Correction CCP maths 1 MP

Avertissement: Il subsiste certainement quelques coquilles...

Exercice 1 : une intégrale double

Pour calculer cette intégrale, on effectue le changement de variable en coordonnées polaires : $\begin{cases} x = r\cos(\theta) \\ y = r\sin(\theta) \end{cases}$

Il est alors connu que $dx dy = r dr d\theta$.

Le nouveau domaine d'intégration est $[0,1] \times [0,2\pi]$.

Ainsi,
$$I = \int \int_{[0,1]\times[0,2\pi]} \frac{r}{1+r^2} dr d\theta$$
.

$$I = 2\pi \times \int_0^1 \frac{r}{1+r^2} dr = 2\pi \frac{1}{2} [\ln(1+r^2)]_0^1 = \pi \ln(2)$$

Exercice 2 : équation différentielle

1. Sur **l'intervalle** $]0, +\infty[$ l'équation (E) se réécrit sous forme résolue $y'' + \frac{a(x)}{x^2}y' + \frac{b(x)}{x^2}y = 0.$

Les fonctions $x\mapsto \frac{a(x)}{x^2}$ et $x\mapsto \frac{b(x)}{x^2}$ sont continues sur I et l'équation est linéaire homogène d'ordre 2. Donc par théorème, S^+ est de dimension 2 et de même, S^- est de dimension 2.

2. Soit $f \in \text{Ker }(\varphi)$. Alors f est nulle sur les intervalles I et J donc sur \mathbb{R}^* .

Par continuité de f en 0, f(0) = 0.

Donc f = 0 ce qui montre que Ker $(\varphi) = \{0\}.$

 φ étant une application linéaire injective, elle définit un isomorphisme de S sur Im (φ) .

Or Im (φ) est un sev de $S_1 \times S_2$ qui est un ev de dimension 2+2=4.

Donc Im (φ) est un ev de dimension finie et $\dim(\operatorname{Im}(\varphi)) \leq 4$.

Etant isomorphe à Im (φ) , S est aussi de même dimension finie ce qui donne $\dim(S) \leq 4$.

3. • Soit $I_0 \in \{I, J\}$ (l'un des deux intervalles...)

Sur I_0 , l'équation est équivalente à $y''+\frac{1}{x}y'=0$ soit au système $\begin{cases} z'+(1/x)\times z=0\\ y'=z \end{cases}$

- La première équation, linéaire, homogène, d'ordre 1 a immédiatement pour ensemble solution sur l'intervalle I_0 la droite vectorielle $\{x \mapsto \frac{K}{x}, K \in \mathbb{R}\}.$
- Ainsi, y est solution de (E) ssi $\exists K \in \mathbb{R}, y' = \frac{K}{x}$ ssi $\exists (K, L) \in \mathbb{R}^2, y = K \ln(|x|) + L$. Conclusion : sur l'intervalle I ou l'intervalle J, l'ensemble solution est $\mathrm{Vect}\ (x \mapsto 1, x \mapsto \ln(|x|)\}$
- Soit $f \in S$. Alors il existe $(k_1, k_2, k_3, k_4) \in \mathbb{R}^4$ tel que $\begin{cases} \forall x > 0, f(x) = k_1 \ln(x) + k_2 \\ \forall x < 0, f(x) = k_3 \ln(|x|) + k_4 \end{cases}$ f étant continue en 0 donc bornée au voisinage de 0, on obtient $k_1 = k_3 = 0$.

La continuité à gauche et à droite en 0 impose alors $k_2 = f(0) = k_4$.

Donc f est une fonction constante.

- Réciproquement, il est immédiat de vérifier que les fonctions constantes sont éléments de f. Conclusion : $S = \text{Vect } (x \mapsto 1) \text{ et } \dim(S) = 1.$
- 4. Notons f_{α} la fonction définie sur I par $f_{\alpha}(x) = x^{\alpha}$.

Alors f_{α} est solution de (E) ssi $\forall x > 0, x^2\alpha(\alpha - 1)x^{\alpha - 2} - 6x\alpha x^{\alpha - 1} + 12x^{\alpha} = 0$ ssi $\forall x > 0, x^{\alpha} \times (\alpha^2 - 7\alpha + 12) = 0$ 4 et 3 sont solutions de l'équation $\alpha^2 - 7\alpha + 12$ donc les fonctions $x \mapsto x^3$ et $x \mapsto x^4$ sont éléments de S^+ .

• La famille $(x \mapsto x^3, x \mapsto x^4)$ est une famille libre à 2 éléments (vérification immédiate et laissée au soin du lecteur) d'éléments de S^+ et S^+ est de dimension 2.

Donc c'est une base de S^+ et $S^+ = \text{Vect } (x \mapsto x^3, x \mapsto x^4)$.

• On vérifie immédiatement par le calcul que $x \mapsto x^3$ et $x \mapsto x^4$ définissent deux fonctions sur J solutions de (E). Elles forment également une famille libre à 2 éléments et $\dim(S^-) = 2$.

Donc $S^- = \text{Vect } (x \mapsto x^3, x \mapsto x^4)$.

• On vérifie que $S = \left\{ x \mapsto \left\{ \begin{array}{l} k_1 x^3 + k_2 x_4 \text{ si } x \geq 0 \\ k_3 x^3 + k_4 x^4 \text{ si } x < 0 \end{array} \right., (k_1, ..., k_4) \in \mathbb{R}^4 \right\}$.

Soit $f \in S$. D'après ce qui précède, pour vérifier que S appartient à l'ensemble proposé, il suffit de vérifier que f(0) = 0...

1

On sait qu'il existe $k_1, k_2 \in \mathbb{R}$ tel que $\forall x > 0, f(x) = k_1 x^3 + k_2 x^4$. La continuité de f en 0 donc à droite en 0 donne immédiatement $f(0) = \lim_0 k_1 x^3 + k_2 x^4 = 0.$

Soit f dans l'ensemble proposé.

Alors il existe $k_1,...,k_4 \in \mathbb{R}$ vérifiant ce qu'il faut...

On vérifie que f est de classe C^2 sur \mathbb{R} :

Soit $\alpha > 0$. Au voisinage de α , f coïncide avec la fonction $x \mapsto k_1 x^3 + k_2 x^4$. Donc f est deux fois dérivable en α , $f'(\alpha) =$ $3k_1x^2 + 4k_2x^3$ et $f''(\alpha) = 6k_1x + 12k_2x^2$.

De même, pour $\alpha < 0$, f coïncide au voisinage de α avec $x \mapsto k_3 x^3 + k_4 x^4$ donc f est deux fois dérivable en α et $f'(\alpha) =$ $3k_3x^2 + 4k_4x^3, f''(\alpha) = 6k_3x + 12k_4x^2.$

Ainsi, f est deux fois dérivable sur \mathbb{R}^* et sa dérivée seconde f'' est clairement continue en tout point de \mathbb{R}^* .

Donc f est de classe C^2 sur \mathbb{R}^* .

De plus, f est clairement continue à droite et à gauche en 0 donc continue en 0 ainsi qu'en tout point de \mathbb{R}^* .

Donc f est continue sur \mathbb{R} , de classe C^2 sur \mathbb{R}^* .

Il ne reste qu'à vérifier que f'(x) et f''(x) admettent une même limite finie en 0 à droite et à gauche pour assurer, d'après le théorème de prolongement de la classe, que f est de classe C^2 sur \mathbb{R} .

D'après les expressions précédemment évoquées pour f'' et f', ces limites existent et valent 0.

Conclusion : f est de classe C^2 sur \mathbb{R} .

Les expressions déterminées plus haut pour f' et f'' assurent immédiatement que f est solution de (E).

- Conclusion : on a bien l'égalité souhaitée et S est clairement de dimension 4.
- 5. Considérons l'équation (E) : $x^2y'' + 4xy' + 2y$.

Alors $x \mapsto \frac{1}{x}$ et $x \mapsto \frac{1}{x^2}$ sont deux solutions de (E) (vérification immédiate) sur I et sur J.

Cette famille de fonctions est clairement libre. Donc comme précédemment, S^+ et S^- sont engendrés par ces deux fonctions.

• Soit $f \in S$ une solution de (E) sur \mathbb{R} .

Alors il existe
$$k_1, k_2, k_3, k_4 \in \mathbb{R}$$
 tel que $\forall x > 0, f(x) = \frac{k_1}{x} + \frac{k_2}{x^2}$ et $\forall x < 0, f(x) = \frac{k_3}{x} + \frac{k_4}{x^2}$.
Alors $\forall x > 0, x^2 f(x) - k_1 x = k_2$ donc la continuité de f en 0 à droite donne par passage à la limite en $0^+ : 0 = k_2$.

Donc $\forall x > 0, f(x) = \frac{k_1}{x}$ d'où $\forall x > 0, x \times f(x) = k_1$ ce qui, par passage à la limite en 0 donne $0 = k_1$. De même, la continuité de f à gauche en 0 donne $k_3 = k_4 = 0$.

Donc f = 0 ce qui démontre que S est l'espace vectoriel nul.

Problème

Partie 1 : convergence de séries par transfo d'Abel

1. Soit
$$n \in \mathbb{N}^*$$

Solt
$$n \in \mathbb{N}$$
 .
$$S_n = \sum_{k=0}^n a_k b_k = a_0 b_0 + \sum_{k=1}^n a_k (B_k - B_{k-1}) = a_0 b_0 + \sum_{k=1}^n a_k B_k - \sum_{k=1}^n a_k B_{k-1}.$$
 Dans la dernière somme, on effectue le changement d'indice $j = k-1$.

$$S_n = a_0 b_0 + \sum_{k=1}^n a_k B_k - \sum_{j=0}^{n-1} a_{j+1} B_j = a_0 b_0 + \sum_{k=1}^{n-1} (a_k - a_{k+1}) B_k + a_n B_n - a_1 B_0$$

$$= a_0 b_0 + \sum_{k=0}^{n-1} (a_k - a_{k+1}) B_k - (a_0 - a_1) B_0 + a_n B_n - a_1 b_0 = \sum_{k=0}^{n-1} (a_k - a_{k+1}) B_k + a_n B_n$$

- 2. (a) Par théorème, la suite (a_n) étant convergente, la série $\sum a_k a_{k+1}$ est également convergente (c'est même une CNS).
 - (b) Vérifions que la suite (S_n) des sommes partielles est convergente.

D'après la question précédente,
$$\forall n \in \mathbb{N}^*, S_n = \sum_{k=0}^{n-1} (a_k - a_{k+1})B_k + a_nB_n$$
.

Le second terme (a_nB_n) tend vers 0 car produit d'une suite convergente vers 0 et d'une suite bornée.

Le premier terme est une somme partielle de la série de TG $(a_k - a_{k+1}) \times B_k$.

Notons M > 0 un majorant de la suite $(|B_n|)$.

Alors $\forall k \in \mathbb{N}, |(a_k - a_{k+1})B_k| \leq |a_k - a_{k+1}| \times M = (a_k - a_{k+1}) \times M$ car (a_k) est une suite décroissante.

Ainsi, $(a_k - a_{k+1})B_k$ est dominée par une le TG d'une série absolument convergente.

Donc $(a_k - a_{k+1}) \times B_k$ est lui même le TG d'une série AC ce qui termine la démonstration de cette question.

(c) • Soit $(a_k)_{k\in\mathbb{N}}$ une suite décroissante de limite nulle. Alors $\sum_{k\geq 0} (-1)^k a_k$ est une série convergente.

• Il suffit d'appliquer le résultat de la question précédente après avoir justifié que la suite $(B_n) = \left(\sum_{i=1}^n (-1)^k\right)$ est une suite

On a $\forall n \in \mathbb{N}, B_n \in \{1, 0\}$ donc $\forall n \in \mathbb{N}, |B_n| \le 1$ ce assure bien le résultat demandé.

(a) • On demande de calculer la somme des termes d'une suite géométrique de raison $e^{i\theta}$. Notons que, par hypothèse, $e^{i\theta} \neq 1$.

• Par théorème,
$$\sum_{k=1}^{n} e^{ik\theta} = e^{i\theta} \frac{1 - e^{in\theta}}{1 - e^{i\theta}} = e^{i\theta} \frac{e^{in\theta/2}}{e^{i\theta/2}} \frac{(-2i)\sin(n\theta/2)}{(-2i)\sin(\theta/2)} = e^{i(n+1)\theta/2} \frac{\sin(n\theta/2)}{\sin(\theta/2)}$$

- (b) Lorsque $\alpha>1$, la série de TG $\frac{e^{in\theta}}{n^{\alpha}}$ est absolument convergente donc convergente.
 - Lorsque $\alpha \leq 0$, le module du terme général ne tend pas vers 0 donc la série est grossièrement divergente.
 - Soit $\alpha \in [0, 1]$.

On va montrer que la série est convergente par application du résultat de la question 2b2.

Notons tout de même que le fait que la série commence à n=1 à la place de n=0 n'a pas d'incidence.

La suite (1/n) est clairement décroissante et tend vers 0.

D'après la question précédente, $\forall n \in \mathbb{N}^*, \left|\sum_{i=1}^n e^{i\theta}\right| \leq \frac{1}{|\sin(\theta/2)|}$ donc la suite des sommes partielles qui va bien est bornée.

Conclusion : la série est convergente.

4. Soit $x \in \mathbb{R}$. Posons $z_n = \frac{e^{inx}}{n^{1/2}}$.

Lorsque $x \in \mathbb{R} \setminus 2\pi\mathbb{Z}$, la question précédente assure la convergence de la série de TG z_n et le rappel de l'énoncé assure la convergence de la série de TG Im $(z_n) = \frac{\sin(nx)}{\sqrt{n}}$

Lorsque $x \in 2\pi \mathbb{Z}, u_n(x) = 0$ ce qui est bien le TG d'une série convergente.

Conclusion : cette série de fonction converge simplement sur \mathbb{R} .

Partie 2 : convergence uniforme de séries

- 5. (a) On montre que la suite $(a_n F_n)$ evu vers la fonction nulle sur A. $\forall z \in A, |a_n F_n(z)| \leq |a_n| \times M$ et cette majoration par une suite (indépendante de z) qui tend vers 0 assure que $(a_n F_n)$ cvu vers 0 sur A.
 - Notons comme précédemment, que $\forall k \in \mathbb{N}, |a_k a_{k+1}| = a_k a_{k+1}$ par décroissance de (a_n) . Ainsi, $\forall z \in A, |(a_k - a_{k+1})F_n(z)| \leq (a_k - a_{k+1}) \times M$ et cette majoration par le TG d'une série convergente (car la suite (a_k) est convergente) indépendant de z assure que la série de fonction $\sum_{k\geq 0} (a_k-a_{k+1})F_k$ converge normalement sur A.
 - (b) Il est connu qu'une somme de suites de fonctions qui convergent uniformément définit une suite de fonction qui converge

Ainsi, $(a_n F_n)$ cvu sur A et $\left(\sum_{k=0}^{n-1} (a_k - a_{k+1}) F_k\right)$ cvu sur A (d'après ce qui précède).

Donc la somme converge uniformément sur A et cette somme est la suite $\left(\sum_{k=0}^{n}a_{k}f_{k}\right)$ d'après la tranformation d'Abel.

Ainsi, la série $\sum a_k f_k$ cvu sur A.

- (a) On factorise $1 e^{ix}$ par $e^{ix/2}$ pour obtenir le résultat souhaité.
 - La suite $(1/\sqrt{n})$ est décroissante et de limite nulle.

Soit $a \in]0,\pi[$.

Soit
$$x \in [a, 2\pi - a]$$
. Notons tout de suite que $e^{ix} \neq 1$ car $x \in \mathbb{R} \setminus 2\pi\mathbb{Z}$.
Alors $\forall n \in \mathbb{N}^*, \left| \sum_{k=1}^n \sin(kx) \right| = \left| \operatorname{Im} \left(\sum_{k=1}^n e^{ikx} \right) \right| \leq \left| \sum_{k=1}^n e^{ikx} \right| = \frac{|\sin(nx/2)|}{|\sin(x/2)|} \leq \frac{1}{|\sin(x/2)|} = \frac{1}{\sin(|x|/2)}$.

Or $x \in [a, 2\pi - a]$ donc $(x/2) \in [a/2, \pi - a/2]$

Par hypothèse sur a, $0 < a/2 \le \pi/2 \le \pi/2 \le \pi/2 < \pi$ donc les variations de la fonction sin donnent $0 < \sin(a/2) =$ $\sin(\pi - a/2) \le \sin(x/2) = |\sin(x/2)|.$

Conclusion : $\forall n \in \mathbb{N}^*, \forall x \in [a, 2\pi - a], \left| \sum_{i=1}^n \sin(kx) \right| \leq \frac{1}{\sin(a/2)}$ ce qui assure le caractère uniformément borné de la série

de fonctions qui va bien.

Ainsi, d'après les questions précédentes, la série de fonctions $\sum_{k\geq 1} \frac{\sin(kx)}{\sqrt{k}}$ converge uniformément sur le segment $[a,2\pi-a]$.

- Les fonctions étant continues sur

 R par les théorèmes généraux, la convergence uniforme assure la continuité de la limite sur le domaine de convergence. Ainsi, U est continue sur tous les segments $[a, 2\pi - a]$ pour $a \in]0, \pi[$. Donc U est continue sur la réunion de ces segments qui forme l'intervalle $]0, 2\pi[$ tout entier.
- (b) D'après les énoncés précédents, il suffit de démontrer que la suite des sommes partielles $\sum \sin(kx)\sin(px)$ est uniformément bornée sur $[0, \pi]$.

D'après les calculs précédents,
$$\forall x \in]0,\pi]$$
, $A_n(x) = \left|\sum_{k=1}^n \sin(kx)\sin(px)\right| = \left|\frac{\sin(nx/2)\sin(px)}{\sin(x/2)}\right|$.

Pour $x \in]0,\pi]$, on a d'après l'énoncé, $0 < \frac{x}{\pi} \le \sin(x/2)$ ce qui, par décroissance de la fonction inverse sur $]0,+\infty[$ donne $0 < \frac{1}{\sin(x/2)} \le \frac{\pi}{x}.$

Ainsi,
$$\forall n \in \mathbb{N}^*, \forall x \in]0, \pi], A_n(x) \leq \frac{|\sin(px)|\pi}{x}$$

Or, il est bien connu que $|\sin(t)| \le |t|$ pour tout t réel.

Donc
$$\forall n \in \mathbb{N}^*, \forall x \in]0,\pi]$$
, $A_n(x) \leq \frac{p|x|\pi}{x} = p\pi$. Cette inégalité est encore valable pour $x=0$ car la somme est nulle.

Ainsi, la somme partielle qui va bien est uniformément bornée. De plus, $(1/\sqrt{n})$ est décroissante de limite nulle donc $\sum v_n(x)$ cvu sur $[0, \pi]$.

- i. Notons que la fonction U est clairement 2π périodique. Admettons les identités proposées (elles se démontrent par linéarisation des expressions trigo).
 - La fonction U est clairement impaire donc $\forall p \in \mathbb{N}, a_p(U) = 0$

Par imparité,
$$b_p(U) = \frac{2}{\pi} \int_0^{\pi} \sin(px) U(x) dx = \frac{2}{\pi} \int_0^{\pi} \sin(px) \sum_{n=0}^{\infty} \frac{\sin(nx)}{\sqrt{n}} dx$$
$$= \frac{2}{\pi} \int_0^{\pi} \sum_{n \ge 0} \frac{\sin(px) \sin(nx)}{\sqrt{n}} dx.$$

La convergence uniforme de la série $\sum_{n>0} \frac{\sin(px)\sin(nx)}{\sqrt{n}}$ sur le **segment** $[0,\pi]$ permet une interversion série - intégrale.

Ainsi,
$$b_p(U) = \frac{2}{\pi} \sum_{n \geq 0} \frac{1}{\sqrt{n}} \int_0^\pi \sin(px) \sin(nx) \, \mathrm{d}x = \frac{1}{\sqrt{p}}$$
 d'après le résultat donné par l'énoncé.

ii. U étant 2π périodique, à valeurs réelles et supposée continue par morceaux sur $[0,\pi]$ donc continue par morceaux sur $\mathbb R$ par imparité et 2π périodicité, le théorème de Parseval donne l'égalité $a_0(U)^2 + \frac{1}{2}\sum_{n=1}^\infty a_p(U)^2 + b_p(U)^2 = \frac{1}{\pi}\int_0^\pi U(t)^2 \,\mathrm{d}t.$

L'égalité ci-dessus se réécrit alors $\sum_{n=1}^{\infty} \frac{1}{p} = \frac{1}{\pi} \int_{0}^{\pi} U(t)^{2} dt \in \mathbb{R}$ ce qui est absurde car la série de TG $\frac{1}{p}$ est divergente.

D'où la contradiction qui montre que U n'est pas continue par morceaux sur $[0,\pi]$.

Partie 3 : convergence uniforme d'une série entière

- 7. La série entière converge uniformément sur tout disque fermé de centre 0 inclus dans le disque ouvert D(0,R) ie de la forme $\{z\in A\}$ $\mathbb{C}||z| \leq r$ avec $r \in [0, R[$.
- 8. (a) Supposons que la série entière $\sum \frac{x^n}{\sqrt{n}}$ cvu sur]-1,1[et notons f la fonction limite.

Alors la suite de fonctions $S_n: x \mapsto \sum_{i=1}^n \frac{x^k}{\sqrt{k}}$ converge uniformément vers f sur]-1,1[. De plus, 1 est dans l'adhérence de

]-1,1[et la limite quand x tend vers 1 de $S_n(x)$ existe (dans \mathbb{R}) et vaut $L_n = \sum \frac{1}{\sqrt{k}}$.

Par conséquence du théorème de la double limite (\mathbb{R} est complet...), la suite (L_n) est convergente ce qui est absurde car la série de TG $\frac{1}{\sqrt{k}}$ est divergente.

Conclusion : la série entière $\sum_{n \ge 0} \frac{x^n}{\sqrt{n}}$ ne converge pas uniformément sur]-1,1[.

- (b) D_{α} est le disque fermé de centre 0 de rayon 1 privé d'une "calotte"...
- (c) L'écriture proposée de D_{α} ne pose pas de problème. Notons également que dans \mathbb{R}^2 (en dimension finie, donc), toutes normes

• Posons $\varphi_1: \left\{ \begin{array}{l} \mathbb{R}^2 \to \mathbb{R} \\ (x,y) \mapsto x^2 + y^2 \end{array} \right. \text{ et } \varphi_2: \left\{ \begin{array}{l} \mathbb{R}^2 \to \mathbb{R} \\ (x,y) \mapsto x \end{array} \right.$

Par les théorèmes généraux, φ_1 et φ_2 sont clairement continue sur \mathbb{R}^2 .

De plus, les ensembles $]-\infty,1]$ et $]-\infty,\cos(\alpha)]$ sont deux fermés de \mathbb{R} .

Donc les images réciproques par φ_1 et φ_2 sont des fermés de \mathbb{R}^2 par théorèmes (image réciproque d'un fermé par une application continue...)

Une intersection (quelconque) de fermés est fermée donc $D_{\alpha} = \varphi_1^{-1}(]-\infty,1]) \cap \varphi_2^{-1}(]-\infty,\cos(\alpha)])$ est fermé.

• D_{α} est un fermé d'après ce qui précède et borné (par 1 en norme euclidienne...). En dimension finie, un fermé borné est un compact.

Donc D_{α} est un compact.

- (d) $1 \notin D_{\alpha}$ car $\cos(\alpha) < 1$ (par hypothèse sur α ...)
 - Soit $z \in D_{\alpha}$ et $n \in \mathbb{N}$. Alors $z \neq 1$ ce qui permet d'écrire que $|F_n(z)| = \left|1 \times \frac{1-z^{n+1}}{1-z}\right| = \frac{|1-z^{n+1}|}{|1-z|} \leq \frac{1+|z|^{n+1}}{|1-z|}$

Il reste à minorer le dénominateur par 1-x. On a $|1-z|^2=(1-x)^2+y^2\geq (1-x)^2>0$ car $x\leq \cos(\alpha)<1$. Donc $|1-z|\geq |1-x|=1-x\geq 1-\cos(\alpha)>0$ (toujours car $x\leq \cos(\alpha)<1$...) Par passage à l'inverse, $\frac{1}{|1-z|}\leq \frac{1}{1-x}\leq \frac{1}{1-\cos(\alpha)}$.

Ainsi, par multiplication par le réel positif $2:|F_n(z)|\leq \frac{2}{1-x}\leq \frac{2}{1-\cos(x)}$

(e) Soit $\alpha \in [0, \pi/2[$.

La suite $(1/\sqrt{n})$ est décroissante et tend vers 0 donc pour appliquer le résultat de la question 3.5.b., il suffit de montrer que la suite des sommes partielles $\left(\sum_{k=1}^n z^k\right)$ est uniformément bornée sur D_{α} .

5

Ceci est assuré par la majoration précédente car $\frac{2}{1-\cos(\alpha)}$ est indépendant de z et de n.

Conclusion : la série entière $\sum_{n\geq 0} \frac{z^n}{\sqrt{n}}$ converge uniformément sur D_{α} .