Corrigé du Devoir en Temps Limité nº 3

Exercice 1: Suites et suites de fonctions - E3A PSI 2010

Partie A

- 1. (a) $a_n \ge 0$ et $b_n \ge 0$ s'obtient par récurrence simple sans encombre (à rédiger soigneusement sur la copie avec comme hypothèse de récurrence « a_n et b_n existent et sont positifs. »
 - (b) $a_{n+1} b_{n+1} = \frac{1}{2} \left(\sqrt{a_n} \sqrt{b_n} \right)^2$ s'obtient directement en remplaçant a_{n+1} et b_{n+1} par les formules données dans l'énoncé.
- 2. La question précédente donne directement que pour tout $n \in \mathbb{N}$, $b_{n+1} \le a_{n+1}$. Soit $n \ge 1$. On a alors $0 \le b_n \le a_n$ et donc $a_{n+1} \le \frac{2a_n}{2} = a_n$ et $b_{n+1} \ge \sqrt{b_n^2} = b_n$ car tout est positif.

Finalement, $0 \le b_n \le b_{n+1} \le a_{n+1} \le a_n$.

3. Soit $n \geqslant 1$. Vu la question précédente, $a_n b_n \geqslant b_n^2$ donc $b_n \leqslant \sqrt{a_n b_n}$ puis $a_n - 2\sqrt{a_n b_n} + b_n \leqslant a_n - b_n$ et enfin $\left(\sqrt{a_n} - \sqrt{b_n}\right)^2 \leqslant a_n - b_n$. Avec la question 1.b, on a alors pour tout $n \geqslant 1$, $a_{n+1} - b_{n+1} \leqslant \frac{1}{2}(a_n - b_n)$.

En itérant, on obtient pour tout $n \ge 1$, $a_n - b_n \le \frac{1}{2^{n-1}}(a_1 - b_1)$.

Si, de plus, $1 = b_0 \le a = a_0$, tout ce qui précède reposant sur cette inégalité s'étend au rang n = 0 et on peut écrire

$$a_1 - b_1 \le \frac{1}{2}(a_0 - b_0) = \frac{1}{2}(a - 1) = \frac{1}{2}|1 - a|$$
.

Sinon, il suffit d'échanger les rôles de a_0 et b_0 ce qui ne change pas les autres termes des suites, pour obtenir

$$a_1 - b_1 \le \frac{1}{2}(1 - a) = \frac{1}{2}|1 - a|$$

Finalement, pour tout $n \ge 0$, $a_n - b_n \le \frac{1}{2^n} |1 - a|$.

4. D'après 2, $(a_n)_{n\geqslant 1}$ et $(b_n)_{n\geqslant 1}$ sont respectivement décroissante et croissante. Par la question précédente, $a_n-b_n\to 0$ (on a bien $0\leqslant a_n-b_n$. Donc $(a_n)_{n\geqslant 1}$ et $(b_n)_{n\geqslant 1}$ sont adjacentes.

Donc $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ sont convergentes vers une même limite.

Partie B

1. La partie nous dit directement que pour tout $x \in \mathbb{R}^+$, $(\varphi_n(x))_n$ et $(\psi_n(x))_n$ convergent vers une même limite que l'on peut noter f(x).

Par définition, (les suites (φ_n) et (ψ_n) convergent simplement sur $[0,+\infty[$ vers une fonction f.

2. (a) Avec x=0, $\varphi_0(0)=0$ et on obtient par récurrence que pour tout $n\geqslant 1$, $\psi_n(0)=0$.

Or $\psi_n(0) \xrightarrow[n \to +\infty]{} f(0)$ donc par unicité de la limite, f(0) = 0.

Avec x = 1, $\varphi_0(1) = \psi_1(1) = 1$ et par récurrence, pour tout $n \in \mathbb{N}$, $\varphi_n(1) = \psi_n(1) = 1$.

Or
$$\varphi_n(1) \xrightarrow[n \to +\infty]{} f(1)$$
 donc par unicité de la limite, $f(1) = 1$.

(b) Soit
$$x \in \mathbb{R}^+$$
. Avec l'étude de la partie A, pour tout $n \in \mathbb{N}$, $\sqrt{x} = \psi_1(x) \leqslant \varphi_n(x) \leqslant \varphi_1(x) = \frac{1+x}{2}$. Donc en

faisant
$$n \to +\infty$$
, $\sqrt{x} \le f(x) \le \frac{1+x}{2}$.

3. Soit A un réel strictement positif. Avec l'étude de la partie A, pour tout $x \in [0,A]$, la monotonie et la limite commune des suites nous dit que pour $n \ge 1$, $\psi_n(x) \le f(x) \le \varphi_n(x)$ donc

$$|\varphi_n(x) - f(x)| \le \psi_n(x) - \varphi_n(x) \le \frac{1}{2^n} |1 - x| = \frac{1}{2^n} \max(1 - x, x - 1) \le \frac{1}{2^n} \max(1, A - 1)$$

d'après A.3, majoration uniforme en
$$x$$
. Donc $\varphi_n - f$ est bornée et $\|\varphi_n - f\|_{\infty,[0,A]} \le \frac{1}{2^n} \max(1,A-1) \to 0$ et

$$(\varphi_n)$$
 converge uniformément vers f sur $[0,A]$.

On montrer exactement de la même manière que (ψ_n) converge uniformément vers f sur [0,A].

Remarque : Le $n \ge 1$ ne change rien sur le mode de convergence.

- * On montre par récurrence sur $n \in \mathbb{N}$ que les fonctions φ_n et ψ_n sont continues sur $[0,+\infty[$, par opérations usuelles sur les fonctions continues (à rédiger quand même, surtout pour E3A!).
 - * La suite de fonctions (φ_n) (par exemple) converge uniformément vers f sur tout segment de la forme [0,A] de \mathbb{R}^+ donc au voisinage de tout point de \mathbb{R}^+ .

Par théorème de transfert de continuité, f est donc continue sur \mathbb{R}^+ .