Devoir Libre n°7

Deux sujets au choix (CCINP ou Centrale)

Sujet CCINP

Notations et objectifs.

On note:

- N: l'ensemble des nombres entiers naturels.
- R: l'ensemble des nombres réels,
- C: l'ensemble des nombres complexes,
- \mathscr{C}^0 : le \mathbb{R} -espace vectoriel des fonctions continues de \mathbb{R} dans \mathbb{R} ,
- \mathscr{C}_1^0 : le sous espace vectoriel de \mathscr{C}^0 des fonctions f 1-périodiques (c'est à dire des fonctions telles que f(x+1)=f(x), pour tout $x\in\mathbb{R}$).

Dans tout ce problème, on désigne par θ l'application de \mathscr{C}^0 dans \mathscr{C}^0 , définie par :

pour tout $f \in \mathscr{C}^0$, $\theta(f) = F$ où F est la fonction de \mathbb{R} dans \mathbb{R} qui à x associe $\int_{x}^{x+1} f(t) dt$.

On admet que θ est un endomorphisme de \mathscr{C}^0 .

L'objet de ce problème est l'étude de quelques propriétés de la fonction F et de l'endomorphisme θ .

Partie I : Quelques propriétés de $F = \theta(f)$

I.1. Exemples.

- I.1.1. Expliciter F(x), si f est définie sur \mathbb{R} par f(t) = 1.
- 1.1.2. Expliciter F(x), si f est définie sur \mathbb{R} par $f(t) = t^k$ (où k est fixé dans \mathbb{N}^*).
- I.2. Variations de $F = \theta(f)$.

On désigne maintenant par f une fonction arbitraire de \mathscr{C}^0 .

- I.2.1. Montrer que la fonction F est de classe \mathscr{C}^1 sur \mathbb{R} . Expliciter F'(x) en fonction de f et de x.
- I.2.2. Montrer que si la fonction f est croissante (respectivement décroissante) sur un intervalle $J_{x_0} = [x_0, +\infty[$, alors la fonction F est croissante (respectivement décroissante) sur J_{x_0} .
- I.2.3. Montrer que la fonction $F = \theta(f)$ est constante sur \mathbb{R} si et seulement si f appartient à \mathscr{C}_1^0 .
- 1.2.4. Expliciter F(x), si f est définie sur \mathbb{R} par $f(t) = |\sin(\pi t)|$.

On suppose de nouveau que f désigne une fonction arbitraire de \mathscr{C}^0 .

- I.2.5. On suppose que la fonction f admet une limite L_1 en $+\infty$. Montrer que la fonction F admet une limite L_2 (que l'on explicitera) en $+\infty$; on pourra étudier d'abord le cas où $L_1=0$.
- 1.3. Propriétés du graphe de F.

Soient $f \in \mathcal{C}^0$ et $F = \theta(f)$.

On considère la fonction ψ définie sur $\mathbb R$ par $\psi(u) = F\left(u - \frac{1}{2}\right) = \int_{v-1}^{u+\frac{1}{2}} f(t) \, dt$.

- 1.3.1. Comparer $\psi(-u)$ et $\psi(u)$, si la fonction f est impaire (respectivement paire).
- I.3.2. Quelle propriété géométrique de la représentation graphique de la fonction F peut-on déduire des résultats obtenus en I.3.1, si la fonction f est impaire (respectivement paire) ?
- 1.4. Etude d'un exemple.

Soit
$$f(t) = \sum_{k=1}^{+\infty} \frac{e^{-kt^2}}{k^2 + 1}$$
, pour t réel.

- I.4.1. Montrer que la fonction f est définie et continue sur \mathbb{R} .
- I.4.2. La fonction f est-elle de classe \mathscr{C}^1 sur \mathbb{R} ?
- 1.4.3. La fonction f admet-elle une limite en $+\infty$? Si oui, laquelle?
- 1.4.4. Indiquer l'allure de la représentation graphique de la fonction f (on ne cherchera pas à préciser f(0)).
- I.4.5. La fonction f est-elle intégrable sur \mathbb{R} ?

- 1.4.6. Soit $F = \theta(f)$.
- 1.4.6.1. Indiquer l'allure de la représentation graphique de la fonction F.
- I.4.6.2. La fonction F est-elle intégrable sur \mathbb{R} ?

(on pourra comparer F(x) et f(x) pour x appartenant à \mathbb{R}^+).

Partie II : L'endomorphisme θ

- II.1. L'endomorphisme θ est-il surjectif?
- II.2. Sur le noyau de θ .

On note désormais $Ker(\theta)$ le noyau de l'endomorphisme θ .

II.2.1. Montrer que :
$$f \in Ker(\theta) \iff \left(f \in \mathcal{C}_1^0 \text{ et } \int_0^1 f(t) dt = 0 \right)$$

II.2.2. Soit
$$(f,g) \in (\mathscr{C}_1^0)^2$$
. On note $\langle f|g \rangle = \int_0^1 f(t)g(t) dt$.

On admettra sans justification, que $\langle \cdot | \cdot \rangle$ est un produit scalaire sur \mathcal{C}_1^0 Soit $k \in \mathbb{N}^*$. On note c_k la fonction définie sur \mathbb{R} par $c_k(t) = \cos(2\pi kt)$.

- II.2.2.1. Vérifier que c_k appartient à \mathcal{C}_i^0 pour tout $k \in \mathbb{N}^*$ et calculer $\langle c_i | c_k \rangle$ pour tout choix de $(j,k) \in (\mathbb{N}^*)^2$.
- II.2.2.2. $Ker(\theta)$ est-il de dimension finie?
- II.2.3. Soit $f \in \mathcal{C}_1^0$.

Soit
$$n \in \mathbb{N}$$
. On note : $\phi_n(x) = \int_n^x f(t) dt$ pour $x \in [n, n+1]$.
Soit $n \in \mathbb{N}^*$. On pose $W_n = \int_n^x \frac{f(t)}{t} dt$.

- II.2.3.1. Etablir, pour tout $n \in \mathbb{N}^*$, la relation $W_n = \frac{\phi_0(1)}{n+1} + \int_{-n}^{n+1} \frac{\phi_n(t)}{t^2} dt$.
- II.2.3.2. Si on suppose que f appartient à $ker(\theta)$, quelle est la nature de la série $\sum_{n\geq 1}W_n$?
- II.2.3.3. Si on suppose que f n'appartient pas à $ker(\theta)$, quelle est la nature de la série $\sum_{n\geq 1}W_n$?
- II.3. Sur le spectre de θ .

On note $Sp(\theta)$ l'ensemble des valeurs propres réelles de l'endomorphisme θ .

Si a est un nombre réel fixé, on note h_a la fonction définie sur $\mathbb R$ par $h_a(t)=e^{at}$.

- II.3.1. Montrer que chaque h_a est un vecteur propre de l'endomorphisme heta .
- II.3.2. Etudier les variations de la fonction $u \mapsto \frac{e^u 1}{u}$ pour $u \in \mathbb{R}^*$.
- II.3.3. Expliciter l'ensemble $Sp(\theta) \cap \mathbb{R}^+$.

Partie III : Une suite de fonctions propres de l'endomorphisme θ

Soit λ une valeur propre de l'endomorphisme θ

On note E_{λ} le sous-espace propre associé à la valeur propre λ qui est fixée dans toute cette partie. On suppose $\lambda > 0$.

III.1. Sout $k \in \mathbb{N}^*$. On note I_k l'intervalle $]2k\pi,(2k+1)\pi[$.

On pose, pour tout t de l'intervalle I_k : $g(t) = t \left(\frac{\cos(t)}{\sin(t)} \right) + \ln \left(\frac{\sin(t)}{\lambda t} \right)$, où \ln désigne la fonction logarithme népérien.

III.1.1. Soit ρ la fonction définie sur I_k par : $\rho(t) = t \sin(2t) - t^2 - \sin^2(t)$.

Etudier la fonction ρ sur I_k et préciser son signe.

III.1.2. Montrer que g définit une bijection de I_k sur un intervalle de \mathbb{R} à préciser.

On se propose de montrer l'existence, dans E_{λ} , d'une suite (non triviale) $(f_k)_{k\in\mathbb{N}^*}$ de fonctions propres.

III.2. Soit $\gamma = a + ib$, où $(a, b) \in \mathbb{R} \times]0, +\infty[$.

III.2.1. Soit
$$x \in \mathbb{R}$$
. Calculer $\int_{x}^{x+1} e^{\gamma t} dt$.

- III.2.2. A quelle condition nécessaire et suffisante la fonction h de $\mathbb R$ dans $\mathbb R$ définie par $h(t) = e^{at} \cos(bt)$ est-elle un vecteur propre de l'endomorphisme θ associé à la valeur propre λ ?
- III.3. En déduire une suite $(f_k)_{k\in\mathbb{N}^*}$ de fonctions propres de l'endomorphisme θ .

Concours Centrale - Supélec 1998

Épreuve: MATHÉMATIQUES I

Filière MP

Soient a et b tels que $-\infty \leqslant a < b \leqslant +\infty$ et f une fonction de]a,b[dans \mathbb{R} , de classe C^{∞} sur]a,b[. f est dite absolument monotone (en abrégé AM) si

$$\forall n \in \mathbb{N}, \quad \forall x \in]a, b[, \quad f^{(n)}(x) \geqslant 0.$$

f est dite complètement monotone (en abrégé CM) si

$$\forall n \in \mathbb{N}, \quad \forall x \in]a, b[, \quad (-1)^n f^{(n)}(x) \ge 0.$$

Partie I -

I.A - Soient f et g deux fonctions AM définies sur a, b. Montrer que f + g et fg sont AM. Qu'en est-il pour les fonctions CM?

I.B - Si f est une fonction AM sur a, b, montrer par récurrence que e^f l'est aussi.

I.C - Soient $f: [a, b] \longrightarrow \mathbb{R}$ et $g: [-b, -a] \longrightarrow \mathbb{R}$ définie par g: g(x) = f(-x). Montrer que f: g(x) = f(-x) definie par g: g(x) = f(-x). si, et seulement si, g est CM sur]-b.-a[.

I.D -

I.D.1) Vérifier que la fonction — ln est CM sur [0, 1].

I.D.2) Montrer que $f:]0,1[\longrightarrow \mathbb{R}$ définie par

$$f(x) = \frac{1}{\sqrt{1 - x^2}}$$

est AM sur]0, 1[.

I.D.3) Montrer que la fonction arcsin est AM sur]0,1[.

I.D.4) Montrer que la fonction tan est AM sur $]0, \frac{\pi}{2}[$.

I.E -

I.E.1) On suppose dans cette question que $a \in \mathbb{R}$ et f est AM sur a, b. Montrer qu'il existe $\lambda \in \mathbb{R}$ tel que

$$\lambda = \lim_{a^{\pm}} f$$

On prolonge f en posant $f(a) = \lambda$. Montrer que f est dérivable à droite en a, et que f' est continue à droite

I.E.2) Plus généralement, montrer que f est indéfiniment dérivable à droite en a avec des dérivées positives ou nulles. Le même phénomène se produit-il en b?

I.F - On suppose dans cette question $0 \le a < b < +\infty$.

On note $C_{a,b}$ l'espace vectoriel des fonctions continues de [a,b] dans \mathbb{R} .

On rappelle qu'une fonction f de $C_{a,b}$ est dite positive si, pour tout $x \in [a,b], f(x) \ge 0$.

Une application $\mu: C_{a,b} \longrightarrow \mathbb{R}$ est appelée forme linéaire positive si elle est linéaire et si, de plus, on a :

$$\forall f \in C_{a,b} \qquad f \geqslant 0 \Longrightarrow \mu(f) \geqslant 0$$

Soit μ une forme linéaire positive et e_x la fonction définie par $e_x(t) = e^{-xt}$ si $t \in [a, b]$. On pose $\tilde{\mu}(x) = \mu(e_x)$.

I.F.1) Soit $f \in C_{a,b}$, montrer que $|\mu(f)| \leq \mu(|f|)$.

I.F.1) Soft $f \in C_{a,b}$, monetar que $|\mu(f)| > \mu(f)$ $|f||_{\infty}$ où $f_0(x) = 1$ et $||f||_{\infty} = \sup_{x \in [a,b]} |f(x)|$

I.F.3) Montrer que $\tilde{\mu}$ est positive, décroissante et continue sur [a, b].

I.F.4) On note $e_{n,x}$ la fonction définie par : $e_{n,x}(t) = t^n e^{-xt}$ si $t \in [a,b]$. Montrer que $\varphi : [a,b] \longrightarrow \mathbb{R}$ définie par $\varphi(x) = \mu(e_{n,x})$ est dérivable sur [a,b], décroissante et que : $\varphi'(x) = -\mu(e_{n+1,x})$.

On pourra justifier et utiliser le résultat suivant, vrai pour tout $u \in \mathbb{R}$:

I.F.5) Montrer que $\tilde{\mu}$ est indéfiniment dérivable sur [a,b] et que : $\tilde{\mu}^{(n)}(x) = (-1)^n \mu(e_{n,x})$. En déduire que $\tilde{\mu}$

 $0 \le e^{-u} - 1 + u \le e^{|u|} u^2 / 2$.

I.F.6) Proposer deux exemples de formes linéaires non nulles positives μ_1, μ_2 ; calculer $\tilde{\mu}_1$ et $\tilde{\mu}_2$.

Partie II -

On suppose dans cette partie que : $-\infty < a < 0 < b \leq +\infty$. On utilisera librement la formule de Taylor avec reste intégrale.

II.A - Soit f une fonction AM sur]a,b[et

$$R_n(f,x) = f(x) - f(0) - \sum_{k=1}^n \frac{f^{(k)}(0)}{k!} x^k.$$

II.A.1) Prouver que, pour n fixé, la fonction $x \mapsto R_n(f,x)/x^n$ est croissante sur]0,b[et possède une limite nulle quand x tend vers 0.

II.A.2) Montrer que la série

$$\sum \frac{f^{(n)}(0)}{n!} x^n$$

converge pour $x \in [0, b[$. Soit g(x) sa somme, montrer que $g \leqslant f$.

II.A.3) Déduire de II.A.1 et II.A.2 que : q = f sur [0, b[.

On pourra prendre 0 < x < y < b et montrer que

$$0 \leqslant R_n(x) \leqslant \left(\frac{x}{y}\right)^n f(y).$$

II.A.4) Montrer que f est développable en série entière au voisinage de 0.

On pourra poser $\varepsilon \in \{-1,1\}$, $h_{\varepsilon}(x) = f(x) + \varepsilon f(-x)$ si |x| < r et $r = \min(b, -a)$.

II.B - En suivant les indications de la question I.E, on prolonge f en a. Montrer que pour tout $x \in [a, b]$

$$f(x) = \sum_{n=0}^{+\infty} f^{(n)}(a) \frac{(x-a)^n}{n!}.$$

II.C - Montrer que si f s'annule en $x_0 \in]a, b[$, alors f est nulle. Donner l'ensemble des fonctions f AM sur [a, b] telles que, pour un $p \in \mathbb{N}$ fixé, $f^{(p)}$ possède un zéro dans [a, b]

Partie III -

On suppose dans cette partie que $-\infty < a < b < +\infty$.

Étant donné $h \in \mathbb{R}_{+}^{*}$, on définit sur l'ensemble des fonctions réelles d'une variable réelle les applications T_h , Δ_h et I par :

$$T_h(f)(x) = f(x+h), \ \Delta_h(f)(x) = f(x+h) - f(x)$$
et $I(f)(x) = \Delta_h^0(f)(x) = f(x).$

Plus généralement, on peut définir les opérateurs aux différences finies successifs : $\Delta_h^{n+1} = \Delta_h \circ \Delta_h^n$.

III.A - On suppose f définie sur a, b. Quel est l'ensemble de définition de $\Delta_b^n(f)$?

III.B - Montrer que, pour tout $n \in \mathbb{N}$,

$$\Delta_h^n(f)(x) = \sum_{k=0}^n (-1)^{n-k} C_n^k f(x+kh) \text{ où } C_n^k = \frac{n!}{k!(n-k)!}$$

III.C - On suppose f définie et AM sur]a,b[. Montrer que, pour tout $n \in \mathbb{N}$, $\Delta_h^n(f) \geqslant 0$. On pourra poser $X(h) = \Delta_h^{n+1}(f)(x)$ et exprimer X'(h) en fonction de $\Delta_h^n(f')(x+h)$.

III.D - On considère les fonctions f totalement monotones (TM) c'est-à-dire, définies sur]a,b[, de classe C^{∞} telles que :

$$\forall n \in \mathbb{N}, \forall h \in]0, (b-a)/n[, \forall x \in [a, b-nh[, \Delta_h^n(f)(x)]) \ge 0.$$

III.D.1) Montrer qu'une fonction TM est positive et croissante.

III.D.2) On pose

$$S_j = \sum_{k=0}^{n} (-1)^{n-k} C_n^k \frac{k^j}{j!}$$

pour $j \in \mathbb{N}$ et $\psi(t) = (e^t - 1)^n$. Déduire du calcul des dérivées successives de ψ en 0 que S_j vaut 0 si j < n et que S_n vaut 1.

III.D.3) Montrer que toute fonction TM est AM.

• • • FIN • • •