Devoir Libre nº 9 : Sujet E3A

Partie I : On admet que $\sum_{k=1}^{+\infty} rac{1}{k^2} = rac{\pi^2}{6}$.

Soit $x \in \mathbb{R}$. On note, lorsque cela a un sens, $H(x) = \int_0^1 \frac{t^x \ln(t)}{t-1} dt$.

- 1. Démontrer que pour s>-1, l'intégrale $J_s=\int_0^1 t^s \ln(t) dt$ existe et donner sa valeur.
- 2. Étude de la fonction H
 - (a) Montrer que l'ensemble de définition de la fonction H est $D_H =]-1, +\infty[$.
 - (b) Montrer que H est monotone sur D_H .
 - (c) Montrer que pour tout réel $\alpha > 0$, la fonction $t \mapsto \frac{t^{\alpha}(\ln(t))^2}{1-t}$ est prolongeable en une fonction bornée sur le segment [0,1].
 - (d) Démontrer que H est de classe C^1 sur D_H . Retrouver alors la monotonie de H.
 - (e) Soit (x_n) une suite réelle de limite $+\infty$. Déterminer $\lim_{n\to+\infty} H(x_n)$. En déduire $\lim_{x\to+\infty} H(x)$.
 - (f) Démontrer que $\forall x > -1$, $H(x) H(x+1) = \frac{1}{(x+1)^2}$.
 - (g) Déterminer alors un équivalent simple de H(x) lorsque x tend vers -1 par valeurs supérieures.
 - (h) Soit x > -1.
 - i. Justifier la convergence de la série $\sum_{k\geqslant 1}\frac{1}{(x+k)^2}.$
 - ii. Prouver que pour tout $n \in \mathbb{N}^*$, $H(x) = \sum_{k=1}^n \frac{1}{(x+k)^2} + H(x+n)$.
 - iii. En déduire que $H(x) = \sum_{k=1}^{\infty} \frac{1}{(x+k)^2}$ puis H(0) et H(1).

Partie II

- 1. Prouver que pour tout x > -1 et tout entier naturel k non nul, $\frac{1}{(x+k+1)^2} \leqslant \int_{k}^{k+1} \frac{dt}{(x+t)^2} \leqslant \frac{1}{(x+k)^2}$.
- 2. Déterminer un équivalent de H(x) lorsque x tend vers $+\infty$.
- 3. Pour tout entier naturel n, on pose $u_n = H(n)$.
 - (a) Etudier la convergence des séries $\sum_{n\geqslant 0} u_n$ et $\sum_{n\geqslant 0} (-1)^n u_n$
 - (b) Démontrer que $\sum_{n=0}^{+\infty} (-1)^n u_n = \int_0^1 \frac{\ln(\nu)}{\nu^2 1} d\nu$
 - (c) Donner la valeur de cette intégrale en fonction de $H\left(-\frac{1}{2}\right)$.

Partie III : Pour tout entier naturel $k \ge 2$, on note $Z_k = \sum_{p=1}^{+\infty} \frac{1}{p^k}$.

- 1. Pour tout couple d'entiers naturels (p,q), on pose $I_{p,q} = \int_0^1 t^p [\ln(t)]^q dt$ et on admettra que cette intégrale existe.
 - (a) Justifier que si $q \ge 1$, $I_{p,q} = -\frac{q}{p+1}I_{p,q-1}$.
 - (b) En déduire la valeur de $I_{p,q}$.
- 2. (a) Justifier l'existence pour tout $n \in \mathbb{N}$ de $B_n = \int_0^1 \frac{[\ln(t)]^{n+1}}{t-1} dt$.
 - (b) Exprimer B_n à l'aide des intégrales $I_{p,q}$. On pourra utiliser la série de terme général t^p .
 - (c) Prouver enfin que $\forall n \in \mathbb{N}$, $B_n = (-1)^n (n+1)! Z_{n+2}$.
- 3. En déduire alors que $\forall x \in]-1,1[, H(x)=\sum_{k=0}^{+\infty}(-1)^k(k+1)Z_{k+2}x^k$.