

L'usage de l'ordinateur ou de la calculatrice est interdit.

Théorème taubérien de Hardy-Littlewood-Karamata

Dans tout le problème, I désigne l'intervalle $]0, +\infty[$.

A Une intégrale à paramètre

Pour tout $x \in \mathbb{R}$ on pose, sous réserve d'existence,

$$F(x) = \int_0^{+\infty} \frac{e^{-u}}{\sqrt{u}(u+x)} du$$
 et $K = \int_0^{+\infty} \frac{e^{-u}}{\sqrt{u}} du$.

- 1. Montrer que la fonction $\psi: u \mapsto \frac{\mathrm{e}^{-u}}{\sqrt{u}}$ est intégrable sur I.
- 2. Déterminer les valeurs de x pour lesquelles F(x) est définie.
- 3. Montrer que la fonction F est de classe C^1 sur I et exprimer F'(x) sous forme intégrale.
- 4. En déduire que pour tout $x \in I$, $xF'(x) (x \frac{1}{2})F(x) = -K$.
- 5. Pour tout $x \in I$, on pose $G(x) = \sqrt{x} e^{-x} F(x)$. Montrer qu'il existe une constante réelle C telle que pour tout $x \in I$, $G(x) = C K \cdot \int_0^x \frac{e^{-t}}{\sqrt{t}} dt$.
- 6. Déterminer les limites de G en 0 et $+\infty$, et en déduire la valeur de K.

B Étude de deux séries de fonctions

Dans toute cette partie, on pose $f(x) = \sum_{n=1}^{+\infty} \frac{e^{-nx}}{\sqrt{n}}$ et $g(x) = \sum_{n=0}^{+\infty} \sqrt{n} e^{-nx}$.

- 7. Montrer que f et g sont définies et continues sur I.
- 8. Montrer que pour tout $x \in I$, $\int_1^{+\infty} \frac{e^{-ux}}{\sqrt{u}} du \leqslant f(x) \leqslant \int_0^{+\infty} \frac{e^{-ux}}{\sqrt{u}} du$. En déduire un équivalent de f(x) lorsque $x \to 0$.
- 9. Montrer que la suite $\left(\sum_{k=1}^n \frac{1}{\sqrt{k}} 2\sqrt{n}\right)_{n\geqslant 1}$ converge.

- 10. Démontrer que pour tout x > 0, la série $\sum_{n \ge 1} \left(\sum_{k=1}^n \frac{1}{\sqrt{k}}\right) e^{-nx}$ converge et exprimer sa somme h(x) en fonction de f(x) pour tout $x \in I$.
- 11. En déduire un équivalent de h(x) lorsque $x \to 0$. Montrer alors que g(x) est équivalent à $\frac{\sqrt{\pi}}{2x^{3/2}}$ lorsque $x \to 0$.

C Séries de fonctions associées à des ensembles d'entiers

À tout ensemble $A \subseteq \mathbb{N}$ on associe la suite (a_n) définie par

$$a_n = \begin{cases} 1 & \text{si } n \in A, \\ 0 & \text{sinon.} \end{cases}$$

Soit I_A l'ensemble des réels $x \ge 0$ pour lesquels la série $\sum_{n \ge 0} a_n e^{-nx}$ converge. On pose $f_A(x) = \sum_{n=0}^{+\infty} a_n e^{-nx}$ pour tout $x \in I_A$. Enfin, sous réserve d'existence, on pose

 $\Phi(A) = \lim_{x \to 0} x f_A(x)$ et on note S l'ensemble des parties $A \subseteq \mathbb{N}$ pour lesquelles $\Phi(A)$ existe.

- 12. Quel est l'ensemble I_A si A est fini? Si A est infini, montrer que l'on peut extraire une suite (b_n) de la suite (a_n) telle que pour tout $n \in \mathbb{N}$, $b_n = 1$. Déterminer I_A dans ce cas.
- 13. Soit $A \in S$ et (a_n) la suite associée. Pour tout entier naturel n, on note A(n) l'ensemble des éléments de A qui sont $\leq n$. Vérifier que pour tout x > 0 la série $\sum_{n \geq 0} \operatorname{Card}(A(n))$ e^{-nx} converge et que

$$\sum_{n=0}^{+\infty} \operatorname{Card}(A(n)) e^{-nx} = \frac{f_A(x)}{1 - e^{-x}}.$$

Dans la question suivante, $A = A_1$ désigne l'ensemble des carrés d'entiers naturels non nuls.

14. Montrer que si x > 0, $\frac{f_{A_1}(x)}{1 - e^{-x}} = \sum_{n=0}^{+\infty} \lfloor \sqrt{n} \rfloor e^{-nx}$ où $\lfloor \cdot \rfloor$ désigne la partie entière. En déduire un encadrement de $\sum_{n=0}^{+\infty} \sqrt{n} e^{-nx} - \frac{f_{A_1}(x)}{1 - e^{-x}}$, puis un équivalent de f_{A_1} en 0. Prouver alors que $A_1 \in S$ et donner $\Phi(A_1)$. Dans la question suivante, $A = A_2$ désigne l'ensemble constitué des entiers qui sont la somme des carrés de deux entiers naturels non nuls. On admet que $A_2 \in S$, et on désire majorer $\Phi(A_2)$.

Soit v(n) le nombre de couples d'entiers naturels non nuls (p,q) pour lesquels $n = p^2 + q^2$.

15. Montrer que pour tout réel x > 0, la série $\sum_{n \ge 0} v(n) e^{-nx}$ converge et établir que

 $\sum_{n=0}^{+\infty} v(n) e^{-nx} = (f_{A_1}(x))^2.$

Montrer alors que pour tout x > 0, $f_{A_2}(x) \leq (f_{A_1}(x))^2$. En déduire un majorant de $\Phi(A_2)$.

D Un théorème taubérien

Soit $(\alpha_n)_{n\geqslant 0}$ une suite de nombres réels positifs tels que pour tout réel x>0, la série $\sum_{n\geqslant 0} \alpha_n e^{-nx}$ converge. On suppose que

$$\lim_{x \to 0} \left(x \sum_{n=0}^{+\infty} \alpha_n e^{-nx} \right) = \ell \in [0, +\infty[.$$

On note F l'espace vectoriel des fonctions de [0,1] dans \mathbb{R} , E le sous-espace de F des fonctions continues par morceaux et E_0 le sous-espace de E des fonctions continues sur [0,1]. On munit E de la norme $\|\cdot\|_{\infty}$ définie par la formule $\|\psi\|_{\infty} = \sup_{t \in [0,1]} |\psi(t)|$.

Si $\psi \in E$, on note $L(\psi)$ l'application qui à x > 0 associe

$$(L(\psi))(x) = \sum_{n=0}^{+\infty} \alpha_n e^{-nx} \psi(e^{-nx}).$$

16. Montrer que $L(\psi)$ est bien définie pour tout $\psi \in E$ et que l'application L est une application linéaire de E dans F. Vérifier que, pour tous ψ_1, ψ_2 dans E, $\psi_1 \leqslant \psi_2$ entraı̂ne $L(\psi_1) \leqslant L(\psi_2)$.

On note E_1 l'ensemble des $\psi \in E$ pour lesquels $\lim_{x\to 0} x(L(\psi))(x)$ existe et si $\psi \in E_1$, on pose

$$\Delta(\psi) = \lim_{x \to 0} x (L(\psi))(x).$$

- 17. Vérifier que E_1 est un sous-espace vectoriel de E et que l'application Δ est une forme linéaire continue de $(E_1, \| \cdot \|_{\infty})$.*
- 18. Montrer que pour tout $p \in \mathbb{N}$, $e_p : t \in [0,1] \mapsto t^p$ appartient à E_1 et calculer $\Delta(e_p)$. En déduire que $E_0 \subseteq E_1$ et calculer $\Delta(\psi)$ pour tout $\psi \in E_0$.

* Signifie qu'il esciste
$$C \in IK$$
 tel que $\forall Y \notin E, |\Delta(Y)| \leq C ||Y||_{\infty}$

Pour tous $a,b \in [0,1]$ tel que a < b, on note $1_{[a,b]}: [0,1] \to \{0,1\}$ la fonction définie par

$$1_{[a,b]}(x) = \begin{cases} 1 & \text{si } x \in [a,b] \\ 0 & \text{sinon.} \end{cases}$$

Soit $a \in]0,1[$ et $\varepsilon \in]0,\min(a,1-a)[$. On note

$$g_{-}(x) = \begin{cases} 1 & \text{si } x \in [0, a - \varepsilon] \\ \frac{a - x}{\varepsilon} & \text{si } x \in]a - \varepsilon, a[\\ 0 & \text{si } x \in [a, 1] \end{cases}$$

et

$$g_{+}(x) = \begin{cases} 1 & \text{si } x \in [0, a] \\ \frac{a + \varepsilon - x}{\varepsilon} & \text{si } x \in]a, a + \varepsilon[\\ 0 & \text{si } x \in [a + \varepsilon, 1]. \end{cases}$$

19. Vérifier que g_- et g_+ appartiennent à E_0 et calculer $\Delta(g_-)$ et $\Delta(g_+)$. Montrer alors que $1_{[0,a]} \in E_1$ et calculer $\Delta(1_{[0,a]})$. En déduire que $E_1 = E$ et donner $\Delta(\psi)$ pour tout $\psi \in E$.

(difficile)

On considère maintenant la fonction ψ définie sur [0,1] par la formule :

$$\psi(x) = \begin{cases} 0 & \text{si } x \in [0, \frac{1}{e}[\\ \frac{1}{x} & \text{si } x \in [\frac{1}{e}, 1]. \end{cases}$$

20. Calculer $(L(\psi))(\frac{1}{N})$ pour tout entier N>0 et en déduire la limite

$$\lim_{N \to +\infty} \frac{1}{N} \sum_{k=0}^{N} \alpha_k$$

(théorème taubérien).

On rappelle que v(n) est le nombre de couples d'entiers naturels non nuls (p,q) tels que $n = p^2 + q^2$.

21. Si $A \in S$, que vaut $\lim_{n \to +\infty} \frac{1}{n} \operatorname{Card}(A(n))$? Déterminer alors $\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} v(k)$.

Fin du problème