} \le I_n \le \frac{n^{2n+1}}{2n+1} \cdot$
 - b) En déduire la limite de I_n quand n tend vers l'infini.
 - c) Démontrer que I_n est négligeable devant (2n)! quand n tend vers l'infini (on pourra utiliser la propriété (2)).

Partie II La fonction Γ comme transformée intégrale

On note S l'ensemble des fonctions réelles f définies et de classe C^{∞} sur \mathbb{R}_+ , telles que, pour tout couple (n,p) de nombres entiers positifs ou nuls, la fonction $t \mapsto t^p f^{(n)}(t)$ est bornée sur \mathbb{R}_+ .

5. Pour quelles valeurs réelles de a la fonction $t \mapsto e^{at}$ est-elle un élément de S?

6. Soit k un nombre entier strictement positif et f_k la fonction définie sur \mathbb{R}_+ par :

$$\forall t \ge 0, \quad f_k(t) = \exp(-t^k).$$

a) Montrer que, pour tout entier positif n, il existe un polynôme $P_{k,n}$ de $\mathbb{R}[X]$ tel que la dérivée n-ième de f_k vérifie :

$$\forall t \geq 0, \quad f_k^{(n)}(t) = P_{k,n}(t) \ f_k(t) \ .$$

- b) En déduire que f_k est un élément de S.
- 7. Montrer que, pour tout élément f de S et tout réel x > 0, la fonction $t \mapsto t^{x-1} f(t)$ est intégrable sur $]0, +\infty[$.

Pour tout $f \in S$, on définit sur \mathbb{R}_+^* la fonction G(f) par :

$$\forall x > 0, \quad G(f)(x) = \int_0^{+\infty} t^{x-1} f(t) dt$$
 (3)

- 8. a) Exprimer, pour tout entier strictement positif k, la fonction $G(f_k)$ à l'aide de la fonction Gamma.
 - b) Donner un équivalent de la fonction Γ en 0 et en déduire que, pour tout x > 0, $G(f_k)(x)$ tend vers $\frac{1}{x}$ lorsque k tend vers l'infini.
- 9. Montrer que, pour tout élément f de S, la fonction G(f) est de classe C^{∞} sur $]0, +\infty[$.
- 10. Dans cette question, on suppose que f est une fonction à valeurs strictement positives qui appartient à S.
 - a) Montrer que (G(f))(x) tend vers $+\infty$ quand x tend vers $+\infty$.
 - b) Montrer que (G(f))(x) est équivalent à f(0)/x quand x tend vers 0.
 - c) Montrer que la fonction $\mathcal{G}(f)$ admet un minimum global, atteint en un point unique .

Partie III Application au prolongement de la fonction ζ de Riemann

Pour tout élément f de l'espace S défini dans la deuxième partie du problème, on associe la fonction Z(f) définie sur $]0, +\infty[$ par :

$$\forall x > 0, \quad Z(f)(x) = \frac{1}{\Gamma(x)} \int_0^{+\infty} t^{x-1} f(t) dt$$
 (4)

- 11. Soit f un élément de S.
 - a) Montrer que la dérivée f' de f appartient à S et vérifie :

$$\forall x > 0$$
, $G(f')(x+1) = -x G(f)(x)$.

b) En déduire que, pour tout $n \in \mathbb{N}$, on a :

$$\forall x > 0, \quad Z(f^{(n)})(x+n) = (-1)^n Z(f)(x).$$

c) Montrer qu'on peut définir, de manière cohérente, un prolongement $\overline{Z(f)}$ de Z(f) à \mathbb{R} , en posant, pour tout nombre réel x et tout nombre entier n tel que n > -x:

$$\overline{Z(f)}(x) = (-1)^n Z(f^{(n)})(x+n).$$

d) Montrer que $\overline{Z(f)}$, ainsi défini, est une fonction de classe C^{∞} sur $\mathbb R$ et vérifie, pour tout $n \in \mathbb N$:

$$\overline{Z(f)}(-n) = (-1)^n f^{(n)}(0)$$
.

- 12. Dans cette question, on note f la fonction définie sur \mathbb{R}_+ par : $f(t) = \begin{cases} \frac{t}{e^t 1} & \text{si } t > 0 \\ 1 & \text{si } t = 0 \end{cases}$.
 - a) Justifier la validité des deux développements en série suivants :

(i)
$$\forall t > 0$$
, $f(t) = t e^{-t} \sum_{n=0}^{+\infty} e^{-nt}$

(ii)
$$\forall t \ge 0$$
, $f(t) = \frac{1}{1 + \sum_{n=1}^{+\infty} \frac{t^n}{(n+1)!}}$.

- b) Montrer que f est de classe C^{∞} sur \mathbb{R}_+ .
- c) Pour tout nombre entier strictement positif k, montrer que la série de terme général $n^k \mathrm{e}^{-n}$ est convergente et que sa somme $\sum_{n=1}^{+\infty} n^k \mathrm{e}^{-n}$ majore la valeur absolue de la dérivée k-ième de la fonction $t \longmapsto \sum_{n=0}^{+\infty} \mathrm{e}^{-nt}$ sur l'intervalle fermé $[1, +\infty[$.
 - d) En déduire que f est un élément de S.
- 13. On rappelle que la **fonction Zêta** de Riemann est définie par :

$$\forall x > 1, \quad \zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$$
 (5)

a) Démontrer que, pour l'élément f de S défini dans la question précédente, on a :

$$\forall x > 0$$
, $Z(f)(x) = x \zeta(x+1)$.

b) La propriété précédente permet de prolonger la fonction ζ à la droite réelle privée de 1 en posant :

$$\forall x \neq 1, \quad \overline{\zeta}(x) = \frac{1}{x-1} \overline{Z(f)}(x-1)$$
.

En utilisant un développement limité de f, calculer ses valeurs en $\overline{Z(f)}(0)$ et $\overline{Z(f)}(-1)$.

Partie IV Un autre prolongement

Dans cette partie, P et Q désignent deux polynômes de $\mathbb{R}[X]$, non nuls et **premiers entre eux**, et on note E(P,Q) l'ensemble des solutions sur \mathbb{R} de l'équation différentielle :

$$P v'' + Q v' + (Q - P) v = 0 ag{6}$$

Autrement dit, E(P,Q) est l'ensemble des fonctions réelles f deux fois dérivables sur $\mathbb R$ telles que :

$$\forall x \in \mathbb{R}, P(x) f''(x) + Q(x) f'(x) + (Q(x) - P(x)) f(x) = 0.$$

- 14. a) Montrer que E(P,Q) est un \mathbb{R} -espace vectoriel qui contient la fonction $x \mapsto e^{-x}$.
 - b) Montrer que, si E(P,Q) contient une fonction de la forme $x \mapsto e^{\lambda x}$ avec $\lambda \neq -1$, les polynômes P et Q sont nécessairement constants.
 - c) Trouver E(P,Q) lorsque P et Q sont constants (non nuls).
- 15. On suppose, dans cette question, que le polynôme P possède une unique racine réelle a et on note Φ l'application linéaire de E(P,Q) dans \mathbb{R}^4 qui associe à tout élément f de E(P,Q) le vecteur :

$$\Phi(f) = (f(a-1), f'(a-1), f(a+1), f'(a+1)).$$

- a) En utilisant le théorème de Cauchy linéaire, montrer que l'application Φ est injective.
 - b) Montrer qu'il n'existe pas d'élément f de E(P,Q) vérifiant :

$$\begin{cases} f(a-1) = f'(a-1) = 0 \\ f(a+1) = -f'(a+1) = e^{-(a+1)} \end{cases}$$

- c) Déduire des résultats précédents que la dimension de l'espace vectoriel E(P,Q) est au plus égale à 3.
- d) Montrer que, si $P(X) = X^3$ et Q(X) = -1, la dimension de l'espace vectoriel E(P,Q) est égale à 3.
- 16. a) Montrer que la fonction $\Delta: x \mapsto \frac{\Gamma(\frac{x}{2})}{\Gamma(x)}$, définie sur $]0, +\infty[$, vérifie la formule récursive :

$$\forall x > 0, \quad \Delta(x+2) = \frac{\Delta(x)}{2(x+1)}.$$

b) En utilisant la fonction $f_2: t \longmapsto \exp(-t^2)$ définie dans la deuxième partie, montrer que la fonction Δ admet un prolongement $\overline{\Delta}$ de classe C^{∞} sur \mathbb{R} , vérifiant :

$$\forall x \in \mathbb{R}, \quad \overline{\Delta}(x) = 2(x+1)\overline{\Delta}(x+2).$$

c) Comment utiliser une équation différentielle de la forme (6) pour trouver une formule récursive satisfaite à la fois par les fonctions constantes et par la fonction $\overline{\Delta}$?