ÉCOLE NAVALE

Concours 1992

Deuxième composition de mathématiques

Durée: 3 heures

I.

- 1. **a.** Montrer que si (u_n) est une suite strictement positive telle que la série de terme général u_n diverge, et si la suite (v_n) converge vers l, alors la suite $w_n = \frac{\sum\limits_{p=0}^n u_p v_p}{\sum\limits_{p=0}^n u_p}$ converge vers l.
 - **b.** La convergence de w_n entraı̂ne-t-elle celle de v_n ?
- **2.** Déterminer $\lim_{n \to +\infty} \left[\prod_{p=1}^{n} \left(1 + \frac{1}{p} \right) \right]^{1/n}$.
- 3. a. Montrer que si (u_n) et (v_n) sont deux suites strictement positives équivalentes telles que les séries de termes généraux u_n et v_n divergent alors les sommes partielles $S_n = \sum_{p=0}^n u_p$ et $S'_n = \sum_{p=0}^n v_p$ sont des suites équivalentes.
 - **b.** En déduire que un équivalent de $\sum_{k=1}^{n} \frac{1}{k}$.
- 4. Montrer plus précisément que $\gamma_n = \sum_{k=1}^n \frac{1}{k} \ln n$ tend vers une limite γ que l'on ne cherchera pas à calculer. Préciser le sens de variation de γ_n et l'encadrer par deux entiers consécutifs, calculer γ_{100} et γ_{1000} . Écrire un programme en Pascal permettant le calcul de γ_n .
- 5. a. Montrer que si u_n est le terme général d'une série positive et que pour $n \ge 1$, $\frac{u_{n+1}}{u_n} = 1 \frac{\lambda}{n} + v_n$ où v_n est le terme général d'une série absolument convergente, alors : $\ln \frac{u_{n+1}}{u_n} = -\frac{\lambda}{n} + w_n \text{ où } w_n \text{ est le terme général d'une série absolument convergente.}$
 - **b.** En déduire qu'il existe A > 0 tel que u_n est équivalent à $\frac{A}{n^{\lambda}}$.
 - c. Étudier la série de terme général $u_n = \frac{1 \cdot 3 \cdots (2n-1)}{2 \cdot 4 \cdots (2n)(2n+2)}$.
- **6. a.** On dit que la série de terme général u_n converge au sens de Cesaro si la suite $\sigma_n = \frac{S_0 + S_1 + S_2 + \ldots + S_n}{n+1}$ converge, où $S_n = \sum_{k=0}^n u_k$.

Prouver que si la série converge, elle converge au sens de Cesaro.

b. On suppose que la série de terme général u_n converge au sens de Cesaro et que $\lim_{n \to +\infty} nu_n = 0$. Montrer que la série est convergente.

- 1. Soit la suite récurrente définie par u_0 et $(\forall n \in \mathbb{N})$ $u_{n+1} = u_n + u_n^2$. Étudier sa convergence suivant les valeurs de u_0 et préciser sa limite.
- **2.** a. On suppose que la suite converge mais n'est pas stationnaire et on pose $v_n = -u_n$; quelle relation de récurrence vérifie v_n ? Montrer que v_n est équivalent à v_{n+1} .
 - **b.** On pose $a_n = \frac{1}{v_n} \frac{1}{v_{n-1}}$, montrer que (a_n) converge et en déduire un équivalent de v_n .
 - c. Quelle est la nature des séries de termes généraux v_n , $\sin\left(v_n^2\right)$ et $\frac{v_n}{\sqrt{n}}$?
 - \boldsymbol{d} . Soit $b_n=a_n-1$. Montrer que b_n tend vers zéro et en trouver un équivalent.
 - e. En déduire la nature de la série $t_n = v_n \frac{1}{n}$.
- **3.** Pour quelles valeurs de u_0 la suite (u_n) tend-elle vers l'infini?

Montrer qu'alors u_n^2 est équivalent à u_{n+1} .

Prouver que la suite $P_n = \frac{\ln u_n}{2^n}$ a une limite λ que l'on ne cherchera pas à calculer.

- **4.** On suppose jusqu'à la fin de la partie II u_0 strictement positif. La limite λ est fonction de u_0 seulement. Montrer que c'est une fonction croissante de u_0 , que $\lambda > 0$ et que pour tout $n \in \mathbb{N}$, $\lambda \frac{\ln u_n}{2^n} < \frac{1}{2^n u_n}$.
- **5.** Quelle est la nature des séries de termes généraux $\frac{1}{u_n}$ et $\frac{(-1)^n n}{u_n}$?

Ш

- 1. Étudier la suite récurrente définie par u_0 et $u_{n+1} = \frac{1+u_n}{\sqrt{1+u_n^2}} 1$.
- **2.** Étudier les séries de termes généraux u_n^2 et u_n .