Colle nº 13 Du 5 au 9 février

Programme de colle – MPI

Topologie (Limite, continuité, compacité)

pace normé de dimension finie, des applications multilinéaires définies sur un produit d'espaces vectoriels normés de dimen-

sions finies.

Contenus	Capacités & commentaires
e) Étude locale d'une application, continuité	
Limite en un point adhérent à une partie A . Caractérisation séquentielle.	Extensions: limite de $f(x)$ lorsque $ x $ tend vers $+\infty$, limite de $f(x)$ quand x tend vers $+\infty$ ou $-\infty$ lorsque A est une partie de R , limite infinie en A adhérent à A pour une fonction réelle.
Cas d'une application à valeurs dans un produit fini d'espaces vectoriels normés.	14, millio di la dalloioni d'A podi dilo fonenon rocino.
Opérations algébriques sur les limites. Limite d'une composée. Continuité en un point. Caractérisation séquentielle.	
Opérations algébriques sur les applications continues. Composition de deux applications continues. Image réciproque d'un ouvert, d'un fermé par une application	Deux applications continues qui coïncident sur une partie dense sont égales.
continue. Applications uniformément continues, applications lipschitziennes.	Caractère 1-lipschitzien de l'application $x\mapsto d(x,A)$ où A est une partie non vide de E .
f) Applications linéaires et multilinéaires continues	<u> </u>
Critère de continuité d'une application linéaire entre deux espaces normés : $u \in \mathcal{L}(E,F)$ est continue si et seulement s'il existe	Notation $\mathscr{L}_c(E,F)$.
$C \in \mathbb{R}^+$ tel que $ \forall x \in E, \; \ u(x)\ \leqslant C \ x\ . $	
Norme subordonnée (ou norme d'opérateur) d'une application linéaire continue.	Notations $ u $, $ u _{op}$. La norme d'opérateur est une norme sur $\mathcal{L}_c(E,F)$. Sous-multiplicativité de la norme d'opérateur. Adaptation aux matrices.
Critère de continuité des applications multilinéaires.	La démonstration n'est pas exigible.
g) Parties compactes d'un espace normé	
Définition d'une partie compacte par la propriété de Bolzano- Weierstrass. Une partie compacte est fermée et bornée. Un fermé relatif d'une partie compacte est compact. Une suite d'éléments d'une partie compacte converge si et seulement si elle admet une unique valeur d'adhérence. Produit d'une famille finie de compacts.	La propriété de Borel-Lebesgue est hors programme.
h) Applications continues sur une partie compacte	
Image continue d'une partie compacte. Théorème de Heine.	
Théorème des bornes atteintes pour une application numérique définie et continue sur un compact non vide.	On souligne l'importance de la compacité dans les problèmes d'optimisation, notamment en mettant en évidence des situations où l'on prouve l'existence d'un extremum à l'aide d'une restriction à un compact.
j) Espaces vectoriels normés de dimension finie	
Équivalence des normes en dimension finie. Invariance des différentes notions topologiques par rapport au choix d'une norme en dimension finie. Topologie naturelle d'un espace normé de dimension finie.	La démonstration n'est pas exigible. La convergence d'une suite (ou l'existence de la limite d'une fonction) à valeurs dans un espace vectoriel normé de dimen sion finie équivaut à celle de chacune de ses coordonnées dans une base.
Une partie d'un espace normé de dimension finie est com- pacte si et seulement si elle est fermée et bornée. Une suite bornée d'un espace normé de dimension finie converge si et seulement si elle a une unique valeur d'adhé-	
rence. Un sous-espace de dimension finie d'un espace normé est fermé. Si Fort de dimension finie (MCF, F) = (MCF, F)	
Si E est de dimension finie, $\mathscr{L}(E,F) = \mathscr{L}_c(E,F)$. Continuité des applications polynomiales définies sur un espace permé de dimension finie des applications multilinéaires	Exemples: déterminant, produit matriciel, composition d'appl

Étude sur quelques exemples de la limite et de la continuité d'une fonction réelle de deux variables réelles : celles des applications partielles sont nécessaires mais non suffisantes. Changement de variable (par composition) par exemple en polaire.

Semaine prochaine: Connexité par arcs, espaces préhilbertiens.

Questions de cours

Les questions de cours (*) peuvent seulement être posées à MM. Marinia, Passot (groupe 1), Thomas (groupe 2).

- (i) Image réciproque d'un ouvert ou d'un fermé par une application continue, fonctions continues coïncidant sur une partie dense.
- (ii) $x \mapsto d(x, A)$ est 1-lipshitzienne.
- (iii) Si l'espace de départ est de dimension finie, continuité des applications linéaires et bilinéaires.
- (iv) La norme subordonnée est bien une norme sur $\mathcal{L}_c(E,F)$.
- (v) Image continue d'un compact et théorème des bornes atteintes.
- (vi) (*) Théorème de Heine.
- (vii) Un sous-espace de dimension finie est fermé.
- (viii) (*) Une suite d'un compact converge si et seulement si elle a une unique valeur d'adhérence. Cas des suites bornées en dimension finie.
- (ix) CCINP 13
 - Rappeler, oralement, la définition, par les suites de vecteurs, d'une partie compacte d'un espace vectoriel normé.
 - Démontrer qu'une partie compacte d'un espace vectoriel normé est une partie fermée de cet espace.
 - 3. Démontrer qu'une partie compacte d'un espace vectoriel normé est une partie bornée de cet espace. Indication : On pourra raisonner par l'absurde.
 - 4. On se place sur $E = \mathbb{R}[X]$ muni de la norme $\|\cdot\|_1$ définie pour tout polynôme $P = a_0 + a_1 X + \ldots + a_n X^n$ de E par : $\|P\|_1 = \sum_{i=0}^n |a_i|$.
 - (a) Justifier que $S(0,1) = \{P \in \mathbb{R}[X], \|P\|_1 = 1\}$ est une partie fermée et bornée de E.
 - (b) Calculer $\|X^n X^m\|_1$ pour m et n entiers naturels distincts. S(0,1) est-elle une partie compacte de E? Justifier.
- (x) **CCINP 35** : E et F désignent deux espaces vectoriels normés.
 - 1; Soient f une application de E dans F et a un point de E.

On considère les propositions suivantes :

- **P1.** f est continue en a.
- **P2.** Pour toute suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de E telle que $x_n\xrightarrow[n\to+\infty]{}a$, alors $f(x_n)\xrightarrow[n\to+\infty]{}f(a)$.

Prouver que les propositions P1 et P2 sont équivalentes.

- 2; Soit A une partie dense dans E, et soient f et g deux applications continues de E dans F. Démontrer que si, pour tout $x \in A$, f(x) = g(x), alors f = g.
- (xi) **CCINP 36**: Soient E et F deux espaces vectoriels normés sur le corps \mathbb{R} .
 - 1. Démontrer que si f est une application linéaire de E dans F, alors les propriétés suivantes sont deux à deux équivalentes :
 - **P1.** f est continue sur E.
 - **P2.** f est continue en 0_F .
 - **P3.** $\exists k > 0 \text{ tel que} : \forall x \in E, ||f(x)||_E \le k ||x||_E.$
 - 2. Soit E l'espace vectoriel des applications continues de [0;1] dans $\mathbb R$ muni de la norme définie par : $\|f\|_{\infty} = \sup |f(x)|$. On considère l'application φ de E dans $\mathbb R$ définie par $\varphi(f) = \int_0^1 f(t) dt$.

Démontrer que φ est linéaire et continue.

(xii) CCINP 38:

1. On se place sur $E = \mathscr{C}([0,1],\mathbb{R})$, muni de la norme $||\cdot||_1$ définie par : $\forall f \in E$, $||f||_1 = \int_0^1 |f(t)| dt$.

Soit
$$u: \begin{array}{ccc} E & \longrightarrow & E \\ f & \longmapsto & u(f) = g \end{array}$$
 avec $\forall \ x \in [0,1], \ g(x) = \int_0^x f(t) dt$.

On admet que u est un endomorphisme de E.

Prouver que u est continue et calculer |||u|||.

Indication: considerer, pour tout entier n non nul, la fonction f_n définie par $f_n(t) = ne^{-nt}$.

2. Soit $n \in \mathbb{N}^*$. Soit $(a_1, a_2, ..., a_n) \in \mathbb{R}^n$ un n-uplet **non nul**, **fixé**.

Soit
$$u: (x_1, x_2, ..., x_n) \longrightarrow \sum_{i=1}^n a_i x_i$$

(a) Justifier que u est continue quel que soit le choix de la norme sur \mathbb{R}^n .

(b) On munit
$$\mathbb{R}^n$$
 de $||\ ||_2$ où $\forall x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$, $||x||_2 = \sqrt{\sum_{k=1}^n x_k^2}$. Calculer $|||u|||$.

- (c) On munit \mathbb{R}^n de $||\cdot||_{\infty}$ où $\forall x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$, $||x|||_{\infty} = \max_{1 \leq k \leq n} |x_k|$. Calculer $||\cdot||u|||$.
- 3. Déterminer un espace vectoriel E, une norme sur E et un endomorphisme de E non continu pour la norme choisie. Justifier.

Remarque: Les questions 1., 2. et 3. sont indépendantes.