Réduction et polynômes

- Si on dispose d'un polynôme annulateur, les valeurs propres sont à chercher parmi les racines de celui-ci.
- Les valeurs propres sont les racines du polynôme caractéristique et aussi celles du polynôme minimal. Mais attention, pour un autre polynôme annulateur, ce sont seulement des racines.
- Lorsqu'une matrice se présente par blocs, on aura souvent intérêt à chercher les vecteurs propres par blocs : pour résoudre $AX = \lambda X$ où $A = \begin{pmatrix} M & N \\ P & Q \end{pmatrix}$, on écrira $X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$.

Pour utiliser les polynômes annulateurs, savoir exprimer simplement les blocs diagonaux d'un polynôme en une matrice diagonale ou triangulaire par blocs (c'est similaire au cas diagonal/triangulaire).

- Diagonalisabilité:
 - \star Avoir *n* valeurs propres distinctes en dimension *n* suffit.
 - On peut ajouter les dimensions des sous-espaces propres (multiplicités géométriques) et comparer à la dimension de l'espace.
 - * Trouver un polynôme annulateur scindé simple est nécessaire et suffisant.
 - * Si on a une décomposition en sous-espaces stable, *u* est diagonalisable si et seulement s'il l'est sur chaque sous-espace.
 - * Lorsque A se présente par blocs, on peut aussi voir sur les blocs comment se traduit P(A) pour un polynôme P.
 - Lorsque le polynôme caractéristique est scindé, il y a diagonalisabilité si et seulement si les dimensions de chaque sous-espace propre sont égales aux multiplicités des valeurs propres.
 - * On verra plus tard qu'une matrice symétrique **réelle** est automatiquement diagonalisable
 - * Savoir diagonaliser complètement en petite dimension, et savoir en déduire puissance de matrice, terme général de suites récurrentes, commutant ou sous-espaces stables par une matrice.
- Trigonalisabilité:
 - Sur C, c'est automatique. On effectue assez rarement des calculs explicites de trigonalisation.
 - * Mais le fait que toute matrice complexe soit trigonalisable est d'usage courant.
 - * Être trigonalisable, c'est être annulé par un polynôme scindé.
- Le théorème de Cayley-Hamilton et le lemme de décomposition des noyaux sont d'un usage fréquent (et ils vont souvent ensemble).

Sauf mention contraire, \mathbb{K} désigne un sous-corps de \mathbb{C} , et n un entier naturel non nul.

1. Exercices cherchés en cours

- Si $A^2 3A + 2I_n = 0$, calculer les puissances de A, vérifier que A est inversible et que exprimer A^{-1} en fonction de A et I_n et vérifier que l'expression des puissances est valable pour des puissances négatives.
- **2** Résoudre $y^{(4)} = y$ dans $E = \mathscr{C}^{\infty}(\mathbb{R})$, en posant u l'opérateur de dérivation.
- Déterminer les sous-espaces stables par l'application linéaire $u \in \mathcal{L}(\mathbb{R}^3)$ canoniquement associée à $A = \begin{pmatrix} 5 & -8 & -4 \\ 4 & -7 & -4 \\ 0 & 0 & 1 \end{pmatrix}$.
- 4 CCINP 65 5 CCINP 91 6 CCINP 88 7 CCINP 93

2. Un grand classique

8 Réduction simultaneé

1. Soit u, v deux endomorphismes d'un espace vectoriel de dimension finie, diagonalisables.

Démontrer qu'il y a équivalence entre

- (i) u et v sont simultanément diagonalisables (c'est-à-dire diagonalisables dans une même base, soit encore il existe une base formée de vecteurs propres à la fois pour u et pour v).
- (ii) u et v commutent.
- (iii) Chaque sous-espace propre de l'un est stable par l'autre.

Reformuler $(i) \iff (ii)$ en termes de matrices.

- 2. Dans cette question, le corps de base est $\mathbb C$. On suppose que u et v commutent, mais on ne les suppose plus diagonalisables. Démontrer qu'ils ont au moins un vecteur propre commun.
 - Utiliser ce résultat pour démontrer que u et v sont simultanément trigonalisables.
- 3. Soit $(u_i)_{i \in I}$ une famille d'endomorphismes diagonalisables qui commutent deux à deux. Démontrer qu'il existe une base dans laquelle les matrices de tous ces endomorphismes sont diagonales (on pourra commencer par une famille finie).

3. Polynômes annulateurs

Soit
$$M = \begin{pmatrix} 2 & -2 & 1 \\ 2 & -3 & 2 \\ -1 & 2 & 0 \end{pmatrix}$$

- 1. Exprimer M^2 en fonction de M et I_3 . La matrice M est-elle diagonalisable?
- 2. Déterminer sans calcul le polynôme minimal et le polynôme caractéristique de M.
- 3. Calculer M^n pour tout $n \in \mathbb{N}$.
- Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice vérifiant $A^2 + A^{\mathsf{T}} = I_n$. Démontrer que A est diagonalisable.
- Oral CCINP Soit E une \mathbb{R} -espace vectoriel de dimension ≥ 1 , $u \in \mathcal{L}(E)$ tel que $u^3 = u$. Montrer que u est diagonalisable et décrire les sous-espaces de E stables par u.
- Déterminer les matrices $A \in \mathcal{M}_3(\mathbb{R})$ telles que $A^3 3A^2 + 2A = 0$, $\operatorname{tr} A = 3$ et A est non inversible.
- Soit $A \in \mathcal{M}_n(\mathbb{K})$, et soit $\Phi_A \in \mathcal{L}(\mathcal{M}_n(\mathbb{K}))$ définie par $\Phi_A(M) = AM$. Montrer que Φ_A est diagonalisable si et seulement si A l'est.
- **14** Sur $E = \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{K})$, on considère l'endomorphisme $D: f \mapsto f'$.
 - 1. Si $f,g \in E$, rappeler la formule de Leibniz exprimant $D^m(fg)$ en fonction des dérivées successives de f et de g.
 - 2. Si $\lambda \in \mathbb{K}$, on pose $e_{\lambda} : t \mapsto e^{\lambda t}$. Montrer que $e_{\lambda}D^{m}(e_{-\lambda}f) = (D \lambda id_{E})^{m}(f)$.
 - 3. En déduire $Ker(D \lambda id_E)^m$.
 - 4. Soit $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{K}[X]$. En utilisant le lemme de décomposition des noyaux, montrer que les solutions de $a_n y^{(n)} + \dots + a_0 y = 0$ sont exactement les combinaisons linéaires de fonctions de la forme $t \mapsto t^k e^{\lambda t}$ où λ est une racine de P et k est une entier naturel inférieur ou égal à la multiplicité de λ en tant que racine de P.
- **15** Oral Mines Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice inversible.

Montrer que A est triangulaire supérieure si, et seulement si, A^k l'est pour tout $k \ge 2$. Donner un contre-exemple dans le cas où l'on ne suppose plus la matrice A inversible.

16 Existe-t-il dans $\mathcal{M}_n(\mathbb{R})$ une matrice ayant pour polynôme minimal X^2+1 ?

Oral CCINP Soient $A, B \in \mathcal{GL}_n(\mathbb{C})$ telles que $B = A^p$.

Montrer que A est diagonalisable si, et seulement si, B l'est.

18 Oral CCINP Soit u un endomorphisme d'un \mathbb{K} -espace vectoriel E de dimension quelconque. On suppose qu'il existe un polynôme annulateur P de u vérifiant P(0) = 0 et $P'(0) \neq 0$.

Montrer que $\operatorname{Ker} u^2 = \operatorname{Ker} u$, $\operatorname{Im} u^2 = \operatorname{Im} u$ puis que l'image et le noyau de u sont supplémentaires dans E.

Oral CCINP Soient $n \ge 2, A \in \mathcal{M}_n(\mathbb{R})$ et f l'endomorphisme de $\mathcal{M}_n(\mathbb{R})$ défini par

$$f(M) = \operatorname{tr}(A)M - \operatorname{tr}(M)A$$

où tr désigne la forme linéaire trace. Étudier la réduction de l'endomorphisme f et préciser la dimension de ses sous-espaces propres.

- Soit (a_1,\ldots,a_n) \in \mathbb{C}^n . La matrice $(a_ia_j)_{1\leqslant i,j\leqslant n}$ est-elle diagonalisable ?
- **21** Oral Centrale Trouver toutes les matrices de $\mathcal{M}_n(\mathbb{R})$ qui vérifient $M^5 = M^2$ et $\operatorname{tr} M = n$
- 22 Soit $A \in \mathcal{GL}_n(\mathbb{C})$ et $B \in \mathcal{M}_n(\mathbb{C})$ telle que $B^P = O_n$.
 - 1. Montrer que $I_n + A^{-1}BA$ est inversible et exprimer son inverse.
 - 2. On pose $H = \{I_n + P(B), P \in \mathbb{C}[X], P(0) = 0\}$. Montrer que H est un sous-groupe commutatif de $(\mathcal{GL}_n(\mathbb{C}), \times)$.

4. Réduction par blocs

- Soit $n \in \mathbb{N}^*$ et $B \in \mathcal{M}_n(\mathbb{R})$. On pose $M = \begin{pmatrix} 3B & B \\ -2B & 0 \end{pmatrix}$.
 - 1. Soit $A = \begin{pmatrix} 3 & 1 \\ -2 & 0 \end{pmatrix}$. Justifier que A est diagonalisable sur $\mathbb R$ et la diagonaliser.
 - 2. En déduire que M est semblable à la matrice $M' = \begin{pmatrix} B & 0 \\ 0 & 2B \end{pmatrix}$.
 - 3. Démontrer que si $\it B$ est diagonalisable, alors $\it M$ est diagonalisable.

Soit A, B matrices carrées d'ordre
$$p$$
 et q respectivement. On définit par blocs la matrice $M = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$.

- Montrer que M est diagonalisable (respectivement trigonalisable) si et seulement si A et B le sont.
- 2. Soit C à p lignes et q colonnes, $N = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$

On suppose que A et B sont diagonalisables et n'ont aucune valeur propre commune.

Montrer que N est diagonalisable et semblable à M.

Soit
$$A \in \mathcal{M}_n(\mathbb{K})$$
 et $M = \begin{pmatrix} 0 & I_n \\ A & 0 \end{pmatrix}$.

Déterminer une condition nécessaire et suffisante sur A pour que M soit diagonalisable.

Soit
$$n \in \mathbb{N}^*$$
, $A \in \mathcal{M}_n(\mathbb{C})$. On pose $B = \begin{pmatrix} A & A \\ 0 & A \end{pmatrix}$.

- 1. Calculer B^m pour tout $m \in \mathbb{N}$.
- 2. Soit $P \in \mathbb{C}[X]$. Exprimer P(B) en fonction de A, P(A) et P'(A).
- 3. Montrer que si B est diagonalisable, alors A l'est aussi.
- 4. Montrer que B est diagonalisable si et seulement si A = 0.

5. Exercices X-ENS

Soit
$$\mathscr{B} = \{u \in \mathbb{C}^{\mathbb{Z}}, u \text{ born\'ee}\} \text{ et } T : \mathscr{B} \to \mathscr{B} \text{ qui \'a} (u_n)_{n \in \mathbb{Z}} \text{ associe} (u_{n+1})_{n \in \mathbb{Z}}.$$

Déterminer les valeurs propres et les vecteurs propres de T. Que dire d'un sous-espace de dimension finie stable par T?

28 Décomposition de Dunford

Soit E un \mathbb{C} -espace vectoriel de dimension $n \ge 1$ et $u \in \mathcal{L}(E)$. Montrer l'existence d'un unique couple (d, n) d'endomorphismes de E tel que

- (i) u = d + n;
- (ii) d et n commutent;
- (iii) d est diagonalisable et n est nilpotent.

Vérifier en outre que d et n sont des polynômes en u.

29 Endomorphismes semi-simples

Soit E un \mathbb{K} -espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. On dit que u est **semi-simple** si tout sous-espace de E stable par u admet un supplémentaire stable.

- 1. Montrer l'équivalence des deux conditions suivantes :
 - (i) u est diagonalisable;
 - (ii) γ_u est scindé et u est semi-simple.
- 2. Montrer l'équivalence des deux conditions suivantes :
 - (i) u est semi-simple;
 - (ii) le polynôme minimal π_u de u est sans facteur carré.

30 Endomorphismes cycliques

Soit E un K-espace vectoriel de dimension finie, $u \in \mathcal{L}(E)$ et $x \in E$. On définit

$$I = \{ P \in \mathbb{K}[X], \ P(u) = 0 \}$$
 et $I_x = \{ P \in \mathbb{K}[X], \ P(u)(x) = 0 \}.$

- 1. Montrer l'existence de polynômes unitaires non nuls π et π_x tels que $I = \pi \mathbb{K}[X]$ et $I_x = \pi_x \mathbb{K}[X]$. Montrer que π_x divise π .
- 2. Montrer qu'il existe $x \in E$ tel que $\mu_x = \mu$.
- 3. On dit que u est **cyclique** s'il existe $x \in E$ tel que $E = \operatorname{Vect}(u^k(x))_k \in \mathbb{N}$. Montrer que u est cyclique si et seulement si $\pi = \chi_u$.
- 4. Montrer que u est cyclique si et seulement si les sous-espaces propres de u sont de dimension 1.

31 Endomorphismes simples

Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \ge 1$, $u \in \mathcal{L}(E)$. On dit que u est **simple** lorsque les seuls sous-espaces de E stables par u sont triviaux. Montrer l'équivalence des conditions suivantes :

- (i) u est simple;
- (ii) Le polynôme caractéristique χ_u de u est irréductible sur K.