Sujet CCINP

Exercice 1 : topologie de $GL_n(\mathbb{R})$

On considère l'espace vectoriel normé $\mathcal{M}_n(\mathbb{R})$ On note $\mathrm{GL}_n(\mathbb{R})$ l'ensemble des matrices inversibles de $\mathcal{M}_n(\mathbb{R})$.

On pourra utiliser librement dans cet exercice que l'application déterminant est continue sur $\mathcal{M}_n(\mathbb{R})$.

- 1. L'ensemble $GL_n(\mathbb{R})$ est-il fermé dans $\mathcal{M}_n(\mathbb{R})$?
- 2. Démontrer que l'ensemble $GL_n(\mathbb{R})$ est ouvert dans $\mathcal{M}_n(\mathbb{R})$
- 3. Soit M un élément de $\mathcal{M}_n(\mathbb{R})$, justifier que :

$$\exists \rho > 0$$
, $\forall \lambda \in]0, \rho[$, $M - \lambda I_n \in GL_n(\mathbb{R})$

Démontrer que l'ensemble $GL_n(\mathbb{R})$ est dense dans $\mathcal{M}_n(\mathbb{R})$

4. Application:

Si A et B sont deux matrices de $\mathcal{M}_n(\mathbb{R})$, démontrer que les matrices $A \cdot B$ et $B \cdot A$ ont le même polynôme caractéristique.

A l'aide des matrices $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, prouver que le résultat n'est pas vrai pour les polynômes minimaux.

Démontrer que GL_n(R) n'est pas connexe par arcs.
On rappelle que l'image d'une partie connexe par arcs par une application continue est une partie connexe par arcs.

Exercice 2 : polynômes de Hermite

Soit $(H_n)_{n\in\mathbb{N}}$ la famille des polynômes définie par $H_0=1$ et, pour tout $n\in\mathbb{N}$, $H_{n+1}=XH_n-H_n'$

- 1. Démontrer que, pour tout $n \in \mathbb{N}$, H_n est un polynôme unitaire de degré n.
- 2. Démontrer que, pour tout $n \in \mathbb{N}$, $H'_{n+1} = (n+1)H_n$.

Pour tous polynômes P et Q à coefficients réels, on pose

$$\langle P | Q \rangle = \int_{-\infty}^{+\infty} P(x)Q(x)f(x) dx,$$

la fonction f étant définie sur \mathbb{R} par $f(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$. On rappelle que $\int_{-\infty}^{+\infty} f(x) dx = 1$.

- 3. Un produit scalaire sur $\mathbb{R}[X]$
 - (a) Justifier, pour tous polynômes P et Q dans $\mathbb{R}[X]$, l'existence de l'intégrale qui définit $\langle P | Q \rangle$.
 - (b) Démontrer que l'on définit ainsi un produit scalaire sur $\mathbb{R}[X]$.
- 4. Une famille orthogonale

Dans la suite, $\mathbb{R}[X]$ est muni de ce produit scalaire et de la norme associée notée $\|.\|$.

- (a) Démontrer que, pour tout $P \in \mathbb{R}[X]$ et pour tout $n \in \mathbb{N}$, $\langle P | H_n \rangle = \langle P^{(n)} | H_0 \rangle$.
- (b) En déduire que , pour tout $n \in \mathbb{N}$, la famille (H_0, H_1, \dots, H_n) est une base orthogonale de $\mathbb{R}_n[X]$.
- (c) Calculer $||H_n||$ pour tout $n \in \mathbb{N}$.
- (d) Soit $P = X^3 + X^2 + X + 1$. Préciser les polynômes H_1 , H_2 et H_3 puis déterminer quatre réels a_i ($0 \le i \le 3$) tels que $P = \sum_{i=0}^3 a_i H_i$. En déduire la distance d du polynôme P au sous-espace $\mathbb{R}_0[X]$ des polynômes constants, c'est-à-dire la borne inférieure de $\|P Q\|$ quand Q décrit $\mathbb{R}_0[X]$.

Problème

Notations et rappels

Soit n un entier supérieur à 1. On désigne par diag $(\alpha_1,...,\alpha_n)$ la matrice diagonale de $\mathcal{M}_n(\mathbb{R})$ dont les coefficients diagonaux sont les réels $\alpha_1,...,\alpha_n$ dans cet ordre. Si $M \in \mathcal{M}_n(\mathbb{R})$, on note M^T sa transposée.

On munit l'espace vectoriel $E=\mathbb{R}^n$ du produit scalaire canonique noté $\langle\ |\ \rangle$ et de la norme euclidienne $\|\ \|$ associée. On note $\mathscr{S}(E)$ le sous-espace des endomorphismes symétriques de E, c'est-à-dire l'ensemble des endomorphismes s de E vérifiant :

$$\forall (x, y) \in E^2, \langle s(x)|y\rangle = \langle x|s(y)\rangle.$$

Un endomorphisme symétrique s de E est dit symétrique positif (respectivement symétrique défini positif) s:

$$\forall x \in E, \langle s(x)|x \rangle \ge 0$$
 (respectivement $\forall x \in E \setminus \{0\}, \langle s(x)|x \rangle > 0$).

Une matrice S de $\mathcal{M}_n(\mathbb{R})$ est dite symétrique positive (respectivement symétrique définie positive) si :

$$\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), X^{\mathsf{T}}SX \ge 0 \text{ (respectivement } \forall X \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}, X^{\mathsf{T}}SX > 0).$$

On note $\mathscr{S}_n^+(\mathbb{R})$ (respectivement $\mathscr{S}_n^{++}(\mathbb{R})$) l'ensemble des matrices symétriques positives (respectivement symétriques définies positives) de $\mathscr{M}_n(\mathbb{R})$.

On rappelle qu'un endomorphisme s de E est symétrique (respectivement symétrique positif, symétrique défini positif) si, et seulement si, sa matrice dans toute base orthonormée de E est symétrique (respectivement symétrique positive, symétrique définie positive).

On admet que, pour tous réels positifs $a_1, ..., a_n$,

$$\left(\prod_{i=1}^{n} a_{i}\right)^{1/n} \leqslant \frac{1}{n} \sum_{i=1}^{n} a_{i} \text{ (inégalité arithmético-géométrique)}.$$

Objectif du problème

On se donne une matrice S de $\mathcal{S}_n^+(\mathbb{R})$ (ou $\mathcal{S}_n^{n+1}(\mathbb{R})$) et on étudie le maximum (ou minimum) de la forme linéaire $A \mapsto \operatorname{Ir}(AS)$ sur des ensembles de matrices.

Questions préliminaires

١.

- (a) Enoncer (sans démonstration) le théorème de réduction des endomorphismes symétriques de l'espace euclidien E et sa version relative aux matrices symétriques réelles.
- (b) Toute matrice symétrique à coefficients complexes est-elle nécessairement diagonalisable? On pourra par exemple considérer la matrice de $\mathcal{M}_2(\mathbb{C})$:

$$S = \left(\begin{array}{cc} i & 1 \\ 1 & -i \end{array}\right).$$

2. Soit $s \in \mathcal{S}(E)$, de valeurs propres (réelles) $\lambda_1, \dots, \lambda_n$ rangées dans l'ordre croissant :

$$\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$$
.

Soit $\beta=(\epsilon_1,\ldots,\epsilon_n)$ une base orthonormée de E telle que, pour tout $i\in\{1,\ldots,n\}$, ϵ_i est un vecteur propre associé à la valeur propre λ_i . Pour tout vecteur x de E, on pose :

$$R_s(x) = \langle s(x) | x \rangle$$
.

- (a) Exprimer $R_s(x)$ à l'aide des λ_i et des coordonnées de x dans la base β .
- (b) En déduire l'inclusion : $R_s(S(0,1)) \subset [\lambda_1, \lambda_n]$ où S(0,1) désigne la sphère unité de E.
- 3. (a) On suppose dans cette question que s est symétrique positif (respectivement symétrique défini positif). Démontrer que les valeurs propres de s sont toutes positives (respectivement strictement positives).

(b) Soit $S = (s_{i,j}) \in \mathcal{S}_n^+(\mathbb{R})$, de valeurs propres $\lambda_1, \ldots, \lambda_n$ rangées dans l'ordre croissant :

$$\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$$
.

On note s l'endomorphisme de E représenté par S dans la base canonique $B=(e_1,\ldots,e_n)$. Exprimer le terme général $s_{i,j}$ de S comme un produit scalaire et démontrer que :

$$\forall i \in \{1, ..., n\} \ \lambda_1 \leq s_{i,i} \leq \lambda_n.$$

Un maximum sur $\mathcal{O}_n(\mathbb{R})$

On note I_n la matrice unité de $\mathcal{M}_n(\mathbb{R})$ et $\mathcal{O}_n(\mathbb{R})$ le groupe des matrices orthogonales de $\mathcal{M}_n(\mathbb{R})$.

- 4. Démontrer que l'application $M \mapsto M^{\mathsf{T}}M I_n$ est continue de $\mathcal{M}_n(\mathbb{R})$ dans $\mathcal{M}_n(\mathbb{R})$.
- 5. Justifier que, si $A = (a_{i,j})$ est une matrice orthogonale, alors :

$$\forall (i,j) \in \{1,\ldots,n\}^2 |a_{i,j}| \leq 1.$$

- 6. En déduire que le groupe orthogonal $\mathcal{O}_n(\mathbb{R})$ est une partie compacte de $\mathcal{M}_n(\mathbb{R})$.
- 7. Soit $S \in \mathcal{S}_n^+(\mathbb{R})$, de valeurs propres (positives) $\lambda_1, \dots, \lambda_n$. On pose $\Delta = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$. Si A est une matrice orthogonale, on note T(A) le nombre réel $T(A) = \operatorname{Tr}(AS)$.
 - (a) Soit $A \in \mathcal{O}_n(\mathbb{R})$. Démontrer qu'il existe une matrice orthogonale B telle que :

$$T(A) = \text{Tr}(B\Delta).$$

- (b) Démontrer que l'application T de $\mathscr{O}_n(\mathbb{R})$ dans \mathbb{R} admet un maximum sur $\mathscr{O}_n(\mathbb{R})$, que l'on notera
- (c) Démontrer que, pour toute matrice orthogonale A de $\mathscr{O}_n(\mathbb{R})$, $T(A) \leqslant \operatorname{Tr}(S)$, puis déterminer le réel t.

Inégalité d'Hadamard

Soit $S = (s_{i,j}) \in \mathscr{S}_n^+(\mathbb{R})$, de valeurs propres (réelles positives) $\lambda_1, \ldots, \lambda_n$ rangées dans l'ordre croissant :

$$0 \le \lambda_1 \le \lambda_2 \le \cdots \le \lambda_n$$
.

8. Démontrer l'inégalité valable pour tout $S \in \mathcal{S}_n^+(\mathbb{R})$:

$$\det(S) \le \left(\frac{1}{n}\operatorname{Tr}(S)\right)^n \quad (*).$$

- 9. Soit $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n$, $D = \operatorname{diag}(\alpha_1, \dots, \alpha_n)$ et $S_\alpha = D^\mathsf{T} S D$. Démontrer que $S_\alpha \in \mathscr{S}_n^+(\mathbb{R})$ et calculer $\operatorname{Tr}(S_\alpha)$.
- 10. Dans cette question, on suppose que les coefficients diagonaux $s_{i,i}$ de S sont strictement positifs et, pour $1 \le i \le n$, on pose $\alpha_i = \frac{1}{\sqrt{s_{i,i}}}$. En utilisant l'inégalité (*), démontrer que :

$$\det(S) \leqslant \prod_{i=1}^{n} s_{i,i}.$$

11. Pour fout réel $\varepsilon > 0$, on pose $S_{\varepsilon} = S + \varepsilon I_n$. Démontrer que $\det(S_{\varepsilon}) \le \prod_{i=1}^{n} (s_{i,i} + \varepsilon)$, puis conclure que :

$$\prod_{i=1}^{n} \lambda_{i} \leq \prod_{i=1}^{n} s_{i,i} \text{ (inégalité d'Hadamard)}.$$

Application de l'inégalité d'Hadamard : détermination d'un minimum

Soit $S \in \mathscr{S}_n^{++}(\mathbb{R})$, de valeurs propres $0 < \lambda_1 \leqslant \cdots \leqslant \lambda_n$, et $\Delta = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$. Soit $\Omega \in \mathscr{O}_n(\mathbb{R})$ telle que $S = \Omega \Delta \Omega^\mathsf{T}$. On désigne par \mathscr{U} l'ensemble des matrices de $\mathscr{S}_n^{++}(\mathbb{R})$ de déterminant égal à 1.

12. Démontrer que, pour tout $A \in \mathcal{U}$, la matrice $B = \Omega^T A \Omega$ est une matrice de \mathcal{U} vérifiant :

$$Tr(AS) = Tr(B\Delta).$$

- 13. Démontrer que $\{\text{Tr}(AS), A \in \mathcal{U}\} = \{\text{Tr}(B\Delta), B \in \mathcal{U}\}$, puis que ces ensembles admettent une borne inférieure que l'on notera m.
- 14. Démontrer que, si $B = (b_{i,j}) \in \mathcal{U}$:

$$\operatorname{Tr}(B\Delta) \geqslant n(\lambda_1 \cdots \lambda_n)^{1/n} (b_{1,1} \cdots b_{n,n})^{1/n}$$
.

- 15. En déduire que, pour $B = (b_{i,j}) \in \mathcal{U}$, $\text{Tr}(B\Delta) \ge n(\det(S))^{1/n}$.
- 16. Pour tout entier k tel que $1 \le k \le n$, on pose $\mu_k = \frac{1}{\lambda_k} (\det(S))^{1/n}$ et $D = \operatorname{diag}(\mu_1, \dots, \mu_n)$. Déterminer le réel m.

Fin de l'énoncé